Bile acids. XLIX. Allocholic acid, the major bile acid of *Uromastix hardwickii*

S. S. Ali¹, H. Farhat¹, and William H. Elliott²

Department of Biochemistry, St. Louis University School of Medicine, St. Louis, Missouri 63104

Abstract Tauroallocholate is the major bile salt of the lizard, *Uromastix hardwickii*. Alkaline hydrolysis of bile from 25 gallbladders provided 1.21 g of acidic material, about 90% of which was allocholic acid. Analyses by gas-liquid chromatography, and mass spectrometry verified the presence of almost 10% of deoxycholic acid and smaller amounts of other 5α- and 5β-bile acids.

Supplementary key words tauroallocholate • lizard bile • allo bile acids • mass spectrometry • gas-liquid chromatography

With the establishment (1) of the structure of allocholic acid, a major component of the bile of the Gigi fish (2) and of the bile of the king penguin (3), the studies of Anderson and Haslewood (1) aroused new interests toward the identification of this acid in other species. As a consequence allocholic acid has been reported as a constituent of the bile of the leopard seal (4), salamander (5), carp (6) and several species of fish, reptiles, birds (7) and several mammals including oxen (6) and man (8). The formation of allocholate and cholate from [4-14C]-7α-hydroxycholesterol has been demonstrated in the hen (9), rat, and rabbit (10). 5α-Cholesterol has been shown to be a precursor in the rat (11, 12) and gerbil (13). Pathways of biosynthesis of allocholate from cholesterol or cholesteryl have been proposed (12, 14) and several studies suggest that allocholate is a primary bile acid in certain species (6, 9, 10). Unfortunately, very few of these natural sources of allocholate contain appreciable quantities of the acid. This paper describes the isolation and identification of bile acids obtained from gall bladders of *Uromastix hardwickii*, a herbivorous lizard native to Pakistan, in which allocholic acid is the major bile acid, indicating that this species is an excellent source of allocholic acid.

MATERIALS AND METHODS

The animals, 6-12 inches in length found in the Sind Region near Karachi, were obtained from deep burrows below the sand during their period of hibernation (November to March). The gall bladders from 25 animals were removed, and bile was drained into 95% ethanol to precipitate proteins. After several days the precipitate was removed, and the ethanol extract was evaporated under nitrogen. The dried bile, 2.9 g, was retained at 4°C until hydrolyzed with 200 ml of 2.5 N KOH for 14 hr in an autoclave at 15 lbs psi and 120°C. The alkaline solution was diluted with an equal volume of water, and extracted with ethyl acetate (3 times with 100 ml of solvent). The unsaponified fraction was washed with water, dried over anhydrous sodium sulfate, and evaporated under nitrogen to afford 67.1 mg. The composition of this material is currently under investigation. The aqueous hydrolysate was acidified with 6 N HCl to pH 1 and extracted with ethyl acetate (3 times with 100 ml of solvent); the extract was

Abbreviations: TLC, thin-layer chromatography; GLC, gas-liquid chromatography; TMSi, trimethylsilyl; RRT, relative retention time.

Systematic nomenclature of the compounds referred to in the text by their trivial names is as follows: allocholic acid, 3α,7α,12α-trihydroxy-5α-chol-24-oic acid; allochenodeoxycholic acid, 3α,7α,12α-trihydroxy-5α-chol-24-oic acid; allocholic acid, 3α,7α,12α-trihydroxy-5β-chol-24-oic acid; chenodeoxycholic acid, 3α,7α-dihydroxy-5α-chol-24-oic acid; cholic acid, 3α,7α-dihydroxy-5α-chol-24-oic acid.

¹ Department of Biochemistry, University of Karachi, Karachi 32, Pakistan.
² Author to whom to address correspondence.
washed with water and evaporated under nitrogen to provide 1.21 g of acidic material.

Bile acids were separated by acetic acid partition chromatography (15). The fractions are designated according to the percentage of benzene in hexane; e.g., fraction 80-2 represents the second fraction of eluent containing 80% benzene in hexane. Analytical TLC and GLC were carried out as described previously (13). Mass spectra were determined with an LKB 9000 gas chromatograph–mass spectrometer (LKB Instruments, Rockville, Md.) with a column of 1% OV-17 (column, 260°C; ion source, 270°C) or via the direct probe (ionizing energy, 70eV, accelerating voltage, 3.5 K). Melting points and infrared spectra in potassium bromide pellets were determined as reported (13). Proton magnetic resonance spectra were taken with a Varian A-60 spectrometer (Varian Assoc., Palo Alto, Cal.) at 60 MHz and tetramethylsilane as internal standard (16). For comparative purposes allo bile acids were prepared from appropriate methyl cholanates (12).

RESULTS

Fig. 1 shows a thin-layer chromatogram of the conjugated bile acids from Uromastix hardwickii compared with several known derivatives. The major material contained predominately taurotrihydroxy acid (6) with lesser amounts of taurodihydroxy derivatives. After alkaline hydrolysis (Fig. 2) large spots appeared in the areas related to alchoholic acid and dihydroxy acids, with very minor spots occurring just above these two areas. This distribution was confirmed by acetic acid partition chromatography (Fig. 3) of 200 mg of the acidic material. The major amount of product (187.1 mg) was obtained in fractions 80-1 through 80-3. After crystallization from methanol–acetone, the product exhibited mp 226–228°C (11). The proton magnetic resonance spectrum showed the following chemical shifts: C_7H, 6.04(m); C_8H, 6.12(s); C_9H, 6.23(m); $C_{10}H$, 9.24(s); $C_{11}H$, 9.32(s); methyl ester, 6.36(s). A sample of authentic methyl alchoholate gave the following: C_7H, 6.04(m); C_8H, 6.11(m); C_9H, 6.23(m); $C_{10}H$, 9.24(s); $C_{11}H$, 9.31(s); methyl ester, 6.37(s). The mass spectrum showed a very weak molecular ion, m/e 422, and characteristic fragments at m/e 404, [M-18]+; 386, [M-(2 × 18)]+; 368, [M-(3 × 18)]+; 353, [M-(3 × 18 + 15)]+; 289 [M-(18 + side chain)]+; 271, [M-(2 × 18 + side chain)] (base peak); and 253, [M-(3 × 18 + side chain)]+.

Material in fractions 40-1 and 40-2 (24.6 mg) was crystallized from a mixture of hexane and acetone to provide a product; mp 177°C (reported for deoxycholic acid, mp 177°C (18)). A sample of the acid was methylated with diazomethane and crystallized from methanol–acetone, converted to the trimethylsilyl ether and examined by mass spectrometry. The mass spectrum exhibited a weak molecular ion, m/e 550, and characteristic fragment ions of m/e 535, [M-18]+; 460, [M-90]+; 370, [M-(2 × 90)]+; 345, [M-(90 + 115)]+; and 255, [M-(2 × 90 + 115)] base peak, characteristic of a 12-hydroxylated bile acid (18).

Quantitation of the bile acids by gas-liquid chromatography of the methyl esters and their TMS ethers on 3% QF-1 and 3% OV-17 (Table 1) showed the presence of minor amounts of chenodeoxycholate, allocholate, allocholyxcholate and cholate, as well as two unidentified acids constituting 0.38 and 0.85% of the total bile acid composition.

DISCUSSION

Abundant natural sources of allo bile acids are of particular interest to those concerned with a study of the physiological importance of these acids. To date small, more primitive animals appear to be better sources of these acids, but few quantitative data are available. Anderson and Haslwood (19) have reported alcholic acid as a constituent of the North American white sucker Catostomus commersoni lancepedes, although Sx-chimaerol sulfate is the dominant bile salt. In bile of the river carpucker Carpiodes carpio (Rufenesque) (Catostomidae) tauralchoholate is the major bile salt (20).
TABLE 1. Composition and relative retention times of bile acids of gall bladder bile in Uromastix hardwickii

<table>
<thead>
<tr>
<th>Bile Acid</th>
<th>% Total</th>
<th>QE-1*</th>
<th>OV-17*</th>
<th>TMS Me Ester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unknown</td>
<td>0.38</td>
<td>0.70</td>
<td>0.77</td>
<td>0.04</td>
</tr>
<tr>
<td>Deoxycholic</td>
<td>0.65</td>
<td>1.00</td>
<td>1.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Chenodeoxycholic</td>
<td>0.38</td>
<td>1.18</td>
<td>1.14</td>
<td>1.09</td>
</tr>
<tr>
<td>Allocholic acid</td>
<td>0.59</td>
<td>1.08</td>
<td>1.19</td>
<td>0.93</td>
</tr>
<tr>
<td>Allocholic acid</td>
<td>0.45</td>
<td>1.22</td>
<td>1.21</td>
<td>1.00</td>
</tr>
<tr>
<td>Unknown</td>
<td>0.95</td>
<td>1.61</td>
<td>1.65</td>
<td>1.70</td>
</tr>
<tr>
<td>Cholic</td>
<td>0.50</td>
<td>2.33</td>
<td>2.19</td>
<td>1.05</td>
</tr>
<tr>
<td>Allocholic acid</td>
<td>87.21</td>
<td>2.68</td>
<td>2.51</td>
<td>1.00</td>
</tr>
</tbody>
</table>

* 3% silicones on Gas-Chrom Q as phases for gas chromatography.

5α-Cypriinol (21), and allocholic acid (22) have been isolated from carp bile, but 5α-cypriinol sulfate is not the major bile salt. From the bile of 53 gall bladders of carp (10 mg of crystalline methyl allocholate was obtained (6). Tammar (23) has recently reviewed the nature of bile salts in fishes.

The large percentage of cholanic acid (about 90% present in the tauro derivative in bile of the lizard, Uromastix hardwickii, emphasizes the importance of this species as a source of this acid. Uromastix microlepis, native to Kuwait, contains a similar high content of allocholate (6), and the tauro derivative has also been detected chromatographically in bile from Uromastix thomasi (7): The major bile acid from the lizard Iguana iguana (24) is reported to be allocholic acid. These observations indicate the presence of an active 12α-hydroxylase in the biosynthesis of bile acids in these lizards.

If the processes of enterohepatic circulation and bacterial 7α-dehydroxylation in the intestine occur in lizards as in larger animals, the presence of allocholate in bile acid would be anticipated, as would the presence of deoxycholate from cholate. However, the ratio of allocholate to deoxycholate (148:1) is drastically shifted in comparison to the ratio of cholate to deoxycholate (0.05:1). Whether this marked difference is due to radical behavior by a few animals, related to diet, time of collection during hibernation, or other factors must await further experiments to delineate metabolic pathways of biosynthesis of these bile acids in this species.

These studies were supported in part by U. S. Public Health Service Grant HL-47875 and by the University of Karachi. The technical assistance of Eric Stephenson and William Frasure is gratefully acknowledged. Dr. Roger Shaw kindly provided samples of conjugated bile acids.

Manuscript received 17 July 1975; accepted 17 September 1975

REFERENCES

Ali, Farhat, and Elliott Bile acids 23