Inhibition of cholesterol biogenesis by arsenite: preparation of labeled lanosterol

MARY L. MOLLER and T. T. TCHEN
Department of Chemistry,
Wayne State University,
Detroit 2, Michigan
[Received for publication March 29, 1961]

SUMMARY

When mevalonic acid-2-14C was incubated with rat liver homogenate with the usual cofactors plus 10^{-3} M arsenite, the formation of labeled cholesterol was inhibited and labeled lanosterol accumulated. This inhibitory effect of arsenite provides a convenient method of preparing labeled lanosterol in high yield (>10%) from commercially available 14C-labeled mevalonic acid.

It is well established that the biogenesis of cholesterol follows the following reaction sequence as reviewed by Popjak and Cornforth (1):

\[\text{MVA} \rightarrow \text{squalene} \rightarrow \text{lanosterol} \rightarrow \text{cholesterol}. \]

Although the steps between MVA and lanosterol have been largely elucidated in the past several years, much remains to be learned about the mechanism of conversion of lanosterol to cholesterol (1). One of the major problems in this area is the difficulty of obtaining labeled or unlabeled lanosterol. We wish to report the specific inhibition of the oxidation of lanosterol by arsenite, and a convenient method of preparing labeled lanosterol based on this effect.

MATERIALS AND METHODS

Racemic MVA-2-14C of specific activity 1.1 μC/ μ mole was purchased from Tracerlab, Inc. Pure lanosterol was a kind gift of Professor K. Bloch. Rat liver homogenate was prepared and incubated with cofactors as described by Bucher and McGarrahan (2). Extraction and fractionation of nonsaponifiable material, and the determination of radioactivity in the sterols, in MVA and in CO$_2$ were as previously described (3, 4).

* Supported by grants from the Life Insurance Medical Research Fund, Eli Lilly and Company, and the United States Public Health Service.
† The following abbreviations are used: MVA, mevalonic acid; ATP, adenosine triphosphate; DPN, diphosphopyridine nucleotide.

RESULTS AND DISCUSSION

When MVA-2-14C was incubated under aerobic conditions with rat liver homogenate and the proper cofactors, substantial amounts of 14CO$_2$ were formed. Addition of arsenite inhibited the formation of labeled CO$_2$ without affecting the yield in labeled nonsaponifiable material (Table 1). Chromatography of the nonsaponifiable material revealed that over 90% of the label was associated with the sterols, and that very little 14C was present in the squalene fraction. Since the conversion of MVA-2-14C to lanosterol would not give rise to labeled CO$_2$, whereas the formation of cholesterol should be accompanied by the formation of radioactive CO$_2$, it appeared likely that the labeled product was lanosterol. This was confirmed by the following pieces of evidence: (a) When labeled...
squalene, prepared by incubating MVA-2-C14 with rat liver homogenate under anaerobic conditions, was incubated with rat liver microsomes and soluble proteins, both labeled sterol and labeled CO\textsubscript{2} were formed. The addition of arsenite abolished the formation of CO\textsubscript{2} without affecting the yield of sterol (Table 2). (c) When the labeled sterol, obtained in the presence of arsenite, was recrystallized with cholesterol, the crystals obtained after two recrystallizations had no radioactivity. (c) When the labeled sterol was recrystallized with lanosterol, the radioactivity remained with the crystals after three recrystallizations.

Based on this inhibitory effect of arsenite, labeled lanosterol can be prepared conveniently from MVA-2-C14. A typical experiment follows: Five milliliters of rat liver homogenate was preincubated with 10-4 M arsenite for 1 hour at 0\textdegree, and then incubated aerobically for 3 hours at 37\textdegree after the addition of 1 \mu mole of racemic MVA-2-C14, 10 \mu moles of DPN+, and 20 \mu moles of ATP. After saponification, extraction, and chromatography on active alumina, the yield of lanosterol was 0.2 \mu c, or 40\% of the maximum theoretical yield.

Table 2. Effect of Arsenite on the Conversion of Squalene to Cholesterol

<table>
<thead>
<tr>
<th>Arsenite</th>
<th>CO\textsubscript{2}</th>
<th>Sterols</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>2,720</td>
<td>3,396</td>
</tr>
<tr>
<td>10-4 M</td>
<td>1,120</td>
<td>1,146</td>
</tr>
<tr>
<td>10-3 M</td>
<td>24</td>
<td>207</td>
</tr>
</tbody>
</table>

106 cpm of squalene was suspended with the aid of 0.5 mg of Tween 80 and incubated for 3 hours with 2 ml of dialyzed rat liver supernatant and microsomes. Addition of arsenite at 10-2 M inhibited only C\textsubscript{14}C\textsubscript{2} formation. The squalene was prepared by the incubation of MVA-2-C14 with rat liver homogenate under anaerobic conditions. The supernatant and microsomes were obtained by centrifuging liver homogenate for 30 minutes at 8,000 \times g to remove the mitochondria. The supernatant thus obtained was dialyzed for 3 hours at 2\textdegree against 260 volumes of 0.001 M phosphate buffer (pH 7.0).

References