Isolation of 1,3-distearoyl-glycero-2-phosphocholine (β-lecithin) from commercial 1,2-distearoyl-sn-glycero-3-phosphocholine

M. M. Ponpipom and R. L. Bugianesi
Merck Sharp & Dohme Research Laboratories, Rahway, NJ 07065

Summary

Different batches of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) had varying amounts of contaminants which appeared to affect systematic biological studies. This contaminant was separated by silica gel column chromatography followed by high performance liquid chromatography and identified as 1,3-distearoyl-glycero-2-phosphocholine (β-lecithin).—M. M. Ponpipom and R. L. Bugianesi. Isolation of 1,3-distearoyl-glycero-2-phosphocholine (β-lecithin) from commercial 1,2-distearoyl-sn-glycero-3-phosphocholine. J. Lipid Res. 1980. 21: 136–139.

Supplementary key words: preparative chromatography; phospholipids; β-lecithins

Liposomes have been used as carriers for delivering biologically active materials into cells (1-5). Lipid vesicles are formed when mixtures of phospholipid, cholesterol, and a charged amphiphile in varying molecular ratios are agitated or sonicated in an aqueous solution. Synthetic phospholipids such as 1,2-dioleoyl-, 1,2-dipalmitoyl-, and 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC, Compound 1) are often used to prepare liposomes for biological studies. These phospholipids are generally prepared from egg yolk lipids via sn-glycero-3-phosphocholine (6) by acylation with the desired acyl chloride (7) or fatty acid anhydrides (8, 9). Since most of these phospholipids are available commercially, they are often used as such without further purification. However, it should be stressed that most biochemical and physico-chemical studies of membrane constituents do require pure phospholipids. In this communication, we report the isolation and characterization of 1,3-distearoyl-glycero-2-phosphocholine (Compound 2), a contaminant of synthetic DSPC from a commercial source.

1

MATERIALS AND METHODS

Ten one-gram vials of DSPC (# P1138, from Sigma) were combined and chromatographed on a column of silica gel 60 (500 g, 70–230 mesh ASTM, from E. Merck, Darmstadt, Germany) with chloroform–methanol–water 12:8:1 (v/v/v) as eluent. The DSPC obtained (7.9 g) gave a single spot by TLC (Rf 0.53) in chloroform–methanol–water 6:4:1 (v/v/v). The contaminants which appeared to affect systematic in vivo tissue distribution studies.

1 Different batches of DSPC had different amounts of contaminants which appeared to affect systematic in vivo tissue distribution studies.
Fig. 1. A. Proton NMR spectrum of 1,3-distearoyl-glycero-2-phosphocholine (Compound 2) in CDCl₃ solution. B. Proton NMR spectrum of 1,2-distearoyl-sn-glycero-3-phosphocholine (Compound 1) in CDCl₃ solution. C. Proton NMR spectrum of synthetic 1,3-distearoyl-glycero-2-phosphocholine (Compound 2) in CDCl₃ solution.

Fig. 2. A. ¹³C-NMR spectrum of 1,3-distearoyl-glycero-2-phosphocholine (Compound 2) in CDCl₃ solution. B. ¹³C-NMR spectrum of 1,2-distearoyl-sn-glycero-3-phosphocholine (Compound 1) in CDCl₃ solution. C. ¹³C-NMR spectrum of synthetic 1,3-distearoyl-glycero-2-phosphocholine (Compound 2) in CDCl₃ solution.

Formering fractions (2 g) (containing two spots) were separated by means of PrepPak™ 500/Silica on a Waters Associates Prep LC/System 500 at 250 ml/min using chloroform–methanol–water 12:8:1 (v/v/v) as a liquid phase. The column was first conditioned with water–methanol 1:9 (v/v). The first two fractions (100 mg) which contained about 20% of a more mobile component were analyzed by HPLC (10) (Waters)
TABLE 1. Proton chemical shifts of 1,2-distearoyl-sn-glycero-3-phosphocholine (Compound 1) and 1,3-distearoyl-glycero-2-phosphocholine (Compound 2)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Choline</th>
<th>Glycerol</th>
<th>Methylene</th>
<th>Methyl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Me3N+</td>
<td>CH3N+</td>
<td>CH2O</td>
<td>1CH2O</td>
</tr>
<tr>
<td>1</td>
<td>3.40</td>
<td>3.85</td>
<td>4.36</td>
<td>4.14<sup>a</sup></td>
</tr>
<tr>
<td>2</td>
<td>3.38</td>
<td>3.82</td>
<td>4.33</td>
<td>4.24<sup>c</sup></td>
</tr>
</tbody>
</table>

^a J 7.0, 12.0 Hz (d, d).
^b J _{vinc} 7.0 Hz (q).
^c J _{vinc} 7.0 Hz (t).
^d J 2.5, 12.0 Hz (d, d).
^e J 5.0 Hz (d).

The NMR spectra were measured at 300 MHz in CDCl₃ using a Varian SC300 spectrometer. Chemical shifts were expressed in ppm downfield from internal TMS.

TABLE 2. Carbon chemical shifts of 1,2-distearoyl-sn-glycero-3-phosphocholine (Compound 1) and 1,3-distearoyl-glycero-2-phosphocholine (Compound 2)

<table>
<thead>
<tr>
<th>Compound</th>
<th>Choline</th>
<th>Glycerol</th>
<th>Methylene</th>
<th>Methyl</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C = 0</td>
<td>CH3N+</td>
<td>CH2O</td>
<td>1CH2O</td>
</tr>
<tr>
<td>1</td>
<td>173.5</td>
<td>54.3</td>
<td>66.4</td>
<td>59.4</td>
</tr>
<tr>
<td>173.1</td>
<td>66.2</td>
<td>59.3</td>
<td>66.4</td>
<td>59.4</td>
</tr>
<tr>
<td>2</td>
<td>173.6</td>
<td>54.5</td>
<td>66.7</td>
<td>59.3</td>
</tr>
<tr>
<td>2</td>
<td>66.6</td>
<td>59.3</td>
<td>66.7</td>
<td>59.3</td>
</tr>
</tbody>
</table>

^aJ_{cp} 5.0 Hz (d).

The NMR spectra were measured at 25.2 MHz in CDCl₃ using a Varian XL-100 spectrometer. Chemical shifts were expressed in ppm downfield from internal TMS.

RESULTS AND DISCUSSION

The more mobile component (5 mg, R_f 0.59) was isolated and shown by TLC and NMR (Figs. 1A and 2A) to be identical to synthetic 1,3-distearoyl-glycero-2-phosphocholine (11, 12) (Figs. 1C and 2C) which was prepared in good yield from 2-bromoethyl dichlorophosphate and 1,3-distearoyl glycerol (13).

This material was crystallized from butanone, mp 75–75°C (to liquid crystal) and 231–232°C (to isotropic liquid) (Anal. calculated for C₄₄H₈₈NPO₄·0.5H₂O: C, 66.13; H, 11.23; N, 1.75; P, 3.88. Found: C, 65.96; H, 11.27; N, 1.89; P, 3.97); by differential thermal analysis there was a main endothermic transition at 68.5°C, and a shallow endotherm at 100°C. It readily formed liposomes and had a transition temperature of 51°C as compared to 55°C for DSPC.

1,3-Distearoyl-glycero-2-phosphocholine was probably formed from the migration of the phosphoryl group from the 3-carbon atom (17–19) during acid or base hydrolysis of egg yolk lecithin followed by acylation with stearic anhydride or stearoyl chloride. Although 1,3-diacyl-sn-glycero-2-phosphocholines have not been found so far as naturally occurring constituents, many of these so-called β-lecithins, which have proven to be useful for the elucidation of...
of the specificity of phospholipase A2, have been synthesized (20).

We thank Drs. B. H. Arison and A. W. Douglas for recording NMR spectra, and Dr. J. A. McCauley for recording DTA spectra.

REFERENCES

