Platelet lipid composition and platelet aggregation in human liver disease


Department of Biochemistry and Chemistry, Royal Free Hospital School of Medicine, University of London, London, WC1N 1BP and Departments of Haemophilia and Medicine, Royal Free Hospital, Pond Street, London, NW3 2QG, United Kingdom

Abstract Abnormal plasma lipoproteins in patients with liver disease are associated with an increase in erythrocyte cholesterol concentration and a raised erythrocyte cholesterol/phospholipid molar ratio. We hypothesized that their platelets would also have an increased cholesterol/phospholipid ratio and that this might affect aggregation in vitro. Platelet aggregation by adrenaline and ADP was measured in 34 patients with a variety of liver diseases and in 20 normal subjects and the values were related to platelet lipid composition. The platelet cholesterol/phospholipid ratio was 13% higher in the patients and correlated closely with erythrocyte cholesterol/phospholipid ratio. Platelet aggregation was reduced in most of the patients and inversely correlated with the cholesterol/phospholipid ratio. Cross-incubation and hemostasis studies indicated that there were no inhibitory factors present in the plasma; the defect was in the platelets. In contrast, other workers have shown that cholesterol-rich platelets, either from patients with Type IIa hyperlipoproteinemia or prepared in vitro, aggregate more readily than normal platelets. However, the phospholipid and fatty acid compositions of our patient platelets were also abnormal: the lecithin/sphingomyelin ratio was increased and was inversely correlated with aggregation; the proportion of arachidonic acid was decreased and positively correlated with the aggregation. In our patients with liver diseases the effects of the altered phospholipid and fatty acid composition presumably overrode those of the increased cholesterol content so that instead of enhanced aggregation, only reduced or normal aggregation was seen.


Supplementary key words arachidonic acid · membrane fluidity · platelet cholesterol · platelet phospholipids

In many patients with liver disease erythrocyte cholesterol and phosphatidylcholine concentrations are increased and the cholesterol/phospholipid ratio is raised (1). The excess lipid is acquired from the abnormal plasma lipoproteins (2, 3) and the resulting decrease in membrane fluidity (4, 5) is associated with an abnormal permeability to sodium (6) and with an enhanced ability of the cells to fuse in vitro in the presence of a chemical fusogen (7). We have suggested that similar membrane lipid changes may occur in other cells and affect their function (3).

Incubation of platelets with cholesterol-rich liposomes increases their cholesterol content and their cholesterol/phospholipid molar ratio (8). These changes are accompanied by a decrease in membrane fluidity (9). The platelets of patients with Type IIa hyperlipoproteinemia also have a raised cholesterol/phospholipid ratio (10). In both cases the platelets exhibit increased sensitivity to the aggregating agents ADP and adrenaline (8, 10). In this study we have tested the hypothesis that platelets from patients with liver disease might have an increased cholesterol/phospholipid ratio and that this might affect their ability to aggregate in vitro.

MATERIALS AND METHODS

Patients

Thirty-four patients with liver disease of varying severity were studied. All were in-patients of the Department of Medicine at the Royal Free Hospital, London. The diagnosis was established by a variety of appropriate investigations including liver biopsy, cholangiography, or operation. Twelve patients had obstructive jaundice (seven, intrahepatic; five, extrahepatic), twenty-one had non-fulminant parenchymal liver disease (seven, alcoholic cirrhosis; two, alcoholic hepatitis; four, cryptogenic cirrhosis; six, chronic active hepatitis; two, drug-induced hepatitis) and in...
Platelet aggregation was quantitated by nephelometry (18), the fall in absorbance of platelet-rich plasma being determined 3 min after addition of a standard amount of aggregating agent. Adenosine diphosphate, adrenaline, collagen (Sigma Chemical Co., St. Louis, MO) by two-dimensional thin-layer chromatography was measured. In these cases, the diacyl phosphatidylethanolamine, prior to development in the second solvent (16). In preliminary experiments, individual fractions were identified by comparison with authentic phospholipid standards (Sigma Chemical Co., St. Louis, MO) and by use of specific chemical spray techniques (16). The fractions were located with iodine, scraped from the plate, and the phospholipids were measured as inorganic phosphorus after digestion with H$_2$SO$_4$ (15).

In the last eighteen patients studied, platelet fatty acid composition was determined by gas-liquid chromatography. A portion of the lipid extract was transmethylated by heating at 70°C for 3 hr under N$_2$ in 5% (v/v) H$_2$SO$_4$ in dry methanol. The fatty acid esters were separated at 175°C on a 150-cm column of 10% EGSS-X on Gas-Chrom P, 100/120 mesh; detection was by flame ionization. In some additional subjects, the fatty acid composition of individual platelet phospholipids was measured. In these cases, the diacyl and plasmalogen ethanolamine glycerophospholipids were resolved by spraying the lipid track with 5 mM HgCl$_2$ to convert the plasmalogen fraction to lysophosphatidylethanolamine, prior to development in the second solvent (17). The individual phospholipids were located by spraying with aqueous Rhodamine-6G (0.01%, w/v) and transmethylated as before.

Investigation of hemostatic mechanism

Platelet aggregation was quantitated by nephelometry (18), the fall in absorbance of platelet-rich plasma being determined 3 min after addition of a standard amount of aggregating agent. Adenosine diphosphate, adrenaline, collagen (Sigma Chemical Co., St. Louis, MO) by two-dimensional thin-layer chromatography was measured. In these cases, the diacyl phosphatidylethanolamine, prior to development in the second solvent (16). In preliminary experiments, individual fractions were identified by comparison with authentic phospholipid standards (Sigma Chemical Co., St. Louis, MO) and by use of specific chemical spray techniques (16). The fractions were located with iodine, scraped from the plate, and the phospholipids were measured as inorganic phosphorus after digestion with H$_2$SO$_4$ (15).

In the last eighteen patients studied, platelet fatty acid composition was determined by gas-liquid chromatography. A portion of the lipid extract was transmethylated by heating at 70°C for 3 hr under N$_2$ in 5% (v/v) H$_2$SO$_4$ in dry methanol. The fatty acid esters were separated at 175°C on a 150-cm column of 10% EGSS-X on Gas-Chrom P, 100/120 mesh; detection was by flame ionization. In some additional subjects, the fatty acid composition of individual platelet phospholipids was measured. In these cases, the diacyl and plasmalogen ethanolamine glycerophospholipids were resolved by spraying the lipid track with 5 mM HgCl$_2$ to convert the plasmalogen fraction to lysophosphatidylethanolamine, prior to development in the second solvent (17). The individual phospholipids were located by spraying with aqueous Rhodamine-6G (0.01%, w/v) and transmethylated as before.

Investigation of hemostatic mechanism

Platelet aggregation was quantitated by nephelometry (18), the fall in absorbance of platelet-rich plasma being determined 3 min after addition of a standard amount of aggregating agent. Adenosine diphosphate, adrenaline, collagen (Sigma Chemical Co., St. Louis, MO) by two-dimensional thin-layer chromatography was measured. In these cases, the diacyl phosphatidylethanolamine, prior to development in the second solvent (16). In preliminary experiments, individual fractions were identified by comparison with authentic phospholipid standards (Sigma Chemical Co., St. Louis, MO) and by use of specific chemical spray techniques (16). The fractions were located with iodine, scraped from the plate, and the phospholipids were measured as inorganic phosphorus after digestion with H$_2$SO$_4$ (15).

In the last eighteen patients studied, platelet fatty acid composition was determined by gas-liquid chromatography. A portion of the lipid extract was transmethylated by heating at 70°C for 3 hr under N$_2$ in 5% (v/v) H$_2$SO$_4$ in dry methanol. The fatty acid esters were separated at 175°C on a 150-cm column of 10% EGSS-X on Gas-Chrom P, 100/120 mesh; detection was by flame ionization. In some additional subjects, the fatty acid composition of individual platelet phospholipids was measured. In these cases, the diacyl and plasmalogen ethanolamine glycerophospholipids were resolved by spraying the lipid track with 5 mM HgCl$_2$ to convert the plasmalogen fraction to lysophosphatidylethanolamine, prior to development in the second solvent (17). The individual phospholipids were located by spraying with aqueous Rhodamine-6G (0.01%, w/v) and transmethylated as before.

Investigation of hemostatic mechanism

Platelet aggregation was quantitated by nephelometry (18), the fall in absorbance of platelet-rich plasma being determined 3 min after addition of a standard amount of aggregating agent. Adenosine diphosphate, adrenaline, collagen (Sigma Chemical Co., St. Louis, MO) by two-dimensional thin-layer chromatography was measured. In these cases, the diacyl phosphatidylethanolamine, prior to development in the second solvent (16). In preliminary experiments, individual fractions were identified by comparison with authentic phospholipid standards (Sigma Chemical Co., St. Louis, MO) and by use of specific chemical spray techniques (16). The fractions were located with iodine, scraped from the plate, and the phospholipids were measured as inorganic phosphorus after digestion with H$_2$SO$_4$ (15).

In the last eighteen patients studied, platelet fatty acid composition was determined by gas-liquid chromatography. A portion of the lipid extract was transmethylated by heating at 70°C for 3 hr under N$_2$ in 5% (v/v) H$_2$SO$_4$ in dry methanol. The fatty acid esters were separated at 175°C on a 150-cm column of 10% EGSS-X on Gas-Chrom P, 100/120 mesh; detection was by flame ionization. In some additional subjects, the fatty acid composition of individual platelet phospholipids was measured. In these cases, the diacyl and plasmalogen ethanolamine glycerophospholipids were resolved by spraying the lipid track with 5 mM HgCl$_2$ to convert the plasmalogen fraction to lysophosphatidylethanolamine, prior to development in the second solvent (17). The individual phospholipids were located by spraying with aqueous Rhodamine-6G (0.01%, w/v) and transmethylated as before.
Correlation between the cholesterol/phospholipid molar ratio in platelets and in erythrocytes from patients with liver disease and from normal subjects.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Cholesterol</th>
<th>Phospholipid</th>
<th>Cholesterol/Phospholipid</th>
<th>% Total Lipid Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocytes</td>
<td>Normal (20)</td>
<td>3.55 ± 0.24</td>
<td>4.10 ± 0.32</td>
<td>0.87 ± 0.03</td>
</tr>
<tr>
<td>Patients (34)</td>
<td>4.78 ± 0.57</td>
<td>4.62 ± 0.58</td>
<td>1.04 ± 0.12</td>
<td>0.8 ± 0.4</td>
</tr>
<tr>
<td>Platelets</td>
<td>Normal (20)</td>
<td>24.9 ± 4.0</td>
<td>43.6 ± 7.3</td>
<td>0.57 ± 0.02</td>
</tr>
<tr>
<td>Patients (34)</td>
<td>27.8 ± 4.1</td>
<td>43.0 ± 6.5</td>
<td>0.65 ± 0.03</td>
<td>1.2 ± 0.3</td>
</tr>
</tbody>
</table>

*Results are expressed as means ± S.D. for the number of subjects given in parentheses, except for platelet phospholipid composition when only 24 patients were studied.

LPC, lyso phosphatidylcholine; SM, sphingomyelin; PI, phosphatidylserine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PA, phosphatidic acid; N.D., not detected.

Aggregation of patient platelets was usually reduced with one or more of the aggregating agents and the mean values were lower for both adrenaline-induced aggregation (0.7 ± 0.1% compared to 0.9 ± 0.2% for the normal subjects, P < 0.001) and ADP-induced aggregation (60 ± 10% compared to 72 ± 18% for the normal subjects, P < 0.01). The primary wave was reduced in some cases while in others secondary aggregation was affected more. There were significant inverse correlations (Table 4).

Fig. 1. Correlation between the cholesterol/phospholipid molar ratio in platelets and in erythrocytes from patients with liver disease and from normal subjects. (C) cryptogenic cirrhosis; (A) alcoholic liver disease; (C) chronic active hepatitis; (f) acute active hepatitis; (C) chronic hepatitis; (O) chronic obstructive jaundice; (D) drug-induced hepatitis; (0) normal range.

Table 1. Lipid composition of erythrocytes and platelets from patients with liver disease and from normal subjects.

<table>
<thead>
<tr>
<th>Subjects</th>
<th>Cholesterol</th>
<th>Phospholipid</th>
<th>Cholesterol/Phospholipid</th>
<th>% Total Lipid Phosphorus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erythrocytes</td>
<td>Normal (20)</td>
<td>3.55 ± 0.24</td>
<td>4.10 ± 0.32</td>
<td>0.87 ± 0.03</td>
</tr>
<tr>
<td>Patients (34)</td>
<td>4.78 ± 0.57</td>
<td>4.62 ± 0.58</td>
<td>1.04 ± 0.12</td>
<td>0.8 ± 0.4</td>
</tr>
<tr>
<td>Platelets</td>
<td>Normal (20)</td>
<td>24.9 ± 4.0</td>
<td>43.6 ± 7.3</td>
<td>0.57 ± 0.02</td>
</tr>
<tr>
<td>Patients (34)</td>
<td>27.8 ± 4.1</td>
<td>43.0 ± 6.5</td>
<td>0.65 ± 0.03</td>
<td>1.2 ± 0.3</td>
</tr>
</tbody>
</table>

*Results are expressed as means ± S.D. for the number of subjects given in parentheses, except for platelet phospholipid composition when only 24 patients were studied.

LPC, lyso phosphatidylcholine; SM, sphingomyelin; PI, phosphatidylserine; PC, phosphatidylcholine; PE, phosphatidylethanolamine; PA, phosphatidic acid; N.D., not detected.

Aggregation of patient platelets was usually reduced with one or more of the aggregating agents and the mean values were lower for both adrenaline-induced aggregation (0.7 ± 0.1% compared to 0.9 ± 0.2% for the normal subjects, P < 0.001) and ADP-induced aggregation (60 ± 10% compared to 72 ± 18% for the normal subjects, P < 0.01). The primary wave was reduced in some cases while in others secondary aggregation was affected more. There were significant inverse correlations (Table 4).

Fig. 1. Correlation between the cholesterol/phospholipid molar ratio in platelets and in erythrocytes from patients with liver disease and from normal subjects. (C) cryptogenic cirrhosis; (A) alcoholic liver disease; (C) chronic active hepatitis; (f) acute active hepatitis; (C) chronic hepatitis; (O) chronic obstructive jaundice; (D) drug-induced hepatitis; (0) normal range.

Table 1. Lipid composition of erythrocytes and platelets from patients with liver disease and from normal subjects.*
between adrenaline-induced aggregation and both the cholesterol/phospholipid ratio \((r_s = -0.41, P < 0.05)\) and the phosphatidylcholine/sphingomyelin ratio \((r_s = -0.58, P < 0.01)\). By contrast, there was a positive correlation between the proportion of platelet arachidonic acid and adrenaline-induced aggregation \((r_s = 0.70, P < 0.01)\). Similar results were obtained when ADP was the aggregating agent, but the correlation coefficients were usually lower. Cross-over studies were carried out on the first sixteen patients investigated; these indicated that the defect was probably in the platelets themselves since the patients' platelet-poor plasma did not inhibit (and in four cases enhanced) the aggregation of normal platelets, nor did normal platelet-poor plasma correct the defect in the patients' platelets.

Total adenine nucleotide level was generally lower in platelets from patients compared to normals and in a few cases the ATP/ADP ratio was above the normal range. However, the aggregation defect did not correlate with this or the ADP concentration, suggesting it was not due to a deficiency of endogenous ADP.

**Coagulation studies**

The prothrombin time, partial thromboplastin time, and thrombin time were prolonged in many of the patients although fibrinogen and von Willebrand factor were normal or elevated. Fibrinogen degradation products were usually less than 8 \(\mu g/ml\) and never greater than 12 \(\mu g/ml\). No fibrin monomers were detected. Patient antithrombin III level was within the normal range of 75–125% for all but one patient (69%).

**DISCUSSION**

In the present study, in vitro platelet aggregation was reduced in patients with liver disease; plasma factors did not appear to be involved suggesting that the defect was in the platelet itself. The platelet lipid composition in the patients differed from that in normal subjects; they had an increased cholesterol/phospholipid ratio, an altered phospholipid composition, and a decreased arachidonic acid content. These lipid changes may explain the reduced ability of the platelets to aggregate in response to ADP and adrenaline.

In erythrocytes from patients with liver disease, there is evidence that their excess cholesterol and phosphatidylcholine is acquired from the abnormal lipoproteins present in the plasma (10, 22). Erythrocyte fatty acid composition is also abnormal in liver

---

**TABLE 2.** Fatty acid composition of platelets from patients with liver disease and from normal subjects*

<table>
<thead>
<tr>
<th>% Total Fatty-acids</th>
<th>16:0</th>
<th>16:1</th>
<th>18:0</th>
<th>18:1</th>
<th>18:2</th>
<th>20:3</th>
<th>20:4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>19.6 ± 3.1</td>
<td>0.7 ± 0.7</td>
<td>24.0 ± 2.9</td>
<td>17.1 ± 1.7</td>
<td>6.1 ± 1.4</td>
<td>1.0 ± 0.3</td>
<td>31.5 ± 4.0</td>
</tr>
<tr>
<td>Patients</td>
<td>22.3 ± 3.2b</td>
<td>1.6 ± 0.8c</td>
<td>22.1 ± 2.2b</td>
<td>24.5 ± 3.4d</td>
<td>4.5 ± 0.9d</td>
<td>1.1 ± 0.5</td>
<td>23.9 ± 3.4c</td>
</tr>
</tbody>
</table>

* Results are expressed as means ± S.D. There were 18 subjects in each group.

b \(P < 0.05\).
c \(P < 0.01\).
d \(P < 0.001\).
disease with a decreased content of polyunsaturated fatty acids (23). In the present study, similar changes were observed in the lipid composition of patient platelets and the close correlation between the erythrocyte and platelet cholesterol/phospholipid ratio suggests the same underlying mechanism is responsible. The increase in platelet cholesterol/phospholipid ratio was only 13% compared to that of 20% in the erythrocyte and the increase in the proportion of phosphatidylcholine was also smaller in the platelets. However, in the present study, only whole platelet lipids were estimated and it seems likely (10) that the changes in the plasma membrane lipids were greater. The alterations in platelet phospholipid and fatty acid profiles were of particular interest because platelets, unlike erythrocytes, are able to synthesize both phospholipid and fatty acids (24) and might have maintained a normal membrane composition of these lipids in the presence of abnormal plasma lipoproteins.

Platelet aggregation in the patients was either reduced or normal; in no case could enhanced aggregation be demonstrated. In interpreting these results, we have considered whether the defect in platelet function was due to abnormalities in the plasma or in the platelet itself. Reduced aggregation has been reported for platelets from patients with Laennec's cirrhosis and was thought to be due to increased fibrinogen degradation products (FDP) in the plasma (25). High levels of FDP were not found in our patients, suggesting that there had been no substantial activation of the coagulation system in vivo. A comparison of the aggregation results from cirrhotic patients with those from patients with obstructive jaundice supported this conclusion; no major differences were noted between these two groups even though the cirrhotic patients were likely to have had some activation of their coagulation system as a consequence of inflammatory liver disease (26). It is unlikely that other plasma factors caused decreased aggregation since addition of patient platelet-poor plasma to normal platelets did not decrease aggregation. These observations suggest that the main platelet defect in liver disease lies within the platelet itself, a conclusion consistent with the observations of other workers (27). One explanation for such a defect is splenomegaly; the spleen preferentially sequesters the larger and hemostatically more active platelets and so its enlargement could explain both reduced aggregation and thrombocytopenia in liver disease (27). However, grouping our patients into those with and without splenomegaly or into those with and without decreased platelet counts did not reveal any obvious differences in their platelet aggregability.

A second possible explanation for platelet dysfunction in liver disease is an abnormality in their lipid composition. Physiological platelet function is controlled by stimulatory and inhibitory pathways and in vitro measurement of platelet aggregation is an artificial and relatively crude method of monitoring in vivo aggregation.

### TABLE 3. Arachidonic acid content in the major individual phospholipids of platelets from patients with liver disease and from normal subjects

<table>
<thead>
<tr>
<th>Subjects (No.)</th>
<th>% Arachidonic Acid in Fatty Acids of Individual Phospholipids</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Diacyl-PE (^a)</td>
<td>Plasmalogen-PE</td>
<td>PS</td>
<td>PC</td>
</tr>
<tr>
<td>Normal (4)</td>
<td>41.0 ± 3.7</td>
<td>95.1 ± 5.1</td>
<td>18.5 ± 5.7</td>
<td>16.6 ± 2.4</td>
</tr>
<tr>
<td>Patients (7)</td>
<td>33.1 ± 10.3</td>
<td>77.9 ± 13.5</td>
<td>12.3 ± 8.8</td>
<td>12.5 ± 1.9</td>
</tr>
</tbody>
</table>

\(^a\) Results are expressed as means ± S.D.
\(^b\) Diacyl-PE, diacyl ethanolamine phosphoglyceride; plasmalogen-PE, plasmalogen ethanolamine phosphoglyceride; PS, phosphatidylserine; PC, phosphatidylcholine. No arachidonic acid was detected in sphingomyelin while insufficient patient platelets were available to measure accurately the fatty acid composition in lysophosphatidylcholine and phosphatidylinositol.

### TABLE 4. Correlation coefficients between platelet lipids and platelet aggregation in patients with liver disease

<table>
<thead>
<tr>
<th>Variables (No.)</th>
<th>Spearman's Rank Correlation Coefficient (r&lt;sub&gt;s&lt;/sub&gt;)</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cholesterol, ADP (27)</td>
<td>-0.05</td>
<td>N.S.(^a)</td>
</tr>
<tr>
<td>Cholesterol, adrenaline (27)</td>
<td>-0.29</td>
<td>N.S.</td>
</tr>
<tr>
<td>C/P, ADP (27)</td>
<td>-0.41</td>
<td>P &lt; 0.05</td>
</tr>
<tr>
<td>C/P, adrenaline (27)</td>
<td>-0.41</td>
<td>P &lt; 0.05</td>
</tr>
<tr>
<td>PC/SM, ADP (23)</td>
<td>-0.25</td>
<td>N.S.</td>
</tr>
<tr>
<td>PC/SM, adrenaline (23)</td>
<td>-0.58</td>
<td>P &lt; 0.01</td>
</tr>
<tr>
<td>%20:4, ADP (13)</td>
<td>0.32</td>
<td>P &lt; 0.05</td>
</tr>
<tr>
<td>%20:4, adrenaline (13)</td>
<td>0.70</td>
<td>P &lt; 0.01</td>
</tr>
</tbody>
</table>

\(^a\) Aggregation was measured as the maximum percentage decrease in absorbance within 3 min of the addition of ADP or adrenaline (final concentrations 2 µmol/liter) for the number of subjects given in parentheses.

\(^\cdots\) N.S., not significant; C/P, cholesterol/phospholipid molar ratio; PC/SM, phosphatidylethanolamine/sphingomyelin molar ratio; 20:4, arachidonic acid.
function. Aggregating agents such as ADP and adrenaline bind to receptors on the plasma membrane of the platelet and the ensuing aggregation is associated with activation of a specific phospholipase A₂ which releases arachidonic acid from certain membrane phospholipids (28–30). The free arachidonic acid is rapidly converted via the cyclic endoperoxides, prostaglandin G₂ and prostaglandin H₂, to thromboxane A₂. The latter, probably by inhibiting membrane-bound adenylate cyclase and so decreasing cAMP concentration, induces the release of intrinsic ADP, and other substances, which sustains platelet aggregation leading to formation of a primary hemostatic plug (31). Opposing these effects are a number of substances which degrade or neutralize the aggregating agents or which elevate the levels of cAMP, a potent inhibitor of platelet aggregation in vitro. In our patients the ADP- and adrenaline-induced platelet aggregation were inversely correlated with the platelet cholesterol/phospholipid and phosphatidylcholine/sphingomyelin ratios and positively correlated with the proportion of arachidonic acid. Any of these changes in platelet lipid composition might affect the stimulatory or inhibitory pathways in platelet aggregation.

Shattil et al. (10) reported an increase of 8% in the cholesterol/phospholipid ratio of platelets from patients with Type II hyperlipoproteinemia; the same authors raised the cholesterol content of normal platelets by in vitro incubation with cholesterol-rich liposomes (8). In contrast to our results, platelets from both these studies exhibited increased sensitivity to the aggregating agents ADP and adrenaline although the response to collagen and thrombin was unchanged. We have confirmed that normal platelets aggregate more readily with ADP and adrenaline after enrichment with cholesterol, and we have also shown that aggregation of cholesterol-poor platelets is inhibited.

The reason for the increased sensitivity of cholesterol-rich platelets to aggregating agents is not clear. Initially it was suggested (9) that a decrease in membrane fluidity, associated with the increase in cholesterol/phospholipid ratio, might affect receptor function by a change in either the lateral mobility and clustering of receptors or in their vertical orientation, all of which may affect binding of the ligand (32–35). However, Insel et al. (36) established that neither the number nor affinity of the α-adrenergic receptors depend on the platelet’s cholesterol content. The same group of investigators has reported that cholesterol-rich platelets had an increased level of basal adenylate cyclase while hormonally responsive adenylate cyclase was decreased (37). However, they have been unable to confirm this observation (36) and now consider that cholesterol incorporation has little effect on adenylate cyclase and that the associated increase in aggregation is not a result of decreased cAMP production. More recently it has been suggested that the increased aggregation of cholesterol-rich platelets is a consequence of enhanced release of arachidonic acid from phospholipids and its increased conversion to thromboxane A₂ (38). This proposal is attractive but other interpretations of the data are possible (39).

Phospholipid composition may also influence membrane fluidity (40, 41), while specific phospholipids have been implicated in the coupling of receptors to adenylate cyclase (42, 43). Platelets from our patients, unlike those studied by Shattil et al. (8, 10), had a significant increase in their phosphatidylcholine/sphingomyelin ratio; this would be expected (40, 41) to oppose the decrease in platelet membrane fluidity associated with a raised cholesterol/phospholipid ratio (9). We did not measure platelet membrane fluidity in the present study, but in erythrocytes from patients with liver disease we have shown that it is the increased cholesterol/phospholipid ratio, rather than changes in phospholipid composition, that determines the extent to which membrane fluidity is decreased (5). This suggests that the membrane fluidity in platelets from our patients would be decreased in a similar manner to those studied by Shattil and co-workers even though there were changes in their phospholipid composition; it would also suggest that the observed differences in platelet aggregability between the various types of cholesterol-rich platelets cannot be explained by differences in membrane fluidity.

Platelet fatty acid composition was abnormal in our patients. This was not measured in the studies of Shattil et al. (8, 10) but it is likely that it was normal since they studied either normal subjects or patients with Type IIa hyperlipoproteinemia in whom the fatty acid composition of the plasma lipoproteins is not markedly abnormal (44). The cellular content and release of arachidonic acid from phospholipids are considered to be rate-limiting factors in prostaglandin and thromboxane A₂ synthesis (29, 45, 46). The 24% decrease in arachidonic acid seen in the platelets of our patients may therefore have reduced its availability for thromboxane A₂ synthesis and so led to decreased platelet aggregation. However, neither the specific phospholipids utilized nor the mechanisms involved are yet established, although some of the discrepancies reported may be explained either by the use of different subcellular fractions and aggregating agents or by the fact that the distribution of radioactive arachidonic acid in prelabeled platelets may differ from its endogenous distribution (29, 30, 39). Current evidence sug-

---

gests that there are two pathways through which arachidonic acid can be released from platelet phospholipids. One is a phospholipase A<sub>2</sub> activity, acting predominantly on diacyl ethanolamine phosphoglyceride (30, 47) and to a lesser extent on phosphatidylcholine, to yield arachidonic acid and the corresponding lysophospholipids. The second pathway initially involves the action of a phosphatidylinositol-specific phospholipase C (48–50); the liberated diglyceride may then be acted on either by a diglyceride lipase to yield arachidonic acid (49) or by a diglyceride kinase to form phosphatidic acid (30, 51). The exact balance between these two pathways is not yet clear. However, it is likely that both pathways of arachidonic acid release were affected in our patients: the proportion of arachidonic acid in the diacyl ethanolamine phosphoglyceride and phosphatidylcholine fractions of our patients was reduced; the general decrease of arachidonic acid found throughout the major phospholipid classes suggests it would be reduced in phosphatidylinositol, although insufficient patient platelets were available to actually measure its content in this fraction.

The exact role of platelet lipid composition in affecting platelet aggregation remains to be established. However, in our patients with liver diseases, the effects of the altered phospholipid and fatty acid composition must have overridden those of the increased cholesterol content so that, instead of increased aggregation, only reduced or normal aggregation was seen. Whether these effects can indeed be attributed to decreased arachidonic acid availability must await further investigation.

We thank Professor J. A. Lucy for his interest in this study and the provision of laboratory facilities, Professor Dame Sheila Sherlock for allowing us to study patients under her care, and Mr. J. Morrison for the platelet fatty acid measurements. J.S.O. thanks the Wellcome Trust for an Inter-Disciplinary Research Fellowship and R.C.D., the Prophit Fund and the British Heart Foundation for research scholarships.

**REFERENCES**


