Simultaneous determination of cholic acid and chenodeoxycholic acid pool sizes and fractional turnover rates in human serum using 13C-labeled bile acids

F. Stellaard, M. Sackmann, T. Sauerbruch, and G. Paumgartner

Department of Internal Medicine I, Klinikum Grosshadern, University of Munich, D-8000 Munich 70, Federal Republic of Germany

Abstract A method has been developed for simultaneous determination of pool sizes and fractional turnover rates (FTR) of chenodeoxycholic acid (CDCA) and cholic acid (CA) in man by 13C/12C isotope ratio measurements of bile acids in serum after oral administration of 20–50 mg of [24-13C]-labeled bile acids. 13C/12C isotope ratio measurements were performed by capillary gas-liquid chromatography/electron impact mass spectrometry. CA and CDCA kinetics in serum measured by this method exhibited first order kinetics and permitted calculation of pool size and FTR of CA and CDCA. The validity of the measurements in serum was tested by simultaneous measurements in bile in three healthy volunteers and in five patients with various hepatobiliary disorders (three patients with cirrhosis, one with cholecystectomy and sphincterotomy, and one with sphincterotomy only). No consistent differences were found between the pool sizes and FTR's obtained from serum and bile. In a total of five healthy volunteers bile acid kinetics were measured in serum. The values found for the pool sizes and FTR's of CA and CDCA in these subjects were in excellent agreement with data reported in the literature based on 3H measurements in bile. The pool sizes (mean ± SD) of CDCA and CA were 32.6 ± 9.9 and 31.8 ± 16.0 μmol·kg$^{-1}$, respectively. The corresponding values for the FTR's were 0.24 ± 0.13 and 0.48 ± 0.22 d$^{-1}$. These data demonstrate that pool sizes and fractional turnover rates of cholic and chenodeoxycholic acid can be measured simultaneously by blood sampling after oral administration of the respective 13C-labeled bile acids. — Stellaard, F., M. Sackmann, T. Sauerbruch, and G. Paumgartner. Simultaneous determination of cholic acid and chenodeoxycholic acid pool sizes and fractional turnover rates in human serum using 13C-labeled bile acids. J. Lipid Res. 1984. 25: 1313–1319.

Supplementary key words capillary gas-liquid chromatography • mass spectrometry

For this purpose a tracer dose of 14C- or 3H-labeled bile acids is administered intravenously or orally and the exponential decay of the specific activity is measured in duodenal bile samples collected daily for up to 9 days. In order to modify the method for studies in pregnancy (2) and newborns (3, 4), Klein and co-workers introduced stable isotope labeled 13C and 2H bile acids and the measurement of isotope ratios in bile. These measurements were carried out with gas-liquid chromatography-mass spectrometry-isotope ratiometry. A Stable Isotope Ratiometer Multiple Ion Detector (SIRMID) was developed in order to monitor the 13C and 12C isotopes and accurately measure the isotope ratios after subtraction of background noise (5). Isobutane-chemical ionization mass spectrometry was used for the fragmentation of methyl ester acetate derivatives (6). DeMark and his colleagues (7, 8) finally described a modified method for measurement of isotope ratios of bile acids in serum using NH$_3$-chemical ionization. The application, however, was limited to the measurement of natural abundance. So far, only abstracts have appeared, describing the measurement of serum kinetics of CDCA (9, 10) and CA (11) in small numbers of patients and no reports of simultaneous determination of CDCA and CA kinetics in serum have been published. Moreover, only limited data (9, 11) exist on the comparison of the bile acid kinetics measured in serum with the kinetics measured in bile. Recently, a method for 15C/12C isotope ratio measurements of CDCA in serum by capillary gas–liquid chromatography and electron impact mass spectrometry has been developed in our laboratory (12) and has now been adjusted for simultaneous measurements of CDCA.

Abbreviations: FTR, fractional turnover rate; CA, cholic acid; CDCA, chenodeoxycholic acid; DCA, deoxycholic acid; EI, electron impact; TMS, trimethylsilyl; GLC, gas–liquid chromatography.
and CA kinetics. The measurements of the pool sizes and FTR’s by this method in serum were validated against simultaneous measurements in bile in healthy volunteers and in patients with various hepatobiliary disorders. This comparison not only tests the validity of the measurements, but also proves that, in healthy subjects and in patients with cholecystectomy, sphincterotomy, or cirrhosis, the bile acids in the systemic and the enterohepatic circulation are in equilibrium.

MATERIALS AND METHODS

Subjects

Five healthy volunteers (four females and one male) age 25–34 years were studied. None had evidence of hepatobiliary or intestinal disease, neither did they take any medication. Conventional liver tests (serum bilirubin, alkaline phosphatase, AST) as well as serum bile acids were within normal limits. In addition, five patients with hepatobiliary disorders were studied: one with choledochectomy and sphincterotomy, one with sphincterotomy only, and three with cirrhosis of the liver with mild to moderate signs of cholestasis (Table 1). All patients were in stable condition as judged by the results of the liver tests before and during the study period. Patients as well as healthy volunteers were on a free diet. All subjects gave their informed consent prior to the study.

Experimental design

In the morning an indwelling single-lumen nasoduodenal tube was positioned under radiological control in the third part of the duodenum and remained in this position during the study period of 3.5 days. When the tube was tolerated, blood and bile samples were taken for measurements of the natural abundance of CA and CDCA at 8 PM, and 50 mg of [24-13C]-labeled cholic acid and 50 mg of [24-13C]-labeled chenodeoxycholic acid were administered orally in 200 ml of 0.25% sodium bicarbonate solution. The two sphincterotomized patients received only 20 mg of each labeled compound because it has been shown previously that sphincterotomized patients have a smaller bile acid pool (13). Thereafter, blood and bile samples were collected simultaneously, at 12-hr intervals (once after an overnight fast and once in the evening) for 3.5 days. In addition, in two patients with cirrhosis as well as in two healthy volunteers, blood samples were also taken 1.5 hr after injection of cholecystokinin. Fasting duodenal bile samples were obtained in all patients and in three healthy volunteers after stimulation of gallbladder contraction by a slow intravenous injection of cholecystokinin (CCK, Kabi Diagnostika, Nyköping, Sweden). Patients with cirrhosis and elevated bilirubin (subjects 4 and 5) received 0.5, all others received 1.0 Ivy-dog units of CCK per kg body weight. In the evening, duodenal content was aspirated without stimulation of the gallbladder. One to two ml of the fluid was collected in sterile tubes and frozen at once. Simultaneously, 15 ml of blood was taken from an antecubital vein, centrifuged, and the serum was then stored at −20°C until further analysis.

Materials

[24-13C]Cholic acid and [24-13C]chenodeoxycholic acid were purchased from Merck, Sharp and Dohme, Canada. The degree of labeling was 90% as determined by mass spectrometry. Bond Elut reverse-phase octadecylsilane bonded silica cartridges (100 mg) and a Vac-Elut vacuum system were obtained from Analytichem International, England. The cartridges were washed with 5 ml of methanol and 5 ml of water. Lipidex 1000 as a methanol suspension was purchased from Packard Instruments (Groningen, The Netherlands), slurried into a column with a bedsize of 4 × 1 cm, and washed with 20 ml of 0.01 N HCl. Cholylygicne hydrolase from Clostridium perfringens (Welchii), 90 units/mg of protein, was obtained from Sigma, St. Louis, MO. Pyridine p.a. was purchased from Merck, Sharp and Dohme, Canada. Sphincterotomy was performed laparoscopically, and a cholecystectomy with sphincterotomy in two patients with cirrhosis as well as in two healthy volunteers after stimulation of gallbladder contraction by a slow intravenous injection of cholecystokinin (CCK, Kabi Diagnostika, Nyköping, Sweden). Patients with cirrhosis and elevated bilirubin (subjects 4 and 5) received

<table>
<thead>
<tr>
<th>Subject</th>
<th>Sex</th>
<th>Age</th>
<th>Body weight</th>
<th>Diagnosis</th>
<th>Total Serum Bilirubin</th>
<th>Serum AST</th>
<th>Serum y-Glutamyltransferase</th>
<th>Serum Alkaline Phosphatase</th>
<th>Serum Bile Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>mg/dl</td>
<td>IU/liter</td>
<td>pmol/liter</td>
<td>pmol/liter</td>
<td>pmol/liter</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>75</td>
<td>76</td>
<td>Cholecystectomy + sphincterotomy</td>
<td>0.9</td>
<td>8</td>
<td>7</td>
<td>96</td>
<td>10.8</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>67</td>
<td>60</td>
<td>Sphincterotomy</td>
<td>2.0</td>
<td>9</td>
<td>7</td>
<td>137</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>43</td>
<td>61</td>
<td>Cirrhosis of the liver</td>
<td>1.2</td>
<td>13</td>
<td>68</td>
<td>154</td>
<td>28.9</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>48</td>
<td>51</td>
<td>Cirrhosis of the liver</td>
<td>5.2</td>
<td>21</td>
<td>38</td>
<td>108</td>
<td>82.9</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>62</td>
<td>78</td>
<td>Cirrhosis of the liver</td>
<td>7.1</td>
<td>73</td>
<td>124</td>
<td>322</td>
<td>130.8</td>
</tr>
</tbody>
</table>

* Normal values < 1.0 mg/dl.
* Normal values < 18 IU/liter.
* Normal values < 18 IU/liter (F), < 28 IU/liter (M).
* Normal values < 200 IU/liter.
* Normal values < 9 µmol/liter (enzymatic photometric assay for 3α-hydroxy-bile acids, Merckotest®, Merck, Darmstadt, Germany).
refluxed over barium oxide and distilled (14). All other solvents and reagents were of analytical grade.

Analytical methods

Sample preparation. Two ml of serum was diluted with 8 ml of 0.1 N NaOH and the bile acids bound to protein were cleaved by incubation at 64°C for 15 min (15). Bile acids were extracted by absorption on a 100 mg Bond Elut octadecysilane bonded silica cartridge (16). After washing the cartridge with 5 ml of 0.1 N NaOH and 5 ml of water, the bile acids were eluted with 6 ml of 75% methanol. Interfering substances were then removed by an extraction with 6 ml of n-hexane after acidification of the eluate to pH 3–4. The eluate was taken to dryness with nitrogen at 60°C and solvolysis was carried out according to the method of Parmentier and Eyssen (17) which achieves practically complete solvolysis of 3-sulfates. After neutralization and evaporation of the solvent, the glycine and taurine conjugates were hydrolyzed enzymatically for 2 hr at 37°C using cholyglycine hydrolase (18). After acidification to pH 3–4, the aqueous solution was passed through a 4 × 1 cm Lipidex 1000 column prepared according to Setchell and Matsui (15). Thereafter, the column was washed with 15 ml of 0.01 N HCl and 20 ml of water and the deconjugated bile acids were eluted with 10 ml of 75% methanol. The solvent was evaporated under nitrogen at 60°C. The methylation of the bile acids was carried out according to Ali and Javitt (19) using 2,2-dimethoxypropane and the trimethylsilyl ethers were formed with pyridine–hexamethyldisilane–trimethylchlorosilane 3:2:1 (v/v) at 60°C under nitrogen for 15 min (15). The sample was taken to dryness and dissolved in 25–50 µl of isooctane for healthy subjects and in up to 500 µl for patients with liver disease. Total recovery over the whole procedure of sample preparation was 80% for cholic acid and 92% for chenodeoxycholic acid. Duodenal bile samples (50–500 µl) were deconjugated as described above for serum. After acidification to pH 1, the aqueous phase was extracted three times with an equal volume of diethylether. Thereafter, methylation and trimethylsilylation were carried out as described above.

Gas-liquid chromatography. The methyl ester TMS ether derivatives were separated by gas-liquid chromatography on a 25 m × 0.33 mm CP Sil 19 CB column (Chrompack, Middelburg, The Netherlands), which consists of a chemically bonded OV-1701 coating on a fused silica capillary column. Helium was used as carrier gas (p = 0.8 kg/cm²). The gas chromatograph used was a Carlo Erba, Fractovap 4160, equipped with a LT 430 temperature programmer. The sample was introduced by on-column injection at 140°C oven temperature using secondary injector cooling. After passage of the solvent through the column, the secondary cooling was turned off and the oven temperature was programmed up to 270°C at 10°C/min. The temperature remained constant at 270°C for 8 min, after which it was raised to 300°C at 10°C/min to elute late-eluting substances from the column.

Mass spectrometry. The fused silica capillary column was inserted directly into the ion source of a Finnigan 4021 mass spectrometer/data system combination, which was used in the electron impact mode (70 eV). The interfacing part of the column was heated at 230°C. The source temperature used was 180°C. The scanning conditions were as follows. A Selected Ion Monitoring (SIM) program was used monitoring four pairs of ions, each pair being characteristic for mono-, di-, and trihydroxy bile acids (7, 20). Of these, m/z 370, 371 were suitable for measuring isotope ratios for CDCA and, when of interest, deoxycholic acid (DCA), and m/z 458, 459 for CA. The remaining pairs can be used to monitor lithocholic acid and ursodeoxyxolic acid when these are of interest for other reasons. After determination of the exact mass centers, a mass range of 125 mmu was chosen around the peak center and this mass range was scanned for 50 msec. A total scan time of 451 msec was therefore required. As the bottom peak widths were about 10 seconds, approximately 20 scans could be acquired for each eluting bile acid. These scans were used to calculate an average 13C/12C isotope ratio. The natural abundance was measured in a serum sample obtained immediately before administration of the label.

Calculations. The 13C/12C isotope ratios were converted into the atom percent excess values according to Campbell (21):

\[
\text{atom } \% \text{ excess } = \frac{R - R_0}{1 + (R - R_0)} \times 100\% ,
\]

where R represents the isotope ratio and R₀ the natural abundance.

The ln atom % excess-time curve was calculated using linear regression analysis. The pool size was determined using the equation:

\[
\text{pool size } = \frac{D \times b \times 100}{e^a} - D ,
\]

where a represents the intercept on the ordinate, b the degree of labeling of the administered marker, and D the dose of the marker. The FTR equals the slope of the regression line. The synthesis rate was calculated by multiplying pool size and FTR. As proposed by Hofmann and Hoffman (22), the pool sizes were expressed as µmol kg⁻¹, the FTR's as d⁻¹, and the synthesis rates as µmol kg⁻¹ d⁻¹. Results were expressed as means ± standard deviation.

Stellaard et al. Bile acid kinetics 1315
RESULTS

The separation of bile acids on the CP Sil 19 CB column under the conditions used in this study is shown in Fig. 1. Baseline separation of CDCA and CA was essential, as CA has an important mass fragment with m/z 368, the (M + 2) isotope of which can interfere with the CDCA measurements in case of overlap. None of the bile acids found in human serum interfered with CDCA or with CA. When the characteristic ions for CDCA and CA in serum were monitored, the mass chromatograms for the 13C and 12C isotopes shown in Fig. 2 were obtained. For both CDCA and CA about 20 scans were available for calculation of the average isotope ratios. The reproducibility of the isotope ratio measurements is shown in Table 2. Even in the 0.1–1.1 μM range, coefficients of variation for isotope ratio measurements were 1.1% for cholic acid and 0.8% for chenodeoxycholic acid when the same sample was measured repeatedly. Looking at all volunteers included in this study, a coefficient of variation less than 1.5% was found for the measurements of natural abundance. The deviation of the natural abundance in serum from that in bile did not exceed 1.8% for CA and 1.5% for CDCA.

CA and CDCA decay curves measured in serum exhibited first order kinetics (Fig. 3). Linear regression correlation coefficients greater than 0.90 were obtained for both bile acids in all subjects. No consistent differences in isotope ratios were found between serum samples collected in the fasting state and those obtained 1.5 hr after CCK stimulation of the gallbladder.

No consistent differences were found between the pool sizes and FTR’s obtained from serum and from bile (Fig. 4 and Fig. 5). Linear regression correlation coefficients of 0.99 (pool size) and 0.97 (FTR) were obtained for CA, 0.99 and 0.96 for CDCA. Combining the data for CA and CDCA resulted in similar regression lines. The deviation of the CA pool measured in serum from that measured in bile ranged from −11.4% to +11.8% (1.1 ± 9.3%). The corresponding deviation for the FTR ranged from −12.3% to +26.7% (4.0 ± 11.1%), except for one healthy volunteer whose
TABLE 2. Intra-individual and inter-individual variation (c.v.) of \(^{13}\text{C}\)-natural abundance measurements in cholic acid (m/z 459/458) and chenodeoxycholic acid (m/z 371/370) in serum and bile (means ± SD)

<table>
<thead>
<tr>
<th></th>
<th>Cholic Acid</th>
<th>Chenodeoxycholic Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bile(^a)</td>
<td>Serum(^a)</td>
</tr>
<tr>
<td></td>
<td>Bile(^a)</td>
<td>Serum(^a)</td>
</tr>
<tr>
<td>Intra-individual variation</td>
<td>0.3643 ± 0.0010</td>
<td>0.3604 ± 0.0008</td>
</tr>
<tr>
<td>c.v.</td>
<td>0.3%</td>
<td>0.2%</td>
</tr>
<tr>
<td></td>
<td>0.3633 ± 0.0009</td>
<td>0.3674 ± 0.0010</td>
</tr>
<tr>
<td>c.v.</td>
<td>0.3%</td>
<td>0.3%</td>
</tr>
<tr>
<td>Inter-individual variation</td>
<td>0.3649</td>
<td>0.3640</td>
</tr>
<tr>
<td></td>
<td>0.3678</td>
<td>0.3745</td>
</tr>
<tr>
<td></td>
<td>0.3643</td>
<td>0.3616</td>
</tr>
<tr>
<td></td>
<td>0.3678</td>
<td>0.3659</td>
</tr>
<tr>
<td></td>
<td>0.3618</td>
<td>0.3609</td>
</tr>
<tr>
<td></td>
<td>0.3643</td>
<td>0.3604</td>
</tr>
<tr>
<td></td>
<td>0.3633</td>
<td>0.3674</td>
</tr>
<tr>
<td></td>
<td>0.3570</td>
<td>0.3612</td>
</tr>
<tr>
<td></td>
<td>0.3639 ± 0.0035</td>
<td>0.3645 ± 0.0048</td>
</tr>
<tr>
<td>c.v.</td>
<td>1.0%</td>
<td>1.3%</td>
</tr>
</tbody>
</table>

* Means of three determinations.

FTR's were 0.28 d\(^{-1}\) and 0.10 d\(^{-1}\) in serum and bile, respectively. The deviation of the CDCA pool measured in serum from that measured in bile ranged from -16.1% to +17.2% (2.3 ± 10.0%). The corresponding deviation for the FTR ranged from -19.1% to 15.8% (1.7 ± 14.1%).

The kinetic values measured in serum of five healthy volunteers are shown in Fig. 6. The pool sizes for CA (31.8 ± 16.0 μmol/kg) and for CDCA (32.6 ± 9.9 μmol/kg) were about equal. The FTR's for CA (0.48 ± 0.22 d\(^{-1}\)) were larger than the corresponding values for CDCA (0.24 ± 0.13 d\(^{-1}\)). As the synthesis rates are calculated from FTR and pool size, the mean synthesis rate for CA (13.3 ± 4.9 μmol kg\(^{-1}\) d\(^{-1}\)) was also higher than that for CDCA (7.0 ± 3.6 μmol kg\(^{-1}\) d\(^{-1}\)).

DISCUSSION

The serum sample preparation and the OV-1701 capillary GLC column used in this study separate CA and CDCA from other bile acids or substances that could interfere when \(^{13}\text{C}/^{12}\text{C}\) isotope ratios are measured in human serum. The narrow GLC peaks establish sufficient peak intensity to create good peak shapes for both the \(^{13}\text{C}\) and \(^{12}\text{C}\) contributions of CA and CDCA. In some instances using fasting serum, isotope ratios were measured in cholic acid peaks representing serum concentrations as low as 0.1 pmol/l. In these cases measurements were carried out on 5–10 ng of bile acid injected onto the GLC column. The reproducibility of the isotope ratio measurements (coefficient of variation < 1%) is sufficient to obtain a good description of the decay curve even when the fractional turnover rate is
low. This is demonstrated in Fig. 3 where the CDCA curve has a slope of 0.08 d^{-1}.

The excellent agreement between the pool sizes obtained from serum and those obtained from bile, shows that the ^{13}C-label mixes well with the endogenous bile acid pool, which is distributed over the enterohepatic and the systemic circulation. It also demonstrates that both circulations can be described as one compartment. This conclusion is supported by the fact that in all but one subject the FTR's measured in serum and bile were about equal. These findings are in agreement with the recently described physiological pharmacokinetic model for the metabolism and enterohepatic circulation of bile acids described by Hofmann et al. (23). Only in one healthy volunteer was a discrepancy between the CA-FTR in serum and bile observed. Quantification of the serum CA concentration (0.12 pmol/l) showed that in this subject only approximately 0.01% of the total CA pool was located in the systemic circulation in the fasting state. For the other healthy volunteers this value amounted to approximately 0.1%.

Cholecystectomy and/or sphincterotomy in the patients studied did not affect the agreement between the values obtained from serum and from bile. This confirms the idea that a more continuous enterohepatic flux of bile acids in cholecystectomized patients, and even more in cholecystectomized and sphincterotomized patients, will not inhibit but rather favor mixing of the label with the endogenous pool. Also, the patients with liver disease showed good agreement of bile acid pool sizes and FTR's obtained from serum and from bile, which means that in these patients bile acid exchange freely between systemic and enterohepatic circulation.

The values found for the pool sizes, FTR's, and synthesis rates of CA and CDCA in healthy volunteers are in agreement with data reported in the literature based on ^{14}C or ^{3}H measurements in bile (24, 25). This finding that CA and CDCA pool sizes were about equal is consistent with present concepts about the bile acid metabolism in man (25). It is also generally accepted that CDCA is better preserved in the enterohepatic circulation than CA, because of a more effective passive absorption in the upper small intestine (26, 27). Therefore, the FTR and synthesis rate of CDCA are thought to be smaller than those of CA. This phenomenon is also reflected in our data.

In conclusion, the data document that pool sizes and fractional turnover rates of the primary bile acids, cholic acid and chenodeoxycholic acid, can be measured simultaneously by blood sampling after administration of the respective nonradioactive ^{13}C-labeled bile acids. The method is not only applicable in healthy subjects, but also in patients without gallbladder and/or sphincter of Oddi function. Its validity could also be demonstrated in patients with chronic liver disease associated with mild to moderate cholestasis. The technical assistance of Ms. E. König and Ms. R. Nuber and the secretarial help of Ms. J. Steinberg are gratefully acknowledged.

Manuscript received 21 December 1983.

REFERENCES

2. Kern, F., Jr., G. T. Everson, B. DeMark, C. McKinley, R. Showalter, W. Erling, D. Z. Braverman, P. A. Szce-

