Isolation and characterization of ganglioside G_{M1b} from normal human brain

Toshio Ariga and Robert K. Yu

Metabolism Section, The Tokyo Metropolitan Institute of Medical Science, 3-18-22 Honkomagome, Bunkyo-ku, Tokyo 113, Japan, and Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510

Abstract A sialidase-susceptible monosialoganglioside was isolated from normal human brain by DEAE-Sephadex A-25 and Iatrobeads column chromatography. The yield of this ganglioside was about 6 mg per whole brain. Its structure was elucidated by sugar analysis, sialidase digestion, permethylation, and proton NMR studies. This ganglioside had carbohydrate, fatty acid, and long-chain base compositions identical to those of brain G_{M1}. However, the sialosyl residue was found to be linked (α2-3) to the terminal galactosyl residue of the asialo- G_{M1} backbone. The complete structure of this ganglioside was therefore identified as G_{M1b} or $\text{IV'SNeuAcGgOse4Cer}$.

Yip (1) first demonstrated the enzymatic synthesis of a sialidase-susceptible monosialoganglioside from ganglio-N-tetraosyl ceramide (GgOse_4Cer) and CMP-sialic acid using rat brain homogenate as the source of the sialosyltransferase. Subsequently the structure of this ganglioside was characterized as $\text{IV'SNeuAcGgOse4Cer}$, and was named G_{M1b} (1, 2). G_{M1b} ganglioside has since been recognized in various cell lines such as rat ascites hepatoma AH-7974 F (3, 4), bone marrow (5), mouse myeloid leukemia (6), and lymphocytes of C57BL/6 mouse (7). Watanabe, Powell, and Hakomori (8) first reported its natural occurrence in the human erythrocyte membrane. Nakamura et al. (9) recently characterized G_{M1b} containing N-glycolyl neuraminic acid as a major component from ICR mouse spleen and also tentatively identified G_{M1b} containing N-acetylenuraminic acid as a minor component. Therefore, G_{M1b} ganglioside was considered to be a natural ganglioside species present in various mammalian tissues.

In this report, we describe the isolation and characterization of G_{M1b} from normal adult human brain. Although Chou, Nolan, and Jungalwala (10) provided preliminary data for the presence of this ganglioside in peripheral nerves, our work represents the first conclusive report for its presence in mammalian central nervous system tissues.

MATERIALS AND METHODS

Gangliosides were isolated by the procedure of Ando and Yu (11) with minor modifications. The whole brain (about 2.3 kg) from an autopsied normal adult subject was homogenized with 10 volumes each of chloroform-methanol 2:1, 1:1, and 1:2 (v/v). The lipid extracts were combined and the solvent was evaporated. The residue was dissolved in 12 liters of chloroform-methanol-water 30:60:8 (v/v). The lipid solution was divided into two equal portions and each was applied to a DEAE-Sephadex A-25 (acetate form, 5 cm i.d. × 150 cm, bed volume 1750 ml, 310 g) column. The neutral lipids were eluted with 15 liters of chloroform-methanol-water 30:60:8 (v/v) and 2 liters of methanol. The acidic lipids were recovered with 13 liters of 0.2 M sodium acetate in methanol. After the solvent was removed by evaporation, the residue was dissolved in 1 liter of water, dialyzed against distilled water for 3 days and the retentate was lyophilized. The residue was dissolved in 500 ml of chloroform-methanol-water 30:60:8 (v/v) and applied again

Abbreviations: NMR, nuclear magnetic resonance; FAB, fast atom bombardment; GLC, gas-liquid chromatography; HPTLC, high performance thin-layer chromatography. The ganglioside nomenclature follows the system of Svennerholm (1964). G_{M1} or G_{M1b}: $\text{IV'SNeuAcGgOse4Cer}$; G_{M2b}: $\text{IV'SNeuAcGgOse4Cer}$; G_{M2b}-GalNAc: $\text{IV'SNeuAcGgOse4Cer}$; G_{M3}: IP'SNeuAcLacCer; G_{D1}: $\text{IP'SNeuAcGgOse4Cer}$; G_{D2}: $\text{IP'SNeuAcGgOse4Cer}$; G_{T6b}: $\text{IV'SNeuAcGgOse4Cer}$; G_{T6b}: $\text{IV'SNeuAcGgOse4Cer}$.

1Address reprint requests to: Dr. Robert K. Yu, Department of Neurology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510.
to a DEAE-Sephadex A-25 column (2.5 cm i.d. x 200 cm). At this stage, there were still small amounts of residual neutral lipids, which were eluted with 1 liter of chloroform-methanol-water 30:60:8 (v/v) and 500 ml of methanol. The acidic glycolipids were then eluted with 4 liters of a linear gradient system prepared from sodium acetate in methanol (0.05 M and 0.3 M). The monosialo-ganglioside fractions were combined and the solvent was evaporated. The residue was dissolved in 200 ml of distilled water, dialyzed against distilled water and the retentate was lyophilized. The residue was dissolved in 20 ml of chloroform-methanol-water 70:30:1 (v/v) and applied to an Iatrobeads column (2.2 cm i.d. x 100 cm). The column was eluted with 2 liters of a linear gradient system of chloroform-methanol-water 65:35:4 and 45:55:5 (v/v). GMIb ganglioside chromatographed with the tailing part of GMIa ganglioside. Fractions containing this ganglioside were combined, evaporated, and then applied again to another Iatrobeads column (1.5 cm i.d. x 56 cm), eluting with 500 ml of n-propanol-water 85:15 (v/v). The purity of the isolated ganglioside was examined by high performance thin-layer chromatography (HPTLC) with the following solvent system: (A) chloroform-methanol-water 50:45:10 (containing 0.02% CaCl₂·2H₂O) and (B) chloroform-methanol-5 M ammonia-0.4% aq. CaCl₂·2H₂O 60:45:4:5 (v/v).

Fig. 1. Thin-layer chromatogram of the isolated ganglioside. Lane 1, ganglioside mixture from human grey matter; lane 2, isolated unknown ganglioside from normal human brain; and lane 3, GM₁b ganglioside standard from human brain. The left plate was developed with the solvent system chloroform-methanol-water 50:45:10 containing 0.2% CaCl₂·2H₂O (v/v) and the right plate was developed with chloroform-methanol-5 M ammonia-0.2 M CaCl₂·2H₂O 60:45:4:5 (v/v). The bands were visualized with the resorcinol–hydrochloric acid reagent.

Table 1. Chemical composition of the GM₁b ganglioside from normal human brain

<table>
<thead>
<tr>
<th>Component</th>
<th>GLC</th>
<th>NMR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Galactose</td>
<td>2.15</td>
<td>2.09</td>
</tr>
<tr>
<td>Galactosamine</td>
<td>1.01</td>
<td>0.93</td>
</tr>
<tr>
<td>Sialic acid</td>
<td>1.05</td>
<td>0.90</td>
</tr>
<tr>
<td>Long-chain base</td>
<td>1.07</td>
<td></td>
</tr>
</tbody>
</table>

*As N, O-trifluoroacetyl derivatives.

Compositional analysis was carried out by gas–liquid chromatography (GLC). Neutral sugars, sialic acids, and long-chain bases were analyzed as their N,O-trifluoroacetyl derivatives according to the procedure of Ando and Yu (12). The sample, 100 μg, was methanolyzed for 16 hr at 75°C with 0.3 ml of 3% hydrochloric acid in methanol. After fatty acid methyl esters were removed by extraction with n-hexane, the methanolic solution was evaporated under N₂ gas and dried under vacuum. The residue was derivatized with 20 μl of 33% N-methyl-bis trifluoracetamide in pyridine at room temperature for 10 min and a portion of this solution was injected into a GLC column (6 feet) packed with Gas-Chrom Q, which was coated with a mixture of 6% SP-2401 and 0.5% OV-225 (Applied Science Labs). Fatty acid methyl esters were analyzed using a 3% OV-1 column at 200°C isothermally. The long-chain base composition was also determined by GLC of their fatty aldehydes after periodate oxidation according to Sweeley and Moscatteli (13). The sialic acid species of the ganglioside was determined by the method of Yu and Ledeen (14).

Enzymatic treatment with sialidase from *Arthrobacter ureafaciens* (EC 3.2.1.18, Nakarai Chemical Company, Kyoto) was carried out by the method of Sugano, Saito, and Nagai (15). The sample, 250 μg, was dissolved in 70

Table 2. Fatty acid and long-chain base compositions of GM₁b from normal human brain (%)

<table>
<thead>
<tr>
<th>Fatty Acid</th>
<th>% of total</th>
<th>Long-Chain Base</th>
<th>% of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16:0</td>
<td>4.5</td>
<td>C16:0</td>
<td>47.6</td>
</tr>
<tr>
<td>C18:1</td>
<td>6.5</td>
<td>C18:0</td>
<td>4.8</td>
</tr>
<tr>
<td>C18:0</td>
<td>81.4</td>
<td>C20:1</td>
<td>40.0</td>
</tr>
<tr>
<td>C20:0</td>
<td>4.7</td>
<td>C20:0</td>
<td>7.6</td>
</tr>
<tr>
<td>C20:1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C22:0</td>
<td>1.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C23:0</td>
<td>0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C24:0</td>
<td>0.7</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2. Thin-layer chromatogram of the glycolipid products after sialidase digestion. Lane 1, standard glycolipid mixture (from top to bottom, glucosyl ceramide (GlcCer) from Gaucher's spleen, lactosyl ceramide (LacCer), galactosyl-lactosyl ceramide (Gb3), and globoside (Gb4) from pig erythrocyte membrane); 2, lactosyl ceramide derived from Gm3 ganglioside of bovine adrenal medulla following sialidase treatment; 3, lactosyl ceramide derived from Gb3 of human brain after sialidase treatment; 4, glycolipid product derived from the isolated unknown ganglioside following sialidase treatment; 5, Gm1 ganglioside after sialidase treatment; 6, authentic ganglio-N-tetraosylceramide; 7, standard glycolipid mixture (from top to bottom, galactosyl ceramide (GalCer), ganglio-N-triaosyl ceramide (Gg3), and ganglio-N-tetraosylceramide (Gg4). Plate A was developed with chloroform-methanol-water 65:35:8 (v/v) and plate B with chloroform-methanol-2.5 N ammonia 65:35:8 (v/v). The bands were visualized with the orcinol-sulfuric acid reagent (33). Note the absence of any glycolipid product in lane 5.

µl of distilled water and 100 µl of 0.1 M sodium acetate buffer (pH 5.0). Then 20 µl of neuraminidase solution (1 unit in 1 ml of the same buffer) without detergent was added and the reaction mixture was incubated for 16 hr at 37°C. The reaction was terminated by the addition of 1 ml of chloroform-methanol 2:1 (v/v). The lower phase was evaporated under nitrogen gas. The glycolipid products after the enzymatic degradation were examined by HPTLC with the following solvent systems: (A) chloroform-methanol-water 65:35:8 (v/v) and (B) chloroform-methanol-2.5 M ammonia 65:35:8 (v/v). For comparison, an authentic sample of Gm1 ganglioside was treated and analyzed similarly.

Permethylation was carried out by the method of Tanaka et al. (16) and Ariga et al. (17). The sample, 100 µg, was peracetylated with 20 µl of acetic anhydride-pyridine 2:3 (v/v) at room temperature for 1 hr. The reaction mixture was evaporated under nitrogen and desiccated with P2O5. The residue was dissolved in 20 µl of anhydrous dimethyl formamide, followed by the addition of 40 µl of sodium hydride in dimethyl formamide (20 mg per ml) and 15 µl of methyl iodide (freshly prepared, stored under molecular sieves 3 Å) at 0°C. After 30 min, 10 µl of methyl iodide was added at room temperature. This reaction mixture was incubated for 3 hr at room temperature, evaporated to dryness under nitrogen, and dried under vacuum. The residue was subjected to re-acetylation and remethylation as described above in order to assure complete methylation. The permethylated glycolipid was then purified by HPTLC with a developing solvent system of chloroform-methanol-n-hexane 4:1:2 (v/v) (17).

The partially methylated alditol acetates were prepared from permethylated glycolipid by the method of Yang and Hakomori (18) and analyzed by GLC-mass spectrometry (Model QP-1000 Shimadzu Co., Ltd.) using a perfused silica capillary column. The glycolipid product after the sialidase treatment was also subjected to permethylation and the aldohexitol acetates were analyzed by GLC-mass spectrometry.

Proton nuclear magnetic resonance (NMR) spectra were obtained by a JEOL GX-400 spectrometer. The sample, 2 mg, was dissolved in 0.5 ml of dimethyl sulfoxide-d3-D2O 98:2 (v/v) containing tetramethylsiline (19).
TABLE 3. Chemical shifts of the anomeric protons and their coupling constants

<table>
<thead>
<tr>
<th></th>
<th>(3\text{-GalNAc})</th>
<th>(3\text{-Gal})</th>
<th>(4\text{-Gal})</th>
<th>(4\text{-Glc})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anomeric proton (ppm)</td>
<td>4.52</td>
<td>4.25</td>
<td>4.19</td>
<td>4.16</td>
</tr>
<tr>
<td>(J_{1,2}) (Hz)</td>
<td>7.93</td>
<td>7.63</td>
<td>7.23</td>
<td>7.33</td>
</tr>
</tbody>
</table>

NMR spectra were recorded by 400 MHz NMR spectrometry at 27°C.

Negative ion fast atom bombardment (FAB) mass spectra were obtained by a JEOL HX-100 high resolution mass spectrometer equipped with a FAB ion source and JMA-3500 computer system (JEOL, Tokyo). The sample, 100 \(\mu\)g, was dissolved in 30 \(\mu\)l of chloroform–methanol 3:1 (v/v) and then 2 \(\mu\)l of triethanolamine–tetramethylurea 1:1 (v/w) was added (20). The solvent mixture, about 1 \(\mu\)l, was applied onto a stainless-steel holder (1 \(\times\) 4 mm) and analyzed.

RESULTS AND DISCUSSION

The yield of the isolated unknown ganglioside was about 6 mg from one adult human brain, which was about 2.6 \(\mu\)g/g wet tissue and 0.25% of the monosialo-ganglioside fraction. Hence this represents a minor ganglioside previously undetected in brain tissue. On thin-layer chromatography, it migrated slightly slower than brain \(G_{\text{Mia}}\) ganglioside using the neutral solvent system (Fig. 1). The ganglioside was found to contain glucose, galactose, N-acetylgalactosamine, sialic acid, and long-chain base in the molar ratio of 1:2:1:1:1 by GLC and proton NMR data (Table 1). The sialic acid was of the N-acetyl type only. The predominant fatty acid was stearic acid and the long-chain bases were C18 and C20 sphingenine (Table 2). These structural features are therefore, very similar to those of brain \(G_{\text{Mia}}\) ganglioside (21, 22). However, this ganglioside could be digested by sialidase from \(A.\) ureafaciens, without the detergent sodium cholate, to yield a glycolipid product that co-chromatographed with authentic asialo-\(G_{\text{M1}}\) using both the neutral and basic solvent systems. Under this condition, brain \(G_{\text{Mia}}\) ganglioside was not hydrolyzed (Fig. 2). This is consistent with the results of Sugano et al. (15) who reported that \(G_{\text{Mia}}\) ganglioside can be hydrolyzed to yield asialo-\(G_{\text{Mia}}\) only in the presence of sodium cholate, whereas \(G_{\text{Mia}}\) ganglioside is known to be susceptible to sialidase digestion (1, 2). The degraded glycolipid product obtained from the sialidase treatment was found to contain glucose, galactose, N-acetylgalactosamine, and long-chain base in the molar ratio of 1:2:12:0.90:1.10, based on GLC analysis, which is also compatible with an asialo-\(G_{\text{M1}}\) structure.

Analyses of the permethylated ganglioside and the resulting partially methylated aldohexitol acetates derived from it by capillary GLC and GLC-electron impact mass spectrometry revealed that this ganglioside produced

![Fig. 3. Four hundred MHz proton NMR spectrum of the isolated unknown ganglioside.](image-url)
1,3,5-tri-O-acetyl-2,4,6-tri-O-methyl-galactitol; 1,3,5-tri-O-acetyl-4, 6-di-O-methyl-2-deoxy-2-N-methylacetamido-
galactitol; 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl-galactitol; and 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl-glucitol in the
ratio of 0.82:1.12:1.29:1. On the other hand, the enzyme
degradation product produced 1,5-di-O-acetyl-2,3,4,6-
tetra-O-methyl-galactitol (instead of 1,3,5-tri-O-acetyl-
2,3,6-tri-O-methyl-galactitol), 1,3,5-tri-O-acetyl-4,6-di-
O-methyl-2-deoxy-2-N-methylacetamido-
galactitol; 1,4,5-
tri-O-acetyl-2,3,6-tri-O-methyl-galactitol; and 1,4,5-tri-
O-acetyl-2,3,6-tri-O-methyl-glucitol in the ratio of
0.67:0.78:0.62:1, respectively. These overall data are
consistent with the structure of a ganglio-N-tetraosyl
backbone with a sialosyl residue attached to the terminal
galactosyl residue at the C-3 position through an α-D-
linkage.

NMR data revealed the presence of four protons in the
anomeric region (4–5 ppm) having relative areas of ap-
proximately 1:1:1:1. Each had a large coupling constant
(>7 Hz), suggesting a β-D-aldo-pyranose. The anomeric
doublets at 4.16 ppm and 4.52 ppm are characteristic of
β-D-glucopyranosyl and 2-acetamido-2-deoxy-β-D-galac-
opyranosyl residues, respectively. The β-proton of the
internal galactose can be assigned at 4.19 ppm (J₁,₂ =
7.23 Hz). The β-proton of the external galactose is found
at 4.25 ppm, which is slightly downfield, compared to that
of asialo-GM₁ (4.21 ppm, ref. 19), presumably because of
the presence of the sialic acid residue (Table 3 and Fig. 3).

In the negative ion FAB mass spectrum of G_{M1a} gan-
glioside, there are six major ion groups, which represent
ceramide, glucosyl ceramide, lactosyl ceramide, ganglio-
N-triaosylceramide, ganglio-N-tetraosylceramide, and

Fig. 4. Negative FAB mass spectra of isolated unknown ganglioside (A) and G_{M1a} ganglioside (B).
sialosyl ganglio-N-tetraosyl ceramide. The prominent molecular ions (M–H)^+ were detected at m/z 1544 and 1572. Elimination of the terminal sialic acid residue yields the fragment ions (e) at m/z 1253 and 1281 (M–H–291)^+. Fragment ions corresponding to the successive elimination of galactose, N-acetylglucosamine, galactose, and glucose residues were detected at m/z 1091 and 1109(d), m/z 888 and 916(c), m/z 726 and 754(b), and m/z 564 and 592(a), respectively (Fig. 4A). The negative FAB-mass spectrum of brain G~lb ganglioside, previously reported by Arita et al. (19) was also analyzed as a reference (Fig. 4B). In the case of G~lb ganglioside, the molecular ions were confirmed at m/z 1544 and 1572 (M–H)^+. However, its fragmentation diagrams are somewhat different, because the elimination peaks of the sialic acid residue were extremely low while those of the terminal galactose residue were clearly detected at m/z 1382 and 1410 (M–H–163)^+(f). The ions representing ceramide and glucosyl ceramide were detected at m/z 564 and 592(a), and m/z 726 and 754(b), respectively, as they were in G~lb ganglioside.

Taken together, these results are consistent with the following structure for this ganglioside: IV^3NeuAcGgOse4Cer; NeuAca2-3Galβ1-3GalNAcβ1-4Galβ1-4Glcb1-1-Cer (G~lb). Itoh et al. (23) first characterized the structure of G~lb-GalNAc in Tay-Sachs brains as a minor ganglioside and suggested that G~lb ganglioside might exist in the brain to serve as the biosynthetic precursor for this ganglioside. The discovery of G~lb in human brain lends strong support to this contention. The possible precursor of G~lb, asialo-G~lb, has been detected in immature mouse brain myelin. Our finding thus provides the intermediate step for the new biosynthetic pathway in the brain: asialo-G~lb → G~lb → G~lb-GalNAc. It is also well known that G~lb may be involved in anti-mouse natural killer (NK) cell activity and it is considered to be a surface marker of NK cells (27–29), T-cells (30, 31), and human acute leukemia cells (32). Moreover, G~lb ganglioside has recently been reported in immune cells such as mouse spleen cells (9). In light of the growing evidence that glycolipids may serve as common antigens for the nervous and immune systems (26), the possibility exists that G~lb may be involved in certain autoimmune diseases of the nervous system. Additionally, it may be involved in the loss of adhesiveness in tumor cells (4) and in cell maturation (5, 33).

We thank Mr. M. Suzuki, The Tokyo Metropolitan Institute of Medical Science, for performing the permethylation analysis by capillary GLC–mass spectrometry. This work was supported by National Institutes of Health grants NS-11853 and NS-23102. Manuscript received 14 May 1986, in revised form 15 August 1986, and in re-revised form 3 November 1986.

REFERENCES

a novel type of ceramide and lact-N-fucopentaose III. J. Biol. Chem. 246: 1192-1200.

