Concentrations of cholestenoic acids in plasma from patients with liver disease

Magnus Axelson,* Birgitta Mörk,** Andreas Aly,† Olof Wisén,† and Jan Sjövall**

Department of Clinical Chemistry* and Department of Medicine,† Karolinska Hospital, and Department of Physiological Chemistry,** Karolinska Institutet, S-104 01 Stockholm, Sweden

Abstract The concentrations of 3β-hydroxy-5-cholestenoic acid, 3β,7α-dihydroxy-5-cholestenoic acid, and 7α-hydroxy-3-oxo-4-cholestenoic acid were determined in plasma from patients with different liver diseases and compared with those of unconjugated and conjugated C27 bile acids. The levels of the cholestenoic acids were similar in patients with extrahepatic cholestasis and in controls (median concentration 153 and 162 ng/ml, respectively), whereas significantly elevated levels were found in plasma from patients with primary biliary cirrhosis (median concentration 298 ng/ml) and alcoholic liver cirrhosis (median concentration 262 ng/ml). As expected, conjugated C27 bile acids were elevated in most patients whereas the corresponding unconjugated compounds were low in cholestasis and elevated in alcoholic liver cirrhosis. The levels of the individual C27 acids were usually positively correlated to each other and also to the levels of conjugated C27 bile acids in plasma from patients with liver cirrhosis. In contrast, there was no correlation between the levels of C27 acids and conjugated bile acids in patients with extrahepatic cholestasis. The levels of unconjugated C27 bile acids were not correlated to C27 acids or conjugated bile acids in any of the groups. The results indicate that there is a close metabolic relationship between the individual C27 acids, that they do not participate in an enterohepatic circulation, and that the liver is important for their elimination/metabolism.

MATERIALS AND METHODS

Subjects and samples

Patients. Blood was obtained from patients with different types of liver diseases. The following groups of patients were selected: Group A: Three men and eight women, 49–87 years old (median 68), with large bile duct obstruction secondary to carcinoma or gallstones. Group B: Four men and eight women, 40–75 years old (median 62), with primary biliary cirrhosis. Group C: Nine men and three women, 51–75 years old (median 57), with moderate or severe forms of alcoholic liver cirrhosis. The diagnosis of patients in groups B and C was made on the basis of full clinical and chemical investigation including liver biopsy in most cases.

Control subjects. Blood from 20 apparently healthy men and women, 21–48 years old (median 37) was collected in tubes with or without heparin. After centrifugation, plasma/serum was separated and stored at −20°C until analyzed. All subjects were not fasting, but most samples were collected in the morning.

Analytical procedure

Chemicals, column packing materials, and reference compounds were the same as those used in previous studies (2). Details of the analytical procedure have also been described. Briefly, plasma/serum (2 ml) was diluted with one volume of 0.5 M aqueous triethylamine sulfate, pH 7, followed by extraction on a small column of octadecylsilane-bonded silica at 64°C. After washing the sorbent with water and 10% aqueous methanol, bile acids were

Abbreviations: GLC, gas-liquid chromatography; TMS, trimethylsilyl.
eluted with 95% aqueous methanol. An aliquot of this extract (1/5) was enzymatically hydrolyzed (3) for determination of total bile acids. The remaining extract was passed through a column (6 × 0.4 cm) of the lipophilic anion exchanger, triethylaminohydroxypropyl-Sephadex LH-20 (TEAP-LH-20) in bicarbonate form. After washing with 95% aqueous methanol and methanol–chloroform 1:1 (v/v) to remove sterols and other neutral lipids, unconjugated steroids with one carboxyl group were eluted from the anion exchanger with 0.15 M acetic acid in 95% aqueous methanol. Following addition of a known amount of hexatriacontane as internal standard, methylation with diazomethane and formation of trimethylsilyl (TMS) ethers, the acids were analyzed by gas–liquid chromatography (GLC) and gas–liquid chromatography–mass spectrometry using fused-silica capillary columns (25 m × 0.32 mm) coated with a 0.25-μm layer of cross-linked methyl silicone. Amounts were calculated from peak areas given by the bile acid derivatives and the internal standard in the GLC analyses. The areas given by the TMS ethers of methyl 3β-hydroxy-5-cholestenoate, 3β,7α-dihydroxy-5-cholestenoate, and 7α-hydroxy-3-oxo-4-cholestenoate were multiplied by 1.2, 1.2, and 1.5, respectively, to correct for differences in response factors. Conjugated bile acids were calculated as the difference between total and unconjugated bile acids.

Fig. 1. Concentrations of individual and total C27 bile acids and of total unconjugated and conjugated C24 bile acids in plasma from control subjects (A) and patients with extrahepatic cholestasis (B), primary biliary cirrhosis (C), and alcoholic liver cirrhosis (D). Median values are indicated by horizontal lines: I, 3β-hydroxy-5-cholestanolic acid; II, 3β,7α-dihydroxy-5-cholestanolic acid; III, 7α-hydroxy-3-oxo-4-cholestanolic acid.
Statistical analysis

Statistical evaluation of data included calculation of Spearman's rank correlation coefficient and Kolmogorov-Smirnov two-sample test (4). The median and interquartile range were used as measures of central tendency and variation, respectively.

RESULTS

Concentrations of CZ7 and CZ4 acids in plasma

The concentrations of the three cholestenoic acids and the major unconjugated and conjugated C24 bile acids were determined in plasma from patients with common bile duct obstruction, primary biliary cirrhosis, and alcoholic liver cirrhosis. The unconjugated bile acids were also analyzed in 20 apparently healthy subjects. The results are shown in Fig. 1 and Table 1.

The concentrations of the CZ7 and CZ4 acids in the control group agree well with previously reported values (2, 5). The order of increasing concentration of the C27 acids was usually 3β,7α-dihydroxy-5-cholestenoic acid < 3β-hydroxy-5-cholestenoic acid < 7α-hydroxy-3-oxo-4-cholestenoic acid both in the controls and in the patients (Table 1). The concentrations of CZ7 acids in patients with extrahepatic cholestasis were similar to those in the control group and definitely not higher. In contrast, many patients with primary biliary cirrhosis and alcoholic liver cirrhosis had elevated levels of CZ7 acids, particularly of 7α-hydroxy-3-oxo-4-cholestenoic acid. The concentration of the latter was significantly higher (P < 0.005) in these patient groups than in the controls.

The concentrations of unconjugated C24 acids were low in patients with extrahepatic cholestasis and in the majority of patients with primary biliary cirrhosis. This is to be expected if the unconjugated bile acids in blood originate from the intestine following bacterial deconjugation. Primary biliary cirrhosis is associated with intrahepatic cholestasis (6) while cholestasis is less prominent in alcoholic liver cirrhosis. The levels of free C24 bile acids in the latter patients were, in fact, elevated. This is most likely due to a reduced hepatic clearance of these compounds from the portal blood, due to portal-systemic shunting and cellular dysfunction (7).

As expected, the levels of conjugated bile acids were elevated in most of the patients with cholestasis and cirrhosis. Ratios of cholic acid to chenodeoxycholic acid were higher in cholestasis than in alcoholic liver cirrhosis which is in agreement with previous studies (8).

Correlations of plasma levels

Statistical evaluation of the concentrations of CZ7 and CZ4 bile acids revealed a number of positive correlations. Correlations between levels of 3β-hydroxy-5-cholestenoic acid and 3β,7α-dihydroxy-5-cholestenoic acid (Fig. 2) were significant (r = 0.76–0.88, P < 0.001–0.05) for controls and within each patient group. As shown in Fig. 2, the correlation was also highly significant for the entire

<table>
<thead>
<tr>
<th>Table 1. Concentrations of C27 and C24 bile acids in plasma/serum of healthy subjects and patients with extrahepatic cholestasis, primary biliary cirrhosis, and alcoholic liver cirrhosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bile Acids</td>
</tr>
<tr>
<td>Unconjugated</td>
</tr>
<tr>
<td>7α-Hydroxy-3-oxo-4-cholestenoic acid</td>
</tr>
<tr>
<td>Chenodeoxycholic acid</td>
</tr>
<tr>
<td>Deoxycholic acid</td>
</tr>
<tr>
<td>Conjugated</td>
</tr>
<tr>
<td>Chenodeoxycholic acid</td>
</tr>
<tr>
<td>Cholic acid</td>
</tr>
</tbody>
</table>

*Details on patients are given in Materials and Methods.
*Concentration expressed as median: lower quartile-upper quartile.
*Expressed as ng unconjugated acid.
*ND, not determined.
material ($r = 0.85, P < 0.0001$). The correlation between levels of 3β,7α-dihydroxy-5-cholestenolic acid and 7α-hydroxy-3-oxo-4-cholestenolic acid was significant for the controls and patients with liver cirrhosis ($r = 0.61-0.88, P < 0.001-0.05$) and for the entire material ($r = 0.77, P < 0.0001$ (Fig. 2). These results suggest a close metabolic relationship between the three cholestenolic acids.

The levels of unconjugated cholic and chenodeoxycholic acids were usually positively correlated. This might be explained by their common formation by bacterial hydrolysis. The levels of cholestenoic acids were not related to those of unconjugated C24 bile acids. However, with the exclusion of one patient (Fig. 3), significant positive correlations were observed between the levels of cholestenoic acids and conjugated bile acids in blood from patients with alcoholic liver cirrhosis ($r = 0.93, P < 0.05$) or primary biliary cirrhosis ($r = 0.83, P < 0.05$) (Fig. 3). This might be due to a reduced hepatic clearance of all these acids. In contrast, there was no such correlation in patients with extrahepatic cholestasis.

DISCUSSION

The biosynthesis of bile acids from cholesterol may involve multiple pathways (9). In the major pathway, metabolic changes of the steroid nucleus are usually believed to be completed before the oxidation of the side chain. However, 26-hydroxylation may occur at an earlier stage. In any case, the rate-limiting step in bile acid biosynthesis is thought to be the 7α-hydroxylation of cholesterol.

The structures of the cholestenic acids in plasma indicate that these compounds are either intermediates in a pathway from cholesterol to bile acids or side products formed from such intermediates. We expected that analyses of the C27 acids in plasma from patients with liver diseases might give some information about the metabolic position of these acids in humans. In the diseases studied, bile acid production is known to be reduced (10-15), due at least partly to a reduced amount or activity of cholesterol 7α-hydroxylase (13, 14, 16).
The levels of cholestenonic acids in patients with extrahepatic cholestasis did not differ significantly from those in the controls. This is in marked contrast to the grossly elevated levels of common conjugated bile acids caused by the biliary obstruction. Because of the interruption of the enterohepatic circulation, the levels of unconjugated C27 bile acids were decreased. Thus, there was no correlation between the levels of C27 and C24 acids. This is compatible with the absence of significant amounts of the cholestenonic acids in bile (2) and indicates that these acids do not participate in an enterohepatic circulation. Furthermore, their levels in plasma did not seem to be influenced by the decrease of cholesterol 7α-hydroxylase activity expected in patients with extrahepatic cholestasis (14). These results show that different factors regulate the formation and secretion of conventional bile acids and the cholestenonic acids.

The levels of cholestenonic acids were increased in several cirrhotic patients. This could be due to an increased production/secretion or a decreased clearance/metabolism of the acids. Bile acid production is reduced in alcoholic cirrhosis (10-13) and the half-life times of bile acids in blood are increased due to a decreased hepatic clearance (17). The latter is the most likely reason for the high levels of both conjugated and unconjugated bile acids in plasma. The positive correlation between the cholestenonic acids and conjugated C24 bile acids in cirrhotic patients indicates that the same mechanism but not cholestasis is responsible for the elevated levels of the cholestenonic acids in this disease. Intrahepatic cholestasis is usually more pronounced in primary biliary cirrhosis than in alcoholic liver cirrhosis (6). Correspondingly, patients with biliary cirrhosis had lower levels of cholestenonic acids, in relation to conjugated bile acids, than patients with alcoholic cirrhosis and higher levels than patients with extrahepatic cholestasis (Fig. 3). Although a reduced hepatic clearance should also affect the levels of unconjugated bile acids, the poor correlation between these and the other groups of bile acids can probably be explained by the additional involvement of an intestinal microflora in their formation.

The site(s) of formation of the cholestenonic acids cannot be deduced from the present results. The 7α-hydroxylation may not be limited to the hepatocyte (18) and 26-hydroxylation can occur in several cell types, e.g., in skin fibroblasts (19). The subsequent oxidation to C27 acids has only been demonstrated with hepatic enzymes (9, 20) but involvement of extrahepatic oxidoreductases cannot be excluded. Irrespective of the location of these biosynthetic reactions, this study indicates that the liver is important for the removal of the cholestenonic acids from blood. Studies with labeled compounds will be required to show if this can occur by an expected conversion to common biliary bile acids. Following the submission of this study it was reported that 26-hydroxycholesterol but not 3β-hydroxy-5-cholestenonic acid is an efficient precursor of cholic acid in the rabbit (21). Thus, this C27 acid seems to be a side product of bile acid biosynthesis, at least in the rabbit.

This work was supported by the Swedish Medical Research Council (grants no. 03X-7890 and 13x-219), Magn. Bergvalls Stiftelse, and Karolinska Institutet.

Manuscript received 14 April 1989 and in revised form 24 July 1989.

REFERENCES

15. Heaton, K. W. 1979. Bile salts. In Liver and Biliary Disease,

