Altered bile acid metabolism in liver disease: concurrent occurrence of C-1 and C-6 hydroxylated bile acid metabolites and their preferential excretion into urine

Junichi Shoda,* Naomi Tanaka,∗ Toshiaki Osuga,† Kenji Matsuura,† and Hiroshi Miyazaki,**

Institute of Clinical Medicine,* University of Tsukuba, 1-1-1 Tennodai, Tsukuba-city, Ibaraki 305, Japan; Application Laboratory, MS Group,† Analytical Instruments, Technical and Engineering Division, JEOL Ltd., 1418 Nakagami, Akishima, Tokyo 196, Japan; and The Second Department of Internal Medicine,** Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142, Japan

Abstract: C-1 and C-6 hydroxylated bile acid metabolites in various biological specimens from subjects with liver disease (cholestatic, liver cirrhosis, chronic hepatitis, acute hepatitis) were determined by gas-liquid chromatography-mass spectrometry. Five C-1 hydroxylated bile acids and nine C-6 hydroxylated bile acids were identified in the urine studied: 1α,3α,12α-trihydroxy-,* 1α,3α,7α-trihydroxy-,* 1α,3α,7α,12α-tetrahydroxy-,* 3α,6α,7α-trihydroxy-, and 3α,6α,7α,12α-tetrahydroxy-5β-cholanoic acids were found as the major components. Most of the 1β- and 6α-hydroxylated bile acids were excreted into urine in the nonsulfate-nonglucuronide form. The amounts in the urine were greater than those found in the bile, portal and peripheral venous sera, and liver specimens. The biliary excretion and hepatic extraction of 1β-hydroxylated metabolites were more impaired and less efficient than for cholic acid. These findings suggested that hepatic 1β- or 6α-hydroxylation of bile acids occurred concurrently in the patients with liver disease and that the resulting hydroxylated metabolites were efficiently excreted in the nonsulfate-nonglucuronide form into urine rather than into bile. — Shoda, J., N. Tanaka, T. Osuga, K. Matsuura, and H. Miyazaki. Altered bile acid metabolism in liver disease: concurrent occurrence of C-1 and C-6 hydroxylated bile acid metabolites and their preferential excretion into urine. J. Lipid Res. 1990. 31: 249-259.

Supplementary key words: gas-liquid chromatography-mass spectrometry

MATERIALS AND METHODS

Sample collections

The experiments were carried out using biological specimens from 111 male and female subjects studied in our
previous report (5): 17 control subjects without liver disease and 94 patients with liver diseases. There were 20 subjects with intra- and extrahepatic cholestasis, 21 with liver cirrhosis in compensated state, 19 with liver cirrhosis in decompensated state, 15 with chronic hepatitis, and 19 with acute hepatitis. The severity of the liver cirrhosis was judged using the criteria described previously (16). Patients with liver cirrhosis were divided into two groups: compensated and decompensated states. All medications such as antibiotics and drugs that might affect bile acid metabolism were discontinued for 2 weeks before initiation of the study. Pertinent laboratory data of the 111 subjects are summarized in Table 1.

Urine and peripheral venous blood. Urine was collected during a 24-h period and kept refrigerated at -20°C until analyzed. Blood was taken from an antecubital vein from fasting subjects; serum was obtained by centrifugation and frozen at -20°C until analyzed.

Bile and liver tissue. Paired bile and liver tissue samples were obtained simultaneously during laparotomy or autopsy from 8 control subjects and 14 cholestatic subjects. Liver tissue was also obtained from 7 cholestatic patients. Bile samples were taken by puncture aspiration of gallbladder contents and kept refrigerated at -20°C until analyzed. The resected liver samples were immediately rinsed with chilled saline, sliced into small blocks, briefly dried on filter paper, weighed, and kept refrigerated at -80°C until analyzed.

Table 1. Biochemical data of the patients

<table>
<thead>
<tr>
<th>n (Sex)</th>
<th>Age (yr)</th>
<th>T-Bil (mg/dl)</th>
<th>S-GOT (U/I)</th>
<th>S-GPT (U/I)</th>
<th>ALP (K-AU)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
<td>17 (M 9, F 8)</td>
<td>22-56</td>
<td>0.5 ± 0.2<sup>a</sup></td>
<td>14.1 ± 9.4</td>
<td>10.1 ± 8.4</td>
</tr>
<tr>
<td></td>
<td>0.2 - 1.1<sup>b</sup></td>
<td>5 - 35</td>
<td>3 - 5</td>
<td>3 - 8</td>
<td></td>
</tr>
<tr>
<td>CHOL</td>
<td>20 (M 15, F 5)</td>
<td>38-69</td>
<td>17.0 ± 8.4</td>
<td>137.2 ± 105.1</td>
<td>117.5 ± 113.6</td>
</tr>
<tr>
<td></td>
<td>5.0 - 34.6</td>
<td>19 - 388</td>
<td>14 - 273</td>
<td>12 - 90</td>
<td></td>
</tr>
<tr>
<td>LC (com)<sup>c</sup></td>
<td>21 (M 17, F 4)</td>
<td>32-60</td>
<td>0.8 ± 0.3</td>
<td>87.6 ± 67.7</td>
<td>64.8 ± 59.4</td>
</tr>
<tr>
<td></td>
<td>0.5 - 1.8</td>
<td>25 - 263</td>
<td>10 - 275</td>
<td>6 - 27</td>
<td></td>
</tr>
<tr>
<td>LC (dec)<sup>c</sup></td>
<td>19 (M 13, F 6)</td>
<td>45-63</td>
<td>5.3 ± 4.0</td>
<td>129.9 ± 100.7</td>
<td>68.4 ± 67.5</td>
</tr>
<tr>
<td></td>
<td>0.5 - 14.5</td>
<td>31 - 348</td>
<td>8 - 224</td>
<td>7 - 55</td>
<td></td>
</tr>
<tr>
<td>CH</td>
<td>16 (M 12, F 4)</td>
<td>20-43</td>
<td>0.9 ± 0.5</td>
<td>76.0 ± 56.8</td>
<td>126.4 ± 109.5</td>
</tr>
<tr>
<td></td>
<td>0.3 - 1.8</td>
<td>20 - 213</td>
<td>28 - 394</td>
<td>5 - 10</td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td>19 (M 14, F 5)</td>
<td>24-48</td>
<td>8.4 ± 7.2</td>
<td>523.7 ± 478.9</td>
<td>859.0 ± 636.2</td>
</tr>
<tr>
<td></td>
<td>1.9 - 37.1</td>
<td>82 - 1566</td>
<td>186 - 2490</td>
<td>7 - 24</td>
<td></td>
</tr>
</tbody>
</table>

Normal range: 0.2 - 1.2^d mg/dl, T-Bil; 40, S-GOT; 40, S-GPT; 40, ALP; 10.

Abbreviations used: CHOL, cholestasis; LC (com), compensated liver cirrhosis; LC (dec), decompensated liver cirrhosis; CH, chronic hepatitis; AH, acute hepatitis; T-Bil, serum total bilirubin; S-GOT, serum glutamic oxaloacetic transaminase; S-GPT, serum glutamic pyruvic transaminase; ALP, alkaline phosphatase.

^aValues represent mean ± SD.

^bRange of values.

^cPatients with liver cirrhosis were divided into two groups of LC (com) (total clinical score 2.7 ± 0.8 points (mean ± SD) (1-4 points)) and LC (dec) (14.1 ± 2.7 points (10-17 points)) according to an index of the severity of liver disease described by McCormick et al. (ref. 16).
were obtained from MSD Isotopes (Montreal, Canada), and [6,6,7,7-2H₄]chenodeoxycholic acid (CDCA) was prepared in the Research Laboratory of Nippon Kayaku, Co. (Tokyo, Japan). [2,2,4,4-²H₄]LCA-3-sulfate was synthesized according to the method described by Goto et al. (18). [1,1,1,12,12,12-2H₂]Ursodeoxycholic acid (UDCA) and [2,2,4,4-²H₄]DCA-3-sulfate were kindly supplied by Tokyo Tanabe Co. (Tokyo, Japan). [2,2,4,4-²H₄]LCA-3-glucuronide and [11,11,12,12-²H₄] DCA-3-glucuronide (20) were kindly supplied by Dr. H. Takikawa (The 1st Department of Internal Medicine, Faculty of Medicine, Teikyo University, Tokyo, Japan). Purity of bile acids was checked by thin-layer chromatography using the following solvent systems; isopropl ether-isoctane-acetic acid 10:5:5 (v/v/v) (21), for unconjugated bile acids, and n-butanol-acetic acid-water 10:1:1 (v/v/v) (22) for conjugated bile acids. Each of their chromatograms showed only a single spot.

Chemicals

All solvents were of analytical grade. Bond Elut C₁₈ cartridge (octadecylsilane-bonded silica) was obtained from Analytichem International Inc. (Harbor City, CA), cholylglycine hydrolase (3α,7α,12α-trihydroxy-5β-cholan-24-oxylic acid amidohydrolase from Clostridium perfringens) (EC 3.5.1.24), and β-glucuronidase (β-D-glucuronide glucuronosohydrolase from Helix pomatia) (EC 3.2.1.31) were obtained from Sigma Chemical Co. (St. Louis, MO), Sephadex LH-20 was from Pharmacia Fine Chemicals (Uppsala, Sweden) and dimethylsilyl imidazole (DMESI) was from Tokyo Kasei Kogyo Co. (Tokyo, Japan). Piperidinohydroxypropyl Sephadex LH-20 was kindly supplied by Prof. T. Nambra and Dr. J. Goto (Pharmaceutical Institute, Tohoku University, Miyagi, Japan).

Gas-liquid chromatography (GLC)

Gas-liquid chromatography was carried out according to the method previously described (15).

Gas-liquid chromatography-mass spectrometry (GLC-MS)

Gas-liquid chromatography-mass spectrometry was carried out as previously reported (4, 5).

Clean-up procedure

Urine, serum, and bile were stored at −20°C and liver specimens at −80°C until analyzed. These biological specimens were purified according to the method described by Yanagisawa et al. (23, 24) with minor modifications. A detailed description of the clean-up procedure is described in recent reports (5, 15).

Urine, serum, and bile. To 1–2 ml of serum, 5–10 ml of urine, and 5–10 µl of bile or bile-rich duodenal juice, adequate amounts of internal standards were added as a mixture of [²H₄]LCA, [²H₄]DCA, [²H₄]CDCA, [²H₄]UDCA

Fig. 1. A representative selected ion recording of urinary bile acids of a patient with extrahepatic cholestasis; 1, LCA; 1', [²H₄]LCA; 2, DCA; 2', [²H₄]DCA; 3, CDCA; 3', [²H₄]CDCA; 4, UDCA; 4', [²H₄]UDCA; 5, CA; 5', [²H₄]CA; a, 13,13a,12α-ol (DCA-12α-ol); b, 3α,6α,7α-ol (CDCA-6aα-ol); c, 3,6,7-ol; d, 13β,12-ol; e, 3,6,7,12-ol; f, 3α,6α,7α,12α-ol (CDCA-12α-ol); g, 3α,6α,7α,12α-ol (CDCA-6αα-ol); h, 13β,13a,7α-ol (CDCA-13α-ol); i, 13β,13a,7β-ol (UDCA-1β-ol); j, 3α,6α,7α,12α-ol (CA-6αα-ol); k, 1β, 3α,7α,12α-ol (CA-1β-ol); l, 3,6,7,12-ol; m, 3,6,7,12-ol. Upper case letters in parentheses correspond to the peaks of a reconstructed ion profile in our previous report (Fig. 2 and Table 1, ref. 15). Lower case letters correspond to those in Table 2. The peaks with cross-hatched areas represent those for quantitation by GLC-SIM.
and \(^{[2}H_4\)CA in 0.5 M potassium phosphate buffer (pH 7.0); the samples were then applied to a Bond Elut C18 cartridge. The eluted bile acids were subjected to solvolysis according to the method described by Kornel (25), followed by enzymatic hydrolysis using cholylglycine hydrolase and \([\text{H}4\]CA in 0.5 M potassium phosphate buffer (pH 7.0); the samples were then applied to a Bond Elut C18 cartridge. The eluted bile acids were subjected to solvolysis according to the method described by Kornel (25), followed by enzymatic hydrolysis.

Table 2. Completely and partially identified C-1 or C-6 hydroxylated bile acids.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>a (L) 5PB-13,3a,12a-ol</td>
<td>36.52</td>
<td>694</td>
<td>694 (-)</td>
<td>665 (33)</td>
<td>590 (14)</td>
<td>486 (5)</td>
</tr>
<tr>
<td>b (M) 5PB-3a,6a,7a-ol</td>
<td>36.62</td>
<td>694</td>
<td>694 (-)</td>
<td>665 (4)</td>
<td>590 (1)</td>
<td>487 (2)</td>
</tr>
<tr>
<td>c (N) B-3,6,7,12-ol</td>
<td>36.79</td>
<td>694</td>
<td>694 (-)</td>
<td>665 (2)</td>
<td>590 (-)</td>
<td>486 (2)</td>
</tr>
<tr>
<td>d (O) B-3,6,7,12-ol</td>
<td>36.99</td>
<td>694</td>
<td>694 (-)</td>
<td>665 (29)</td>
<td>590 (21)</td>
<td>486 (11)</td>
</tr>
<tr>
<td>e (Q) B-3,6,7,12-ol</td>
<td>37.19</td>
<td>694</td>
<td>694 (-)</td>
<td>665 (8)</td>
<td>590 (34)</td>
<td>486 (39)</td>
</tr>
<tr>
<td>f (R) 5PB-3,6,7a,12a-ol</td>
<td>37.24</td>
<td>796</td>
<td>796 (-)</td>
<td>767 (100)</td>
<td>692 (2)</td>
<td>588 (17)</td>
</tr>
<tr>
<td>g (S) 5PB-3a,6a,7ao,12a-ol</td>
<td>37.34</td>
<td>796</td>
<td>796 (-)</td>
<td>767 (38)</td>
<td>692 (3)</td>
<td>588 (11)</td>
</tr>
<tr>
<td>h (P) 5PB-3a,6a,7a-ol</td>
<td>37.58</td>
<td>694</td>
<td>694 (-)</td>
<td>665 (4)</td>
<td>590 (2)</td>
<td>486 (4)</td>
</tr>
<tr>
<td>i (Q) 5PB-3a,6a,7a,12a-ol</td>
<td>37.68</td>
<td>694</td>
<td>694 (-)</td>
<td>665 (15)</td>
<td>590 (17)</td>
<td>486 (28)</td>
</tr>
<tr>
<td>j (R) 5PB-3a,6a,7a,12a-ol</td>
<td>37.76</td>
<td>796</td>
<td>796 (-)</td>
<td>767 (9)</td>
<td>692 (-)</td>
<td>588 (4)</td>
</tr>
<tr>
<td>k (S) B-3,6,7,12-ol</td>
<td>38.45</td>
<td>796</td>
<td>796 (-)</td>
<td>767 (19)</td>
<td>692 (46)</td>
<td>588 (32)</td>
</tr>
<tr>
<td>m (T) B-3,6,7,12-ol</td>
<td>38.94</td>
<td>796</td>
<td>796 (-)</td>
<td>767 (8)</td>
<td>692 (1)</td>
<td>588 (5)</td>
</tr>
</tbody>
</table>

Note: 1B, cholic acid; configurations at C-5 and of hydroxyl groups are indicated by Greek letters.
2Methylene unit values of ethyl ester DMES ether derivatives.
3Chemical formulas after M indicate mass fragments lost. DMESOH represents dimethylethylsilanol.
4Lower case letters correspond to the peaks of the selected ion recording in Fig. 1.

Liver. Liver tissue (about 300 mg wet weight) was homogenized in 2 ml of ice-cold 95% aqueous ethanol containing 0.1% ammonium hydroxide using a Teflon pestle homogenizer at about 700 rpm for 5 min. The homogenate was transferred into a centrifuge tube and washed with three 3-ml portions of 95% aqueous ethanol-0.1% ammonium hydroxide with the aid of ultrasonication. The combined washings were heated in a water bath at 80°C for 10 min under continuous stirring, and then centrifuged at 0°C for 10 min at 5000 g. The supernatant was stored at -20°C. To an aliquot of the pooled supernatants, adequate amounts of a mixture of internal standards were added and then the supernatants were purified.

Identification and quantitation of individual bile acids. The identification of individual bile acid derivatives was based on the comparison of the methylene unit values (MUv) (29) of the peaks on reconstructed ion profiles and their mass spectra with those of authentic standards. Quantitation of individual bile acids was carried out by GLC-selected ion monitoring-MS, using the ions as the characteristic ions of \([M-2xHE]^-\) for 6a-hydroxylated bile acids.
metabolites of bile acids in the urine of subjects with liver disease

<table>
<thead>
<tr>
<th>(Relative Intensities)</th>
<th>[M-3 × DMESOH]</th>
<th>[M-4 × DMESOH]</th>
<th>Other Ions</th>
</tr>
</thead>
<tbody>
<tr>
<td>or [M-3 × DMESOH + H]</td>
<td>[M-4 × DMESOH]</td>
<td>or [M-4 × DMESOH + H]</td>
<td></td>
</tr>
<tr>
<td>382 (4)</td>
<td>-</td>
<td>330 (8)</td>
<td>253 (10)</td>
</tr>
<tr>
<td>383 (100)</td>
<td>-</td>
<td>337 (10)</td>
<td>253 (10)</td>
</tr>
<tr>
<td>383 (100)</td>
<td>-</td>
<td>337 (6)</td>
<td>253 (6)</td>
</tr>
<tr>
<td>382 (12)</td>
<td>-</td>
<td>330 (5)</td>
<td>253 (13)</td>
</tr>
<tr>
<td>383 (100)</td>
<td>-</td>
<td>337 (2)</td>
<td>253 (10)</td>
</tr>
<tr>
<td>484 (19)</td>
<td>381 (17)</td>
<td>355 (17)</td>
<td>251 (10)</td>
</tr>
<tr>
<td>485 (54)</td>
<td>381 (100)</td>
<td>313 (48)</td>
<td>251 (8)</td>
</tr>
<tr>
<td>382 (5)</td>
<td>-</td>
<td>330 (4)</td>
<td>253 (-)</td>
</tr>
<tr>
<td>382 (4)</td>
<td>-</td>
<td>330 (5)</td>
<td>253 (4)</td>
</tr>
<tr>
<td>485 (81)</td>
<td>381 (100)</td>
<td>335 (19)</td>
<td>251 (5)</td>
</tr>
<tr>
<td>484 (16)</td>
<td>380 (18)</td>
<td>355 (6)</td>
<td>251 (11)</td>
</tr>
<tr>
<td>485 (21)</td>
<td>381 (100)</td>
<td>335 (13)</td>
<td>251 (22)</td>
</tr>
<tr>
<td>485 (4)</td>
<td>381 (100)</td>
<td>335 (16)</td>
<td>251 (12)</td>
</tr>
</tbody>
</table>

1Upper case letters in parentheses correspond to the peaks of the reconstructed ion profile in our previous report (Fig. 2 and Table 1, ref. 15).
2Positions of hydroxyl groups and stereochemistry are tentative.
3Fragment ions underlined were used for quantitation of the individual bile acids.

Good recoveries of unconjugated bile acids (83-91%), glucuronidated bile acids (93-100%), and sulfated bile acids (92-98%) were obtained by the present procedure using deuterated bile acids as internal bile acids, as observed in previous reports (30, 31).

RESULTS

Qualitative composition of C-1 and C-6 hydroxylated bile acid metabolites in liver diseases

Fig. 1 shows a typical selected ion recording obtained by analysis of urinary bile acids of cirrhotic patients. Table 2 lists the C-1 and C-6 hydroxylated bile acid metabolites identified in this study. Five 1β-hydroxylated bile acids and nine 6α- or 6β-hydroxylated bile acid were completely or partially identified in the urine in comparison with reference compounds (13, 14). Of the 1β-hydroxylated metabolites, 1β,3α,12α-trihydroxy- (DCA-1β-ol), 1β,3α,7α-trihydroxy- (CDCA-1β-ol), and 1β,3α,7α,12α-tetrahydroxy-5β-cholanoic acids (CA-1β-ol) were always detected in the urine. Of the 6α- or 6β-hydroxylated metabolites, 3α,6α,7α-trihydroxy- (CDCA-6α-ol, so-called hyocholic acid) and 3α,6α,7α,12α-tetrahydroxy-5β-cholanoic acids (CA-6α-ol) were always detected in the urine.

Quantitative composition of C-1 and C-6 hydroxylated bile acid metabolites in liver diseases

Urine. Table 3 shows the urinary excretion amounts of 1β- and 6α-hydroxylated bile acid metabolites and their proportions in total bile acids.

Of the three 1β-hydroxylated bile acid metabolites, DCA-1β-ol was found to be a major component in control subjects and patients with compensated liver cirrhosis and chronic hepatitis. A significant increase in compensated liver cirrhosis (9.2% of total bile acids) and significant decreases in cholestasis (0.2%) and acute hepatitis (0.2%) of the proportion in total bile acids were observed in comparison with control subjects (4.3%). CA-1β-ol was a major component in cholestasis. Significant increases of this component in cholestasis (2.4%), compensated (1.5%) and decompensated liver cirrhosis (3.2%) were observed in comparison with control subjects (<0.1%).

The proportions of 1β-hydroxylated metabolites to total bile acids and the ratio of [(CA-1β-ol + CDCA-1β-ol)/DCA-1β-ol] were calculated from the data of Table 3. There were significant increases of the proportion (9.4%) and the ratio (6.2) in liver cirrhosis in comparison with control subjects (5.2% and 0.04, respectively). When the compensated liver cirrhosis was compared with the decompensated cirrhosis, the proportion of the former group (11.3%) was found to be higher than that of the latter group (6.8%), whereas the ratio of the latter (12.4) was found to be significantly higher than that of the former (0.7). As for the groups of patients with cholestasis and acute hepatitis, there were significant decreases in their proportions (3.2% and 0.6%, respectively) and significant increases in their ratios (31.6 and 8.1, respectively) in comparison with those of control subjects.

CDCA-6α-ol (hyocholic acid) and CA-6α-ol were always present as major components of 6α- or 6β-hydroxylated bile acid metabolites. There were significant increases
TABLE 3. Total bile acid levels and proportions of 1β- and 6α-hydroxylated bile acids to total bile acids in urine and serum

<table>
<thead>
<tr>
<th></th>
<th>1β-Hydroxylated Bile Acids</th>
<th>6α-Hydroxylated Bile Acids</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>DCA-1β-ol</td>
</tr>
<tr>
<td></td>
<td>Urine</td>
<td>Serum</td>
</tr>
<tr>
<td></td>
<td>mg/day</td>
<td>µg/ml</td>
</tr>
<tr>
<td>Controls</td>
<td>17</td>
<td>6.3 ± 1.6†</td>
</tr>
<tr>
<td>CHOL</td>
<td>20</td>
<td>94.7 ± 14.9†</td>
</tr>
<tr>
<td>LC (com)</td>
<td>21</td>
<td>25.1 ± 4.6†</td>
</tr>
<tr>
<td>LC (dec)</td>
<td>19</td>
<td>32.2 ± 7.3†</td>
</tr>
<tr>
<td>CH</td>
<td>16</td>
<td>14.1 ± 6.5†</td>
</tr>
<tr>
<td>AH</td>
<td>19</td>
<td>219.3 ± 53.8†</td>
</tr>
</tbody>
</table>

	[(CDCA-1β-ol + CA-1β-ol) /DCA-1β-ol]		Total	CDCA-6α-ol		CA-6α-ol					
		%	%	µg/ml	%	µg/ml	%	%	%	µg/ml	%
Controls	17	0.04 ± 0.01	2.9 ± 1.3	5.5 ± 2.0	3.4 ± 1.4	5.4 ± 2.0	0.6 ± 0.1	ND	< 0.1		
CHOL	20	31.6 ± 14.3†	14.5 ± 2.5†	3.3 ± 1.0	8.9 ± 1.6†	3.8 ± 1.1	2.4 ± 0.5†	0.2 ± 0.01	0.8 ± 0.1†		
LC (com)	21	0.7 ± 0.3†	5.7 ± 1.3	2.7 ± 0.5	3.9 ± 1.1	2.6 ± 0.5	2.4 ± 0.4†	0.8 ± 0.4	2.6 ± 0.5†		
LC (dec)	19	12.4 ± 4.5†	8.6 ± 1.5†	2.4 ± 0.4	7.8 ± 1.5†	2.3 ± 0.4	2.1 ± 0.2†	0.2 ± 0.04	0.9 ± 0.2†		
CH	16	0.1 ± 0.02	3.3 ± 0.6	1.7 ± 0.3	2.2 ± 0.5	1.8 ± 0.3	0.5 ± 0.1	ND	0.6 ± 0.2†		
AH	19	8.1 ± 2.3†	5.1 ± 1.2	2.2 ± 0.5	3.2 ± 0.8	2.1 ± 0.4	1.5 ± 0.3†	0.3 ± 0.1	0.6 ± 0.08†		

Abbreviations: DCA-1β-ol, 1β,3α,7α-trihydroxy-5β-cholanoic acid; CDCA-1β-ol, 1β,3α,7α-trihydroxy-5β-cholanoic acid; CDCA-6α-ol, 3α,6α,7α-trihydroxy-5β-cholanoic acid; CA-1β-ol, 1β,3α,7α,12α-tetrahydroxy-5β-cholanoic acid; CDCA-6α-ol, 3α,6α,7α,12α-tetrahydroxy-5β-cholanoic acid; CA-6α-ol, 3α,6α,7α,12α-tetrahydroxy-5β-cholanoic acid; [(CDCA-1β-ol + CA-1β-ol)/DCA-1β-ol] and [CA-6α-ol/CDCA-6α-ol] represent the ratios calculated from the data of urine; CHOL, cholestasis; LC (com), compensated liver cirrhosis; LC (dec), decompensated liver cirrhosis; CH, chronic hepatitis; AH, acute hepatitis.

*Values represent mean ± SEM; †P < 0.05; ‡P < 0.025; §P < 0.01; ¶P < 0.005: significant as compared with those of control subjects (†, increase; ‡, decrease); ND, nondetectable.
of the proportion of CDCA-6α-ol to total bile acids in cholelasis (8.9%) and decompensated liver cirrhosis (7.8%) in comparison with that of control subjects (3.4%). There were also significant increases of the CA-6α-ol proportion in cholestasis (2.4%), compensated (2.4%) and decompensated liver cirrhosis (2.1%), and acute hepatitis (1.5%) in comparison with that of control subjects (0.6%).

The proportions of CDCA-6α-ol and CA-6α-ol to total bile acids and the ratio of [CA-6α-ol/CDCA-6α-ol] were calculated from the data of Table 3. There were significant increases of both the proportions and the ratios in cholestasis (14.5% and 0.8), liver cirrhosis (7.0% and 2.1), and acute hepatitis (5.1% and 0.6) in comparison with those of control subjects (2.9% and <0.1). When compensated liver cirrhosis was compared with decompensated cirrhosis, the proportion was found to be higher in the latter (8.6%) than the former (5.7%), whereas the ratio of the former (2.6%) was found to be significantly higher than that of the latter (0.9%).

Fig. 2 shows the ratio of [1β-/6α-hydroxylated bile acids] calculated from Tables 3 and 4. There were significant decreases of these ratios in cholestasis (0.3), decompensated liver cirrhosis (0.9), and acute hepatitis (0.3) in comparison with that of control subjects (3.8). The ratios in compensated liver cirrhosis (3.1) and chronic hepatitis (1.8) were similar to that of control subjects (3.8). 6α-Hydroxylation of bile acids might take precedence over 10-hydroxylation in the subjects with severe liver diseases.

The conjugate forms of 10- and 6α-hydroxylated bile acid metabolites were found almost similar to that of control subjects (3.8). &-Hydroxylation of CAICDCA-10-01 in comparison with that of CA in the cirrhotic state. When CDCA-10-01 is compared with DCA-10-01, there was no significant difference between the control subjects and those with liver disease were found in the serum concentration and proportion of these metabolites. The urine/serum (U/S) ratio of each bile acid proportion to total bile acids was estimated from the data of Table 3. The U/S ratios were found to be 44.5 ± 4.2 (mean ± SEM) for the total 10-hydroxylated bile acids and 10.5 ± 1.0 for the total 6α-hydroxylated bile acids. The high U/S ratio indicates the efficient excretion of these 10- and 6α-hydroxylated bile acid metabolites into urine.

Bile and liver. Table 4 shows the level and composition of individual bile acids in the paired bile and liver samples. Only DCA-1β-ol and CDCA-6α-ol, which were always found in these specimens, were determined. In some bile and liver samples, CA-1β-ol and CDCA-1β-ol could be detected in small amounts; they constituted up to 1.0% and 0.5% of total bile acids, respectively, indicating the much lower proportion of 1β- and 6α-hydroxylated bile acid metabolites in the urine and liver specimens in comparison with that in urine.

The paired bile and liver specimens obtained from the cirrhotic patients were analyzed according to the report of Akashi et al. (32). The results indicated that the ratio of [CA/CDCA] in bile to [CA/CDCA] in liver (1.71), and that of [CA/CDCDA-1β-ol] in bile to [CA/DCA-1β-ol] in liver of the cirrhotic patients (1.31) were significantly higher than of [CA/CDCA] ratio (0.82) and [CA/DCA-1β-ol] ratio (0.53) of control subjects. The ratio of [CDCA/DCA-1β-ol] was also significantly higher in liver cirrhosis (1.07) than in control subjects (0.61). However, in the case of the ratio of [CA/CDCDA-6α-ol] and [CDCA/CDCDA-6α-ol], there was no significant difference between the control subjects and cirrhotic patients. This can be explained by postulating the impaired biliary excretion of CDCA and DCA-1β-ol in comparison with that of CA in the cirrhotic state. When CDCA-6α-ol is compared with DCA-1β-ol, the biliary excretion of the former was more preserved than that of the latter in the cirrhotic state.

Portal and peripheral venous blood. The urine, bile, and blood specimens from portal and peripheral veins of eight cirrhotic patients during the examination of percutaneous
portography were analyzed in order to elucidate a possibly different enterohepatic circulation of 10- and 6α-hy-
droxylated bile acid metabolites compared to other
normal bile acids. Table 5 shows the results.

The mean ratio between portal and peripheral venous
serum concentrations (P/V ratio) of CA (1.37) was signifi-
cantly higher than those of CDCA (0.90, P < 0.05),
DCA-1β-ol (0.60, P < 0.01), and the 1β-ol-fraction (0.56,
P < 0.01). This suggested that CA might be subjected to
more efficient extraction by liver from portal venous flow
than CDCA and 1β-hydroxylated bile acid metabolites in
the cirrhotic patients. In contrast to the hepatic extraction
of 1β-hydroxylated bile acid metabolites, that of CDCA-
6α-ol (hyoCA) was speculated to be similar to that of CA.

DISCUSSION

Recent reports (1-3, 7, 8) have shown the occurrence in
human subjects of hydroxylated bile acid metabolites
substituted at other than normally hydroxylated positions
such as C-3, C-7, or C-12. Bremmelgaard and Sjövall (9)
reported the hydroxylated of exogenously injected [14C]-
labeled bile aids at C-1 or C-6 under cholestatic condi-
tions.

In this study, five 1β-hydroxylated bile acid metabolites
were found in the urine of the patients with liver disease.
1β-Hydroxylation of bile acids has been speculated to be
a major metabolic pathway during the neonatal period
(13-15). It is of interest that 1β-hydroxylation is also acce-
lerated in liver disease.

Urinary excretion of 1β-hydroxylated bile acid metabol-
ites in subjects with liver disease increased in comparison
to that of control subjects. With respect to the more severe
liver diseases such as cholestasis, decompensated liver cir-
rhosis, and acute hepatitis, the increased urinary excre-
tion of 1β-hydroxylated bile acids was due to CA-1β-ol and
CDCA-1β-ol. On the other hand, the increases in the
more mild liver diseases such as compensated liver cirrho-
sis and chronic hepatitis were attributed to DCA-1β-ol.
The ratio of [(CA-1β-ol + CDCA-1β-ol)/DCA-1β-ol] showed
the prominent difference between mild and severe liver
disease, indicating that this index might be useful for eval-
uation of severity of liver disease.

In this study, nine 6α- or 6β-hydroxylated bile acid met-
abolites were found in the urine of patients with liver dis-
ease. These unusual hydroxylated bile acids have been
reported in several papers (33-35). The two hydroxylated
metabolites indentified as having a hydroxyl group at 6β-
configuration, 3α,6β,7α,12α- and 3α,6β,7β,12α-tetrahy-

droxy-5β-cholanoic acids, were identified as minor components in comparison with CA-6α-ol. 6α-Hydroxylation of bile acids might take precedence over 6β-hydroxylation and be accelerated in liver disease, especially in the more severe forms. The ratio of [CA-6α-ol/CDCA-6α-ol] showed no remarkable difference mild and severe disease.

Conjugate forms of 1β- and 6α-hydroxylated bile acid metabolites in the urine were studied. Most of them were found as the nonglucuronide-nonsulfated form, and their U/S ratios were very high. This suggests that 1β- and 6α-hydroxylated bile acid metabolites may be two major metabolic transformations for the elimination of bile acids into urine in addition to sulfate and glucuronide bile acids.

Little is known about the synthesis of 1β- or 6α-hydroxylated bile acid metabolites. Fetal liver microsomes have been shown to be capable of 1β-hydroxylation of steroids (36, 37) and bile acids (38). Trulch et al. (39) reported the existence of microsomal 6α-hydroxylase activity toward tauroliothocholic acids in liver biopsies. Some 1β- and 6α-hydroxylated bile acid metabolites identified in the urine were also found in liver and bile samples in this study. Since bile acid composition in liver reflects both bile acid synthesis and the state of enterohepatic circulation of bile acids (40), possible hepatic 1β- and 6α-hydroxylation of bile acids is suggested. The low levels of 1β- and 6α-hydroxylated bile acid metabolites in the portal venous blood support a hypothesis that these metabolites are formed in the liver rather than the intestine.

The paired bile and liver samples were analyzed with special attention to biliary excretion of bile acids. When the biliary excretions of DCA-1β-ol, CDCA-6α-ol, CA, and CDCA were compared, the degree of the impairment was in the order DCA-1β-ol > CDCA > CA in the cirrhotic patients. On the other hand, the biliary excretion of CDCA-6α-ol, which was quite similar to that of CA, was preserved in comparison with that of DCA-1β-ol.

There are a few reports (41, 42) about the enterohepatic circulation of normal bile acids suggesting the efficient hepatic extraction of cholic acid compared with chenodeoxycholic and deoxycholic acids in control subjects; however, there are only a few reports about the possible enterohepatic circulation of 1β- and 6α-hydroxylated bile acid metabolites. A significant difference of P/V ratio was observed between CA and other bile acids such as CDCA, DCA-1β-ol, and the other 1β-ol-metabolites. However, the P/V ratio of CDCA-6α-ol was found to be almost equal to that of CA. These findings suggested that there is preferential hepatic extraction of CA compared to CDCA and DCA-1β-ol, although it may be necessary to consider the existence of porto-systemic shunting. Urinary abundance of 1β- and 6α-hydroxylated bile acid metabolites in liver disease may be attributed to their increased hepatic biosynthesis, impaired biliary excretion, or inefficient extraction which results in efficient urinary excretion.

Excessive bile acids in the body appears to be toxic in species that are unable to convert them into more polar compounds (43). Conjugation with glycine or taurine does little to decrease the toxic potentiality of excessive bile acids (44), but sulfation (45, 46) glucuronidation, and hydroxylation may provide detoxication of bile acids.

In conclusion, transformations such as 1β- or 6α-hydroxylation are activated in liver disease for increasing the water solubility of bile acids and their excretion into urine.

We are very grateful to Prof. M. Tohma (Faculty of Pharmaceutical Sciences, Higashi-Nippon-Gakuen University, Hokkaido, Japan) for his kind supply of bile acid standards, to Prof. T. Hoshita (Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, Hiroshima, Japan) for his kind supply of bile acid standards, to Prof. T. Nambara and Dr. J. Goto (Pharmaceutical Institute, Tohoku University, Miyagi, Japan) for their kind supply of bile acid standards and piperidinohydroxypropyl Sephadex LH-20, to Dr. H. Takikawa (The 1st Department of Internal Medicine, Faculty of Medicine, Teikyo University, Tokyo, Japan) for his kind supply of standards of deuterated bile acids, and to Tokyo Tanabe Co. (Tokyo, Japan) for their kind supply of standards of deuterated bile acids.

Manuscript received 18 May 1989 and in revised form 26 September 1989.
REFERENCES

