The molecular mechanisms underlying the reduction of LDL apoB-100 by ezetimibe plus simvastatin

Vascular Biology, Robarts Research Institute,* The University of Western Ontario, Canada; and School of Medicine and Pharmacology,† University of Western Australia, Perth, Australia

Abstract The combination of ezetimibe, an inhibitor of Niemann-Pick C1-like 1 protein (NPC1L1), and an HMG-CoA reductase inhibitor decreases cholesterol absorption and synthesis. In clinical trials, ezetimibe plus simvastatin produces greater LDL-cholesterol reductions than does monotherapy. The molecular mechanism for this enhanced efficacy has not been defined. Apolipoprotein B-100 (apoB-100) kinetics were determined in miniature pigs treated with ezetimibe (0.1 mg/kg/day), ezetimibe plus simvastatin (10 mg/kg/day), or placebo (n = 7/group). Ezetimibe decreased cholesterol absorption (−79%) and plasma phytosterols (−91%), which were not affected further by simvastatin. Ezetimibe increased plasma lathosterol (+65%), which was prevented by addition of simvastatin. The combination decreased total cholesterol (−35%) and LDL-cholesterol (−47%). VLDL apoB pool size decreased 26%, due to a 35% decrease in VLDL apoB production. LDL apoB pool size decreased 34% due to an 81% increase in the fractional catabolic rate, both of which were significantly greater than monotherapy. Combination treatment decreased hepatic microsomal cholesterol (−29%) and cholesteryl ester (−65%) and increased LDL receptor (LDLR) expression by 240%. The combination increased NPC1L1 expression in liver and intestine, consistent with increased SREBP2 expression. Ezetimibe plus simvastatin decreases VLDL and LDL apoB-100 concentrations through reduced VLDL production and upregulation of LDLR-mediated LDL clearance.—Telford, D. E., B. G. Sutherland, J. Y. Edwards, J. D. Andrews, P. H. R. Barrett, and M. W. Huff. The molecular mechanisms underlying the reduction of LDL apoB-100 by ezetimibe plus simvastatin. J. Lipid Res. 2007. 48: 699–708.

Supplementary key words cholesterol absorption • lipoproteins • apolipoprotein B kinetics • gene expression

Increased concentrations of LDL-cholesterol represent a major risk factor for atherosclerosis (1, 2). Clinical trials demonstrate that reduction of plasma LDL-cholesterol by diet and/or drugs constitutes a primary strategy for the prevention and regression of coronary heart disease (1, 2).

Abbreviations: apo B, apolipoprotein B; CE, cholesteryl ester; FC, free cholesterol; FCR, fractional catabolic rate; Ig, intragastric gavage; LDLR, LDL receptor; NPC1L1, Niemann-Pick C1-like 1 protein; NS, not significant; qRT-PCR, quantitative real-time PCR; TC, total cholesterol; TG, triglyceride.

†To whom correspondence should be addressed.
e-mail: mhuff@uwo.ca

The online version of this article (available at http://www.jlr.org) contains an additional table and three figures.
in hepatic LDLR expression were observed (18). However, it has not been determined how the molecular mechanisms regulating cholesterol homeostasis in the liver and intestine in response to ezetimibe alter the kinetics of apoB metabolism. Recent apoB-100 kinetic studies demonstrated that in men with primary hypercholesterolemia, ezetimibe decreased LDL-cholesterol 22%, primarily through enhanced fractional catabolic rates (FCRs) of VLDL, intermediate density lipoprotein (IDL), and LDL, suggesting upregulation of hepatic LDLR activity (19).

Inhibition of cholesterol absorption in mice by ezetimibe leads to increases in cholesterol synthesis in intestine and liver (14, 16, 18). Potentially, this would attenuate reductions in hepatic cholesterol, limiting the extent of LDLR expression and ultimately the magnitude of LDL-cholesterol lowering. Thus, combining ezetimibe and a statin would enhance LDL-cholesterol lowering, through complementary mechanisms of action (8, 20). The combination enhances LDL-cholesterol reductions in dogs (12), and in clinical trials, combination therapy decreases LDL-cholesterol to a significantly greater extent than does either agent alone (21, 22). However, the mechanism whereby this combination modulates the kinetics of apoB metabolism has not been investigated. Furthermore, the impact of ezetimibe plus a statin on the expression of genes important for the regulation of LDL metabolism in the liver and intestine has not been defined.

We examined the effect of ezetimibe alone or in combination with simvastatin on apoB-100 kinetics in miniature pigs, a large-animal model of lipoprotein metabolism. Ezetimibe plus simvastatin decreased VLDL and LDL apoB-100 concentrations; ezetimibe inhibited cholesterol absorption, and simvastatin blocked the increase in cholesterol synthesis observed with ezetimibe alone. This resulted in significant reductions of hepatic cholesterol and a synergistic increase in hepatic LDLR expression. Plasma apoB decreased significantly through a modest reduction in VLDL production and a greatly enhanced LDLR-mediated LDL clearance, both of which are attributed to the reduction in hepatic cholesterol.

MATERIALS AND METHODS

Animals and diets

Female pigs (Ja/Mar Farms; Port Dover, Ontario, Canada) weighing 25–30 kg were housed individually in metabolic cages and were fed a pig chow-based diet (600 g/day) containing 34% of calories from fat and 400 mg/day of cholesterol (0.1%, 0.2 mg/kcal). The diet mimics a standard Western-type human diet. The ratio of polyunsaturated to mono-unsaturated to saturated fat (1:1:1) was achieved by mixing lard, butter, and safflower oil (23). Pigs were studied as littermates, three at a time, and matched with respect to baseline total plasma cholesterol. Pigs were randomized to ezetimibe (0.1 mg/kg/day) monotherapy or ezetimibe plus simvastatin (10 mg/kg/day) or placebo (n = 7/group). Blood was obtained through surgically implanted jugular vein catheters in conscious, unrestrained animals (24). The pigs were fasted for 20–22 h prior to blood collection. The protocol was approved by the Animal Care Committee of the University of Western Ontario.

Administration of drugs

Ezetimibe and simvastatin were obtained from Merck-Frosst/ Schering Canada, Montreal, Canada. Oral doses of powdered compound were placed in gelatine capsules and fed by hand. In a pilot dose-response study (n = 5 per group), daily doses of ezetimibe at 0.03 and 0.1 mg/kg/day decreased cholesterol absorption by 50% and 76%, and reduced LDL-cholesterol by 22% and 30%, respectively, compared with control. In a previous study (24), we demonstrated in this model using the same protocol, that simvastatin at a dose of 10 mg/kg/day decreased LDL-cholesterol by 24%. This dose of simvastatin was chosen because it permitted comparison of the biochemical and kinetic parameters reported previously (24) with those obtained in the present study with ezetimibe alone or in combination with simvastatin. Therefore, ezetimibe (0.1 mg/kg/day) and simvastatin (10 mg/kg/day) were used for the apoB kinetic studies.

Analytical assays

Lipoprotein separations, plasma and lipoprotein lipid analyses, and isolation of apoB have been described previously (23–27). The concentration of apoB in plasma, VLDL, IDL, and LDL was determined by ELISA and confirmed by isopropanol precipitation (25). Lipoprotein cholesterol distributions were evaluated in serum samples (50 μl) from three pigs in each group that were resolved by size exclusion chromatography on a Superose 6 column (28). Plasma lathosterol and plant sterol concentrations were assayed by GC-MS as described previously (29).

Intestinal cholesterol absorption

The plasma dual isotope ratio method described by Turley, Herndon, and Dietsch (30) was modified for use in pigs. The required amounts of [1,2-3H]cholesterol (Amersham; Oakville, Canada) and [4,14C]cholesterol (Amersham) in toluene were evaporated to dryness under nitrogen in separate glass tubes and redissolved in absolute ethanol (1 μl per μCi of radioactivity). The [3H]cholesterol was added dropwise to undiluted 20% Intralipid (0.1 ml per μCi; Baxter Corporation, Toronto, Canada) while vortexing for 3 min. The [14C]cholesterol was added dropwise to safflower oil (0.2 ml per μCi) while vortexing for 3 min. Multiple 10 μl aliquots of each isotope were added directly to 10 ml of Ready Flow III (Beckmann Coulter, Inc.; Fullerton, CA) and counted in a liquid scintillation counter (Beckmann LS8801, Beckmann Coulter, Inc.) to confirm uniform distribution of the tracers in the Intralipid or safflower oil. Following a 22 h fast, pigs were anesthetized using preanesthetics described previously (24) at 9 AM. Each pig received 50 μCi of [14C]cholesterol by intragastric gavage (IG) and 50 μCi of [3H]cholesterol via the indwelling catheter (IV). Immediately upon recovery from the anesthetic (approximately 5 min), animals received their daily dose of placebo, ezetimibe, or ezetimibe plus simvastatin with the standard ration of food. The typical feeding/dosing regimen was continued for 5 days. Plasma samples were obtained every 24 h via the indwelling catheter just prior to feeding. One milliliter of each plasma sample was added directly to the scintillation cocktail and counted to confirm that the plasma decay curves of the two tracers were parallel. The percent cholesterol absorption was calculated from the 72 h plasma samples using the following expression: plasma cholesterol absorption = [(percent of IG dose ([14C]cholesterol) per ml plasma) / (percent of IV dose ([3H]cholesterol) per ml plasma)] × 100.

Kinetic studies

Pigs received a bolus of trideuterated leucine ([5,5,5-2H3]L-leucine, 3 mg/kg) via the indwelling catheter, following a 22 h
fast (31). Sequential blood samples were obtained, and VLDL, IDL, LDL, and HDL were separated completely by ultracentrifugation. ApoB was obtained by isopropanol precipitation, delipidated, and hydrolyzed to amino acids (29). Leucine was derivatized to the oxazolinone, and isotopic enrichment was determined by GC-MS as described previously (29). Kinetic parameters of apoB-100 metabolism were analyzed using SAAM II (SAAM Institute; Seattle, WA) according to the model reported previously (31).

Tissue analyses

Approximately 22 h after the last dose of drug, pigs were euthanized, and samples of tissues were flash frozen and stored at −80°C. In liver and jejunum, the concentrations of triglyceride (TG), free cholesterol (FC), and cholesterol ester (CE), and the incorporation of oleate into CE and TG were measured as previously described (27). Hepatic and jejunal microsomal lipids and HMG-CoA reductase activities were determined (27).

Tissue mRNA determination

RNA was isolated using Trizol reagent (Life Technologies; Mississauga, Ontario, Canada). Gene-specific mRNA quantitation for apoB, HMG-CoA reductase, LDLR, SREBP2, SREBP1c, NPC1L1, ABCG5, ABCG8, ABCA1, LXRα, MTP, and GAPDH was performed by quantitative real-time PCR (qRT-PCR) on an ABI Prism (model 7900 HT) Sequence Detection System (Applied Biosystems) according to the manufacturer’s instructions (31). Samples (20–75 ng) of reverse transcribed total RNA were assayed in triplicate in 20 μl reactions using a two-step qRT-PCR protocol and the standard curve method to estimate specific mRNA concentrations. Expression levels for each gene were normalized to GAPDH expression levels for each tissue type. For genes with known pig (Sus scrofa) sequences (APOB, HMGCR, LDLR, SREBP2, MTP, LXRα, ABCA1, and GAPDH), primer and probe sets were designed using Primer Express 2.0 software (Applied Biosystems) (31). For genes with unknown pig sequences (NPC1L1, ABCG5, ABCG8, and SREBP1c), PCR primers were designed against the mRNA sequence of the human homologue using PrimerQuest software (Integrated DNA Technologies). PCR primers were tested with pig cDNA prepared using Superscript II reverse transcriptase (Invitrogen) and pig liver or intestine total RNA per the manufacturer’s instructions. PCR products of expected sizes were purified using the QIAquick PCR purification kit (Qiagen) and sequenced on a 3730 DNA analyzer (Applied Biosystems). A minimum of 85% homology of the PCR product sequence to the human sequence was used for verification. Pig-specific primer and probe sets were then designed using Primer Express 2.0. All primers were obtained from Sigma-Genosys, and the fluorogenic probes, labeled with 6-carboxyfluorescein, were obtained from Applied Biosystems. Primers and probes for qRT-PCR analyses are listed in Table 1.

Statistical analyses

Differences between control, ezetimibe-, and ezetimibe plus simvastatin-treated animals were compared for statistical significance by paired t-test. P < 0.05 was considered significant.

RESULTS

Ezetimibe monotherapy reduced plasma total cholesterol (TC) 22% (P < 0.007) and LDL-cholesterol 31% (P < 0.006) (Fig. 1). Ezetimibe plus simvastatin produced significantly greater reductions in both total (−35%, P < 0.045) and LDL-cholesterol (−47%, P < 0.012), compared with ezetimibe alone (Fig. 1A). Other lipids were unchanged. Ezetimibe decreased VLDL apoB 20% (P < 0.024) and LDL apoB 20% (P < 0.001) (Fig. 1B). The combination decreased VLDL apoB 26% [not significant (NS) compared with ezetimibe alone], whereas the 34% reduction in LDL apoB (P < 0.023) was significantly greater than ezetimibe monotherapy.

Intestinal cholesterol absorption in control pigs was 48%, similar to mean values reported for humans (32). Ezetimibe inhibited absorption 79% (P < 0.0001) (Fig. 2A) and decreased plasma phytosterol concentrations 91% (P < 0.000001) (Fig. 2B), demonstrating its efficacy in

TABLE 1. Probes and primer sets used in quantitative real-time PCR in the livers and intestines of control, ezetimibe-, and ezetimibe plus simvastatin-treated miniature pigs

<table>
<thead>
<tr>
<th>Gene</th>
<th>Forward Primer (5’ to 3’)</th>
<th>Reverse Primer (5’ to 3’)</th>
<th>Probe (5’ to 3’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>APOB</td>
<td>TGGATCATCAATCCGCTAGTCTGCAA</td>
<td>CACCTGCGCTGTCGTTTTTCTC</td>
<td>AATCTGTCAGGCTTTCCCA</td>
</tr>
<tr>
<td>LDLR</td>
<td>GCTGTGACTTGCTACTGCTGTTGGA</td>
<td>CCGAGTCCAGACAACATGTTT</td>
<td>CCTGTGACGGCTCAAG</td>
</tr>
<tr>
<td>HMGCR</td>
<td>GCTGGTGCTGCTTTGTGATTTGG</td>
<td>GGATAGAGACATCTACTCTCTTTG</td>
<td>ATAGCCAAATGTTCTATT</td>
</tr>
<tr>
<td>SREBP2</td>
<td>TACGGCTCCTCATCAATGTA</td>
<td>TTGGATGTGATGCTACTCTCTCTG</td>
<td>TTGGCCTGCTTCCTCAAG</td>
</tr>
<tr>
<td>NPC1L1</td>
<td>GCACTTACGGAGGTCCGACGCAA</td>
<td>GGACAGGAGGAGGCTGTAAC</td>
<td>CACCACTGCGAGGCCAAG</td>
</tr>
<tr>
<td>ABCG5</td>
<td>GCTGCGTCAGGAGGAGGAGGAGG</td>
<td>GACCACTGCGAGGAGGTGC</td>
<td>CACCACTGCGAGGCCAAG</td>
</tr>
<tr>
<td>ABCG8</td>
<td>GCTGCGAGGAGGAGGAGGAGGAGG</td>
<td>GGCTGCGAGGAGGAGGAGGAGGAGG</td>
<td>CACCACTGCGAGGCCAAG</td>
</tr>
<tr>
<td>LXRα</td>
<td>GGCCTTACGGAGGAGGAGGAGGAGG</td>
<td>TTGGATGTGATGCTACTCTCTCTG</td>
<td>TTGGCCTGCTTCCTCAAG</td>
</tr>
<tr>
<td>NPC1L1</td>
<td>CAACTGCGAGGAGGAGGAGGAGG</td>
<td>GGACAGGAGGAGGCTGTAAC</td>
<td>CACCACTGCGAGGCCAAG</td>
</tr>
<tr>
<td>MTP</td>
<td>GGATGCGAGGAGGAGGAGGAGGAGG</td>
<td>GGACAGGAGGAGGCTGTAAC</td>
<td>CACCACTGCGAGGCCAAG</td>
</tr>
</tbody>
</table>

For genes with known pig (S. scrofa) sequences (APOB, HMGCR, LDLR, SREBP2, MTP, LXRα, ABCA1, and GAPDH), primer and probe sets were designed using Primer Express 2.0 software (Applied Biosystems). For genes with unknown pig sequences (NPC1L1, ABCG5, ABCG8, and SREBP1c), PCR primers were designed against the mRNA sequence of the human homologue using PrimerQuest software (Integrated DNA Technologies). PCR primers were tested with pig cDNA prepared using Superscript II reverse transcriptase (Invitrogen) and pig liver or intestine total RNA per the manufacturer’s instructions. PCR products of expected sizes were purified using the QIAquick PCR purification kit (Qiagen) and sequenced on a 3730 DNA analyzer (Applied Biosystems). A minimum of 85% homology of the PCR product sequence to the human sequence was used for verification. Pig-specific primer and probe sets were then designed using Primer Express 2.0. All primers were obtained from Sigma-Genosys, and the fluorogenic probes, labeled with 6-carboxyfluorescein, were obtained from Applied Biosystems.
pigs (14, 33). Ezetimibe plus simvastatin had no additional effect on these parameters. Plasma lathosterol levels, a marker of cholesterol synthesis, were increased 65% (P = 0.044) by ezetimibe, reflecting the increase in cholesterol synthesis induced by ezetimibe. Lathosterol concentrations decreased to control levels with the addition of simvastatin, reflecting inhibition of hepatic cholesterol synthesis. The ratios of plasma campesterol, sitosterol, and lathosterol to the concentration of plasma cholesterol are shown in Fig. 2C. The ratios showed a pattern of response similar to those of the absolute concentrations of each sterol to each of the treatments.

Trideuterated leucine was injected as a bolus into fasted animals. ApoB kinetic parameters were determined from simultaneous analysis of all isotope enrichment data as described previously (31). A fit of VLDL and LDL apoB enrichment curves for one set of animals is shown in supplementary Figure I (available in the online data supplement). Ezetimibe significantly decreased VLDL apoB pool size 20% (P < 0.024); this decrease was attributed to a 27% decrease in VLDL apoB production (NS) (Table 2). Ezetimibe plus simvastatin decreased the VLDL apoB pool size 26% (P < 0.018), due entirely to a 35% decrease in VLDL apoB production (P < 0.017). Neither parameter was significantly different from ezetimibe alone. VLDL FCR, the amount of VLDL apoB converted to LDL apoB, and the amount cleared directly from plasma were not different. IDL apoB kinetic parameters were unchanged (data not shown).

Ezetimibe monotherapy significantly decreased the LDL apoB pool size 20% (P < 0.001, Table 2) due to a 42% (P < 0.013) increase in the LDL apoB FCR, as total LDL apoB production was unaffected. The combination decreased the LDL apoB pool size 34% (P < 0.001) due entirely to an 81% (P < 0.002) increase in the LDL apoB FCR. Compared with ezetimibe alone, the combination enhanced the decrease in pool size 70% (P < 0.003) and increased the FCR 2-fold (P < 0.05). LDL apoB direct synthesis was unaffected. Total apoB production into plasma (VLDL plus LDL direct synthesis) decreased 19% with ezetimibe (NS) and 35% with combination treatment (P < 0.019).

VLDL and LDL were analyzed for lipid and protein content (see supplementary Table I). Ezetimibe produced small decreases in the percent of cholesterol in VLDL (NS), whereas the percent of TG increased 4%, (P < 0.036). These changes were greater with combination therapy. Ezetimibe decreased the LDL percentage of FC 5% (P < 0.014) and increased the percentage of TG and protein 44% (P < 0.02) and 11% (P < 0.02), respectively. These changes were greater with combination therapy. Other lipid percentages were unaffected. The TG/CE ratio (wt/wt) in LDL increased significantly.

Size exclusion chromatography demonstrated ezetimibe-induced reductions in serum VLDL and LDL-cholesterol, which were enhanced by the addition of simvastatin (Fig. 3). Peak elution volumes of cholesterol within each lipoprotein fraction and the ratio of surface to core lipids

Fig. 2. Fractional cholesterol absorption rates (A), plasma lathosterol, campesterol, and β-sitosterol (B) and the ratios of plasma lathosterol, campesterol, and β-sitosterol to cholesterol (C) in control, ezetimibe-, and ezetimibe plus simvastatin-treated miniature pigs. Control values for lathosterol (2.5 μmol/l), campesterol (73.8 μmol/l), and β-sitosterol (14.0 μmol/l) were set at 100%. Values represent the mean ± SEM from seven animals per group. Bars denoted by different letters are significantly different (P < 0.05).
Ezetimibe decreased hepatic microsomal TC (P < 0.047), 15% (P < 0.048), and 36% (P < 0.022), respectively (Fig. 4A). The combination significantly reduced hepatic TC, FC, and CE (−17%, P < 0.051; −12%, P < 0.046, and −39%, P < 0.031, respectively), but reductions were not different from ezetimibe alone. Compared with control, liver TGs were decreased by 21% (P < 0.042) and 19% (P < 0.047) by ezetimibe and the combination, respectively. Ezetimibe decreased hepatic microsomal TC (−25%, P < 0.010), FC (−21%, P < 0.050), and CE (−47%, P < 0.019) (Fig. 4B). The combination also reduced hepatic microsomal TC (−29%, P < 0.003), FC (−24%, P < 0.033), and CE (−65%, P < 0.009). Previously, we reported that in pigs treated with simvastatin monotherapy (10 mg/kg/day), liver microsomal FC, CE, and TG were unaffected (24). Ezetimibe decreased oleate incorporation into liver CE (−8%, NS) and TG (−14%, NS). The combination produced significant reductions in oleate incorporation into both liver CE (−18%, P < 0.013) and TG (−22%, P < 0.04) compared with control (Fig. 4C). In the jejunum, lipid concentrations (see supplementary Figure II) and oleate incorporation into CE and TG (Fig. 4C) were unaffected by either treatment.

Relative mRNA expression of genes involved in hepatic cholesterol metabolism was determined in liver and jejunum. Liver LDLR mRNA increased 1.7-fold (P < 0.030) with ezetimibe, and increased further to 3.4-fold (P < 0.032 vs. control; P < 0.048 vs. ezetimibe) with the combination (Fig. 5A). Similar increases were observed in the jejunum (Fig. 5B). Previously, we reported that in pigs treated with simvastatin monotherapy (10 mg/kg/day), liver and jejunum LDLR mRNA both increased 1.3-fold (24). Liver mRNA for HMG-CoA reductase increased 4.1-fold (P < 0.006) with ezetimibe, and increased further
to 13-fold ($P < 0.050$ vs. control) with the combination (Fig. 5A). HMG-CoA reductase activity increased 2.3-fold ($P < 0.002$) in hepatic microsomes of ezetimibe-treated pigs and increased 9.6-fold ($P < 0.006$) in microsomes from the combination group (Fig. 4D). Similar step-wise increases in mRNA and activity of HMG-CoA reductase were observed in the jejunum (Figs. 4D and 5B).

NPC1L1 expression increased in jejunum (1.3-fold, $P < 0.044$) and liver (2.8-fold, $P < 0.049$) with ezetimibe (Fig. 5). The combination increased NPC1L1 expression in jejunum (1.4-fold, NS) and liver (3.1-fold, $P < 0.047$), relative to controls; however, values were not different from ezetimibe alone. Although the expression of NPC1L1 in jejunum relative to liver was 9:1 (data not shown), the enhanced expression of NPC1L1 in liver reflected the degree of tissue cholesterol depletion (Fig. 4).

Ezetimibe increased SREBP2 mRNA in liver 2.0-fold ($P < 0.002$) and in jejunum 1.5-fold. The combination increased SREBP2 mRNA 2.9-fold ($P < 0.006$) in liver and 2.7-fold ($P < 0.034$) in the intestine, compared with control. SREBP1c mRNA was significantly decreased by combination treatment in the liver. All other genes examined, including APOB (Fig. 5), MTP, LXRα, ABCG5, ABCG8, and ABCA1 (see supplementary Figure III) were unaffected.

Figure 6A summarizes the major apoB-100 kinetic parameters observed following ezetimibe and ezetimibe plus simvastatin treatment. VLDL apoB pool size decreased, primarily because of the reduced appearance of newly synthesized VLDL apoB in plasma. LDL apoB concentrations decreased, primarily because of an increased FCR. For comparison, Fig. 6B summarizes the percent change from control (no treatment) in apoB kinetic parameters obtained in the present study compared with parameters determined in a previous study using simvastatin monotherapy (10 mg/kg/day) (24). Although the same animal model and the same protocol were used in both studies, the former study used iodinated tracers, whereas the present study used deuterated leucine to trace apoB. Although this may have resulted in some quantitative differences in calculated parameters, qualitative comparisons of kinetic parameters are possible. Ezetimibe, simvastatin, and the combination all decreased VLDL apoB pool size because of decreased production. Addition of simvastatin to ezetimibe did not appear to enhance these reductions. Ezetimibe alone significantly reduced LDL pool size, owing entirely to an increased FCR. In contrast, simvastatin monotherapy decreased LDL apoB through decreased production, inasmuch as the increases in FCR (+7%) and hepatic LDLR mRNA (+26%) were modest. The addition of simvastatin to ezetimibe enhanced the reduction in LDL apoB pool size, because of a substantial synergistic increase in LDL apoB FCR.
DISCUSSION

Inhibition of intestinal cholesterol absorption by ezetimibe has the potential to decrease cholesterol transport to the liver via chylomicron remnants. Reduced hepatic cholesterol would enhance expression of the LDLR, resulting in decreased plasma LDL-cholesterol. However, hepatic cholesterol depletion is accompanied by a compensatory increase in hepatic cholesterol synthesis, making the addition of an HMG-CoA reductase inhibitor an ideal combination for LDL-cholesterol reduction through complementary mechanisms of action. This study demonstrates for the first time in a large-animal model of lipoprotein metabolism the molecular mechanisms underlying the reductions in both VLDL and LDL apoB. The combination of ezetimibe plus simvastatin decreased VLDL and LDL apoB-100 concentrations through reduced VLDL production and enhanced LDLR-mediated LDL clearance. Ezetimibe inhibited cholesterol absorption, and simvastatin blocked the increase in cholesterol synthesis observed with ezetimibe alone, resulting in a significant reduction in hepatic cholesterol and a marked increase in hepatic LDLR expression. Furthermore, we show that expression of NPC1L1 in both intestine and liver is increased with ezetimibe and combination treatment, consistent with regulation by intra-cellular cholesterol.

Previously, we documented reduced VLDL apoB secretion in pigs treated with atorvastatin (24, 25), simvastatin (24), or the oxidosqualene:lanosterol cyclase inhibitor RO-0717625 (31). Reduced VLDL apoB secretion has been linked to decreased availability of cholesterol for hepatic lipoprotein assembly (7, 24, 34). Decreased liver TC and CE in pigs treated with ezetimibe and ezetimibe plus simvastatin is consistent with this concept. VLDL secretion can also be influenced by hepatic TG concentrations, which were reduced by ezetimibe monotherapy. The addition of simvastatin produced no further decrease in liver cholesterol or TG concentrations, consistent with our previous pig studies in which simvastatin monotherapy had no effect on hepatic lipid concentrations (24). The ezetimibe-induced reduction in hepatic TG has also been observed in mice (18) and hamsters (35), and given that ezetimibe does not affect fat absorption (11), decreased hepatic TG is probably secondary to diminished delivery and accumulation of hepatic cholesterol. The contribution of decreased hepatic TG to the diminished VLDL apoB secretion is difficult to determine. Previous studies in this model have demonstrated quantitatively similar reductions in VLDL apoB production, which were correlated with diminished hepatic cholesterol concentrations, yet hepatic TG synthesis and concentrations were unchanged (24, 25, 27, 31). In hypercholesterolemic patients treated with ezetimibe,
expression and activity of HMG-CoA reductase in liver and observed that addition of simvastatin greatly increased the expression and reductions in plasma LDL-cholesterol. We observed previously in pigs treated with simvastatin or atorvastatin, and the extent of increase in ex vivo reductase activity was proportional to the extent of cholesterol synthesis inhibition in vivo (24). In the present study, addition of simvastatin was sufficient to inhibit the ezetimibe-induced increase in cholesterol synthesis as plasma lathosterol concentrations decreased to control levels with combination therapy.

A wide range of inter-individual variability in the LDL-cholesterol response to ezetimibe has been observed (38), and this almost certainly encompasses attenuation of the LDL-cholesterol-lowering effect of ezetimibe over time in some patients. Although the molecular mechanisms are unclear, it is possible that individuals who might experience ezetimibe tachyphylaxis have relatively greater compensatory upregulation of hepatic cholesterol synthesis than do patients whose LDL-cholesterol response remains stable with time. Patients who show attenuation of the LDL-cholesterol response to ezetimibe may thus be ideal candidates for combination therapy with statins, although more investigation would be required to substantiate this concept.

LDLR and HMG-CoA reductase expression is primarily regulated by SREBP2. SREBP2 mRNA increased significantly in both the liver and intestine of pigs treated with ezetimibe and increased even further with the combination. This provides a mechanism for the increased expression of both of these sterol-responsive genes. The expression of SREBP1c was decreased in liver, and although this provides a potential explanation for the decrease in hepatic TGs with both treatments, the mechanism is unclear, perhaps reflecting diminished hepatic cholesterol levels.

NPC1L1 expression was increased in both the jejunum and liver by ezetimibe and was increased further by the combination. These increases reflected cholesterol depletion in both tissues, consistent with transcriptional regulation by sterols via sterol-regulated elements within the NPC1L1 promoter (16). This suggests that its expression is regulated similarly to that of other genes coding for proteins involved in cholesterol metabolism, including LDLR and HMG-CoA reductase (39). This upregulation may have increased the tissue content of NPC1L1 transporters; however, there appeared to be sufficient ezetimibe for inhibition of NPC1L1-mediated sterol absorption, as evidenced by the approximately 80% reduction in cholesterol absorption and 91% decrease in plasma phytosterols following treatment. In contrast to mice and rats, human liver also expresses NPC1L1 (16, 40). Although expression of NPC1L1 in pig intestine is 9-fold higher than in liver, increased expression was observed in both tissues. The physiological significance of NPC1L1 in hepatocytes remains to be elucidated. The apical location of NPC1L1 in hepatoma cells predicts a canalicular distribution of NPC1L1 in vivo.
which has been confirmed in monkey liver (41). Both enterocytes and hepatocytes are polarized cells with their apical surface exposed to micelles containing cholesterol. NPC1L1 mediates intestinal cholesterol absorption from micelles in the intestinal lumen, and it is tempting to speculate that it may also promote cholesterol reuptake from micelles in the canicular lumen. Furthermore, in species that express hepatic NPC1L1, including humans and pigs, the pharmacological efficacy of ezetimibe may be partially attributed to the blocking of this proposed canicular reuptake mechanism (41).

In conclusion, inhibition of NPC1L1 by ezetimibe and inhibition of cholesterol synthesis by simvastatin in the pig results in significant reductions in LDL apoB-100 concentrations relative to monotherapy. Ezetimibe inhibited cholesterol absorption and simvastatin blocked the increase in cholesterol synthesis observed with ezetimibe alone, resulting in a significant reduction in hepatic cholesterol and a marked synergistic increase in hepatic LDLR expression. Plasma apoB was significantly decreased by a modest reduction in VLDL apoB production and a greatly enhanced LDLR-mediated LDL apoB clearance, both of which are attributed to the reduction in hepatic cholesterol. Therefore, inhibition of NPC1L1 by ezetimibe enhances LDL lowering compared with statins alone, through a distinct, yet complementary mechanism of action. These studies support the findings of recent clinical trials in which enhanced reductions of LDL-cholesterol achieved by combining ezetimibe with statin therapy greatly facilitated the ability of patients to reach new, more-stringent LDL-cholesterol targets.

This work was supported by Grants T-5603 and PRG-5967 from the Heart and Stroke Foundation of Ontario (M.W.H.), National Institutes of Health Grant NIBIB #P41 EB-001975 (P.H.R.B.), and Merck-Frosst/Schering Canada (M.W.H.). The authors thank Kevin Dwyer, Kim Thomaes, and Shannon Bull for technical assistance, and acknowledge Dr. Stewart Whitman and Mirela Hasu, University of Ottawa Heart Institute, for size exclusion chromatography.

REFERENCES

Ezetimibe, simvastatin, and apoB metabolism

