Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade

Carmelina Daniela Anfuso,* Gabriella Lupo,* Loriana Romeo,* Giovanni Giurdanella,* Carla Motta,∗ Alessia Pascale,† Cataldo Tirolo,§ Bianca Marchetti,§ and Mario Alberghina1,∗

Department of Biochemistry,* University of Catania, 95126 Catania, Italy; Department of Experimental and Applied Pharmacology,† University of Pavia, 27100 Pavia, Italy; and OASI Institute for Research and Care on Mental Retardation and Brain Aging,§ Neuropharmacology Section, 94018 Troina, Italy

Abstract Little is known about the regulatory mechanisms of endothelial cell (EC) proliferation by retinal pericytes and vice versa. In a model of coculture with bovine retinal pericytes lasting for 24 h, rat brain ECs showed an increase in arachidonic acid (AA) release, whereas Western blot and RT-PCR analyses revealed that ECs activated the protein expression of cytosolic phospholipase A2 (cPLA2) and its phosphorylated form and calcium-independent intracellular phospholipase A2 (iPLA2). No activation of the same enzymes was seen in companion pericytes. In ECs, the protein level of phosphorylated extracellular signal-regulated kinase (ERK) 1/2 was also enhanced significantly, a finding not observed in cocultured pericytes. The expression of protein kinase C-α (PKCα) and its phosphorylated form was also enhanced in ECs. Wortmannin, LY294002, and PD98059, used as inhibitors of upstream kinases (the PI3-kinase/Akt/PDK1 or MEK-1 pathway) in cultures, markedly attenuated AA release and the expression of phosphorylated forms of endothelial cPLA2, PKCα, and ERK1/2. By confocal microscopy, activation of PKCα in perinuclear regions of ECs grown in coculture as well as strong activation of cPLA2 in ECs taken from a model of mixed culture were clearly observed. However, no increased expression of both enzymes was found in cocultured pericytes. Our findings indicate that a sequential activation of PKCα contributes to endothelial ERK1/2 and cPLA2 phosphorylation induced by either soluble factors or direct cell-to-cell contact, and that the PKCα-cPLA2 pathway appears to play a key role in the early phase of EC-pericyte interactions regulating blood retina or blood-brain barrier maturation.

Anfuso, C. D., G. Lupo, L. Romeo, G. Giurdanella, C. Motta, A. Pascale, C. Tirolo, B. Marchetti, and M. Alberghina. Endothelial cell-pericyte cocultures induce PLA2 protein expression through activation of PKCα and the MAPK/ERK cascade. J. Lipid Res. 2007. 48: 782–793.

Supplementary key words blood-brain barrier • blood-retina barrier • phospholipase A2 • protein kinase C • confocal microscopy • mRNA expression • mitogen-activated protein kinase/extracellular signal-regulated kinase cascade

The structural basis of the blood-brain barrier (BBB) is not only a specialized brain capillary endothelial cell (EC) but encompasses a highly organized complex consisting of an endothelium, pericytes, and astrocytic foot processes. For the endothelium to form a selective barrier between the blood stream and tissues, vascular maturation requires the formation of tight EC-to-cell contacts, the downregulation of endothelial proliferation, the deposition of a basal lamina to which the endothelium tightly adheres, and the recruitment of supporting cells to the vessel walls such as pericytes or smooth muscle cells (1–3).

Pericytes have received much less attention than the other components of microvascular beds. These contractile cells of mesenchymal lineage have long processes paralleling the capillary axis and short processes encircling the capillary. The current view of the role of pericytes in early stages of angiogenesis states that the initial endothelial tubes form without pericyte contact and that subsequent acquisition of pericyte coverage leads to vessel remodeling and maturation (4). This view has been challenged because it was shown that pericytes invest in actively sprouting and remodeling vessels (4, 5). Retinal pericytes have a mitogenic effect on retinal microvascular ECs (6), which may have important implications in new vessel formation. In an in vitro model of BBB established by coculturing immortalized ECs with brain pericytes that expressed tumor growth factor (TGF)-β1, the permeability of ECs was decreased significantly (7). Furthermore, in

Abbreviations: AA, arachidonic acid; AACOCF3, arachidonoyl trifluoromethyl ketone; Akt, amino kinase terminal; BBB, blood-brain barrier; BEL, bromoenol lactone; cPLA2, cytosolic phospholipase A2; EC, endothelial cell; ERK, extracellular signal-regulated kinase; iPLA2, calcium-independent intracellular phospholipase A2; MAPK, mitogen-activated protein kinase; MEK-1, MAP/ERK kinase-1; PDK1, phosphoinositide-dependent protein kinase 1; PI3 kinase, phosphatidylinositol-3-kinase; PLA2, phospholipase A2; PKC, protein kinase C; TGF, tumor growth factor; vWF, von Willebrand factor; WBP, Weibel-Palade body.

*Correspondence should be addressed.

1 To whom correspondence should be addressed.

e-mail: malber@mbox.unict.it

Copyright © 2007 by the American Society for Biochemistry and Molecular Biology, Inc.

This article is available online at http://www.jlr.org
mixed cultures, pericytes have an antiproliferative effect on ECs (8–10). However, the molecular basis of the induction signal is not yet clear, whether soluble factors (pericyte-derived angiotropin-1 or TGF-β) or cell-to-cell contact.

Neovascularization and the vascular maturation process are under the control of phosphorylated p44/p42 mitogen-activated protein kinase (MAPK) and phosphorylated protein kinase C (PKC) isoforms upstream of p44/p42 MAPK and represent the main signaling cascades that become activated in angiogenic ECs (11). The two main sources of angiogenic signals (i.e., growth factors and the extracellular matrix) are transduced through the extracellular signal-regulated kinase (ERK) PI3K/Akt/ERK signaling system. Cytosolic phospholipase A₂ (cPLA₂), which regulates the provision of arachidonic acid (AA), cyclooxygenase-2, and prostaglandin E₂ release, is highly upregulated in angiogenic ECs during tumor progression (12), promoting integrin αVβ3-mediated EC adhesion, spreading, and angiogenesis through prostaglandin-cAMP-PKA-dependent activation of the small GTPase Rac (13).

To study these subjects, several in vitro models of cocultures have been used. For instance, astroglial cells were cultivated with brain ECs to produce a coculture model to study the permeability of cell layers (14). In the retina, macroglia (astrocytes and Müller cells) can enhance the barrier properties of retinal blood vessels by the production of factors that contribute to tight junction formation. Although mutual structural and functional interaction between astrocytes and ECs has been documented, less is known about the interaction between pericytes and ECs in mature microvessels. The potent vasoconstrictor endothelin-1 is a putative endothelium-pericyte signal regulating multi- cellular functional units of microvessels by a mechanism partially sensitive to PKC activation (15). Thus, although we are beginning to understand that pericytes are important in a number of situations in vessel formation, maintenance, and dysfunction (retinal diseases), we lack knowledge about how and what they signal to the endothelium.

The aim of this study was to scrutinize the reaction conditions that enable retinal pericytes to maintain the differentiated BBB phenotype in quiescent EC cultures or to induce EC maturation during the angiogenic state (angiogenic sprouting). This last phase may activate the expression of several specific proteins less expressed under quiescent conditions (no vessel formation). Incidentally, these proteins may represent potential targets for antiangiogenesis therapy in ocular diseases as well as cancer. We hypothesized that the activation of the PKC-ERK1/2-cPLA₂ pathway may be involved in several endothelial functions, including BBB promotion, as well as angiogenesis. The role for PKC and PLA₂ to mediate cell-to-cell interactions is suggested, as several agonists, including endothelin-1, which increased prostacyclin production, increased at the same time PKC, MAPK, and PLA₂ activities in both isolated ECs (16) and pericytes (15). In addition, monocyte adhesion to human umbilical vein endothelial cells activated monotypic PKCa, PKCδ, and both calcium-independent intracellular phospholipase A₂ (iPLA₂) and cPLA₂ activities (17). PLA₂ are a diverse group of enzymes that catalyze the hydrolysis of the sn-2 substituent from glycerophospholipid substrates to yield a free fatty acid and lysophospholipid acceptors (18). Among the PLA₂ is an 85 kDa cPLA₂ that requires Ca²⁺ for catalysis and a calcium-independent PLA₂, iPLA₂, for which several potential functions have been proposed, including a housekeeping role in phospholipid remodeling and a signaling role in cell growth, apoptosis, secretion, inflammation, and oxidant-induced cell injury (19–21). A number of observations that iPLA₂ has a functional role in cellular signaling in addition to its roles in AA release and phospholipid remodeling have been reported (22). iPLA₂ mediates the phosphorylation of transcription factors through a PKA-dependent pathway (23).

Activation of cPLA₂ is associated with a redistribution of the enzyme within the cell (24–26). The hydrolysis of glycerophospholipids to liberate fatty acids is in fact regulated by cPLA₂ translocation to membranes and by MAPK-catalyzed phosphorylation (19, 25, 27). There are several reports indicating that cPLA₂ may be a substrate for PKC phosphorylating activity (17, 28). Our recent work has also provided in vitro evidence that PKC upstream activates cPLA₂ after stimulation of ECs by oxidized LDL or of pericytes by β-amyloid peptides (29, 30). To date, direct evidence for any of the PKC isoforms being involved in the signaling pathway during endothelial cell-pericyte coupling has not been defined. Therefore, in cocultures of immortalized rat brain GP8.39 ECs and retinal pericytes (an in vitro model of BBB), we investigated the induction of PLA₂s in both cell types and illustrated the role of some PKCs and MAPKs, comparing the data obtained with those of their respective monocultures. We were able to show that in a coculture system, with or without a direct cell-to-cell contact, endothelial PKCa/δ and cPLA₂ protein expression were activated compared with those that evaluated in ECs grown alone.

EXPERIMENTAL PROCEDURES

Materials

Reagent-grade chemicals were purchased from Sigma Chemical Co. (St. Louis, MO) or E. Merck (Darmstadt, Germany). Collagenase-dispase, fatty acid-free BSA, and the kinase inhibitors wortmannin, LY294002, PD98059, bromoenol lactone (BEL), and arachidonoyl trifluoromethyl ketone (AACOCF₃) were purchased from Calbiochem (La Jolla, CA). Primary antibodies against cPLA₂ (mouse monoclonal), PKCa (mouse monoclonal), rabbit polyclonal antibody against ERK1 or ERK2, mouse monoclonal antibody to phospho-ERK1/2, goat polyclonal anti-phospho-PKCa, mouse monoclonal antibody against actin, and rabbit polyclonal von Willebrand factor (vWF) antibody were purchased from Santa Cruz Biotechnology, Inc. iPLA₂ (rabbit polyclonal) antibody was from Cayman Chemical Co. Rabbit monoclonal anti-phospho-cPLA₂ was obtained from Cell Signaling Technology, Inc. (Beverly, MA). All other chemicals were reagent grade.

Cell cultures

Immortalized rat brain ECs (GP8.39) were generously provided by Dr. John Greenwood (Department of Clinical Ophthalmic...
mology, University College, London) (31) and fed with F10 Ham’s medium supplemented with 10% fetal bovine serum, 80 μg/ml heparin, 2 mM glutamine, 100 U/ml penicillin, and 100 μg/ml streptomycin. The cell line was already characterized, and our cell cultures were prepared and characterized according to previously described procedures (31, 32). Morphological changes and cell viability determined by [3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-tetrazolium bromide] test were assessed as reported previously (29, 33). Pure microvessel pericyte cultures were prepared from bovine retinas as described previously (34). The isolated cells were then cultured in DMEM supplemented with 2 mM glutamine, 10% fetal bovine serum, 100 μg/ml penicillin, and 100 μg/ml streptomycin.

Cocultures without direct cell-to-cell contact

Culture plates and inserts (Transwells; Corning, Inc., Corning, NY) were coated on the upper side with 150 μl of a 2 mg/ml solution of rat tail collagen containing 10-fold concentrated DMEM plus 0.3 M NaOH. The coating was dried for 1 h at 37°C and rinsed twice with water and once with Ca²⁺- and Mg²⁺-free PBS before being placed in complete medium. Before performing cocultures, ECs or pericytes were placed (40,000 cells/cm²) and seeded onto six-well plates treated with collagen or skin porcine gelatin, respectively. At the same time, the two cell types were plated on the Transwell inserts (40,000 cells/cm²) with the same substrate coverages. At confluence, ECs or pericytes on inserts were placed onto the plates containing, respectively, pericytes or ECs on the bottom (culture medium; 1 ml within the insert and 2 ml in the outer well; pericyte-to-EC ratio, 1:1). After a coinubcation for 24 h in EC/pericyte medium (50% DMEM plus F10 Ham’s, each containing 10% FBS), inserts containing conditioning cells were discarded, whereas cells on the plate were washed three times with ice-cold PBS and scraped with a rubber policeman. Lysates were performed as described (29, 33). EC or pericyte (40,000 cells/cm²) monocultures were established in parallel as controls.

Cocultures with direct cell-to-cell contact

To make an in vitro model of the BBB based on direct contact of cells, pericytes were first plated on the outside of the polycarbonate membrane (40,000 cells/cm²) of the Transwell inserts (six-well type, 0.4 μm pore size) and directed upside down in the well culture plate. After pericytes had adhered, the Transwells were inverted and reinserted onto six-well plates, and ECs were plated on the top surface of the insert (40,000 cells/cm²). After coincidence for 24 h, cells grown on both sides of the inserts were scraped with a rubber policeman and saved separately.

AA release

Cultures of ECs or pericytes were established on six-well plates and incubated with 0.3 μCi/dish [1-14C]AA (Dupont NEN) in F10 Ham’s (ECs) or DMEM (pericytes) medium containing 2 mM glutamine and 5% fetal calf serum for 24 h at 37°C. The cells were washed three times, 5 min per wash, with HBSS buffer and coincubated without direct cell-to-cell contact with pericytes or ECs in serum-free DMEM (50%)-F10 Ham’s (50%) medium containing 0.5% BSA as a trap for released AA in the absence or presence of 5 mM EDTA or in the presence of inhibitors such as wortmannin (60 nM) plus LY294002 (20 μM), PD98059 (25 μM), ACOCF3 (50 μM), or BEL (25 μM) dissolved in DMSO stock solution for 24 h. The effects of PI3-kinase or MEK1 inhibitors (24 h exposure) and AACOCF3 or BEL or EDTA on AA release were also tested in the prelabeled cells (control cultures in solo). After incubation, the medium was removed and centrifuged for 5 min. The supernatant fraction was concentrated by lyophilization to 1 ml, and an aliquot (100 μl) was taken to determine the radioactivity in total medium by liquid scintillation spectroscopy, normalizing to protein. Then, it was acidified with 1 M HCl to bring the pH to 3.0 (medium turns yellow) and frozen for subsequent analysis. Acidified medium was extracted three times in equal volumes of ethyl acetate (33). The organic layer was evaporated under nitrogen, and the residue was dissolved in ethanol. In some analyses, AA and eicosanoid derivatives were separated on silica gel 60 TLC plates developed with the organic phase of ethyl acetate-isooctane-acetic acid-water mixture (11:5:2:10, v/v). The lipid zones were located with I2 vapor or by preparing autoradiographs (Berthold DASignal analyzer) and scraped into scintillation vials, and the radioactivity was measured by liquid scintillation spectroscopy. Identification of AA (main spot) and lipids (minor bands) was based on a comparison of their TLC mobilities with those of authentic unlabeled standards.

Preparation of cells for fluorescence confocal microscopy

To detect the expression and translocation of the PKCs isoform as well as cPLA₂, confocal microscopy was performed on ECs or pericytes cultured on microscope cover glasses placed on a six-well plate for noncontact cocultures as described above. Mixed cultures of ECs and pericytes (1:1) were also performed; glass coverslips were placed onto six-well plates before gelatin coating. ECs and pericytes were mixed and plated in 2 ml of 50% EC/50% pericyte medium.

After 24 h of coincubation, cells were fixed by adding 4% paraformaldehyde in PBS and processed for immunocytochemistry as described previously (29) using either anti-PKC iso- or anti-cPLA₂ antibodies. Distribution of PKCs and cPLA₂ immunocomplexes was observed by confocal immunofluorescence microscopy using a Leica TCS NT confocal laser scanning microscope. Single lower power scans were followed by 16–22 serial optical sections of randomly chosen cells in four to five fields per coverslip. The average fluorescence (mean ± SD) intensity (pixels) in individual cell bodies was measured throughout the stack. Each condition was tested on a total of 60–80 cells, resulted from at least three coverslips obtained from at least two different cultures.

Western blotting

After 24 h of coincubation, ECs and pericytes were lysed as described previously (29). The protein content of the cell lysate was quantified by Lowry’s assay, and immunoblots were assessed as described elsewhere (29). Membranes were incubated with primary antibodies against cPLA₂ (mouse monoclonal; 1:500 dilution), iPLA₂ (rabbit polyclonal; 1:1,000 dilution), PKCα (mouse monoclonal; 1:2,000 dilution), or phospho-ERK (mouse monoclonal; 1:250 dilution). The membranes were then incubated with secondary antibodies for 1 h at room temperature, and the immunocomplexes were detected by enhanced chemiluminescence reagent (ECL, Amersham).

Total RNA isolation and RT-PCR

Total cellular RNA was purified from confluent and quiescent GP8.39 cells and pericytes using TRIzol reagent (Invitrogen Life Technologies) according to the manufacturer’s instructions and redissolved in 30 μl of RNase-free water. RNA concentrations and purity were estimated by optical density at 260 and 280 nm. First-strand cDNA was reverse-transcribed in a 20 μl reaction volume with 200 units of SuperScript II, 50 ng of random examers, 125 mM deoxynucleoside triphosphate, 10 mM dithiothreitol, 50 mM Tris-HCl, pH 8.3, 75 mM KCl, and 3 mM MgCl₂ (Invitrogen Life
amplified for cPLA2. A 343 bp product, using a forward primer and a reverse primer (5'-exponential phase of amplification). Thirty-two, 32, and 34 cycles at the end of the amplification protocol (i.e., they were in the controls, to determine the cycle at which products became visible was performed at various cycles, with positive and negative con-
formations were related to starting template. Preliminarily, PCR on GP8.39 and pericytes, respectively. For each target gene to be analyzed and for each separate experiment, the exponen-
ternal TGTTCTGG-3') and a reverse primer (5'-GATGGG-3') were used for GAPDH, and 5'-TAGACAAGATGGTGAAGG-3' (forward) and 5'-GCCAGGATGATAGTGCTGG-3' (reverse), and their amplification product was 590 bp.

GAPDH and β-actin genes were used as internal control templates to normalize relative changes of target mRNA in RT-PCR on GP8.39 and pericytes, respectively. For each target gene to be analyzed and for each separate experiment, the exponential phase of amplification was determined such that product formation was related to starting template. Preliminarily, PCR was performed at various cycles, with positive and negative controls, to determine the cycle at which products became visible within the exponential phase of amplification. The conditions were chosen so that none of the RNA analyzed reached a plateau within the exponential phase of amplification. The conditions were chosen to yield the linear increase of PCR products before reaching plateaus in GP8.39. The same conditions were also performed a negative control using RT-PCR instead of cDNA to check genomic DNA contamination. Furthermore, DNA se-
quencing of PCR products confirmed the specificity of our am-
plifications. Sequences were determined by the Centro Ricerca Interdipartimentale Biotecnologie Innovativa (CRIBI) sequencing service at the University of Padova (Italy).

The PCR products were separated on 1.5% agarose gels in 1× Tris-acetate-EDTA buffer and stained with ethidium bromide. The bands on the ultraviolet light-transilluminated gel were converted into images, and their amounts were quantified with Scion Images software (Scion Corp., Frederick, MD).

Statistical analysis

Data are given as means ± SEM. One-way ANOVA was performed to test for differences between groups. The Student-Newman-Keuls test was performed. P < 0.05 was considered to indicate statistical significance.

RESULTS

AA release

In ECs in noncontact cocultures with pericytes for 24 h, a statistically significant increase in AA release versus controls (ECs grown alone, no additions) was observed (Fig. 1A, B).

Treatments of ECs in cocultures with wortmannin plus LY294002 (PI3-kinase inhibitors), PD98059 (MEK1 inhibitor), AAOCCF₃, or BEL induced a quite similar and sharp decrease in AA liberation compared with untreated cocultures (Fig. 1A, B). Treatment with PI3-kinase or MEK1 inhibitors significantly (P < 0.01) suppressed pericyte-induced AA release, suggesting that PI3-protein kinase may be involved in free AA production. No significant dif-

Fig. 1. Effects of inhibitors on [1-14C]arachidonic acid (AA) release in GP8.39 endothelial cells (ECs) and pericytes in cocultures. ECs (A) or pericytes (C) were independently prelabeled with 0.3 μCi/dish (six-well plate) of [1-14C]AA in F10 Ham’s (ECs) or DMEM (pericytes) medium containing 2 mM glutamine and 5% fetal calf serum for 24 h and washed three times with HBSS medium containing 0.5% BSA before incubation with pericytes (B) or ECs (D) in non-
contact cocultures alone or in combination with PI3-kinase, MEK1, or PLA2 inhibitor. Cells were challenged with wortmannin (Wtm; 60 m
M), arachidonoyl trifluoromethyl ketone (AAOCCF₃; 50 μM), bromoanol lactone (BEL; 25 μM), or 5 mM EDTA for 24 h in serum-free DMEM (50%)-
F10 Ham’s (50%) medium. Endothelial or pericyte control cultures were also incubated in the presence of vehicle (DMSO) alone (i.e., no culture conditions and without inhibitors). AA release into the culture medium was determined after extraction with ethyl acetate, as described in Experimental Procedures. Values represent means ± SEM from three separate experiments. Statistically significant differences (* P < 0.05, ** P < 0.01) are indicated by asterisks.

PLA2 expression in endothelial cell-pericyte cocultures
ferences were observed for endothelial control cultures (no additions) versus cell monocultures treated with wortmannin plus LY294002. No significant differences in AA release were observed for either pericyte control cultures (no additions) versus inhibitor-treated cell monocultures (Fig. 1C, D) or for pericytes in noncontact cocultures with ECs versus pericytes grown alone.

To clarify the role of group VI iPLA2 upon pericyte stimulation in ECs, we evaluated the effect of PLA2 inhibitors such as AACOCF3, BEL, and EDTA. The enzyme activity insensitive to BEL represents the Ca2+-dependent PLA2, whereas that insensitive to EDTA represents Ca2+-independent PLA2. Our results demonstrated that treatment of unstimulated ECs or pericytes for 24 h with AACOCF3, BEL, and EDTA resulted in, respectively, 71% (statistically significant at \(P < 0.01 \)), 45% (statistically significant at \(P < 0.05 \)), and 62% (statistically significant at \(P < 0.01 \)) or 75% (statistically significant at \(P < 0.01 \)), 44% (statistically significant at \(P < 0.05 \)), and 56% (statistically significant at \(P < 0.01 \)) decrease in AA release (Fig. 1A, C).

All of these findings reflect the inhibition of basal PLA2 activity, which is the sum of cPLA2 and iPLA2 activities. As shown in Fig. 1B, AACOCF3, BEL, and EDTA were able to significantly inhibit stimulated AA release measured in the lysates of ECs in coculture. AACOCF3, an inhibitor of both cPLA2 and iPLA2 (29), at 50 \(\mu \)M suppressed the pericyte-enhanced AA release by 77%, whereas 25 \(\mu \)M BEL was able to decrease the pericyte-enhanced AA release by 57%. In addition, EDTA suppressed the pericyte-enhanced AA release by 83%. These results demonstrate that pericyte-stimulated AA release (an indirect index of total PLA2 activity) in ECs was mediated by both PLA2 enzymes, even though cPLA2 activation may be the predominant fraction.

PLA2 expression and the effect of kinase inhibitors

The participation of calcium-dependent PLA2, in addition to calcium-independent PLA2, in cell-induced AA liberation remained to be elucidated in all coculture models investigated to date. To clarify the role of both phospholipases upon cell stimulation in ECs and pericytes, we evaluated PLA2 protein expression by Western blot analyses. Our results demonstrated that, in a coculture system that prevented physical contact but allowed the diffusion of soluble factors for 24 h, ECs significantly expressed cPLA2 and iPLA2 protein greater than ECs in solo cultures, respectively, by 55% (statistically significant at \(P < 0.05 \)) and 85% (statistically significant at \(P < 0.01 \)) (Fig. 2). Equal loading in each lane was demonstrated by similar intensities of actin. These results demonstrated that in ECs, pericyte-stimulated total PLA2 activity (Fig. 1A) might be mediated by both PLA2 enzymes. In contrast, pericytes in the same coculture system showed no significant increase in either cPLA2 or iPLA2 protein expression. As shown in Fig. 2, the presence of pericytes in the coculture induced an increase in the endothelial phospholipid forms of p42/p44 MAPK (ERK1/2). No changes in total ERK1/2 protein expression were observed. Blots using anti-phospho-p42/p44 MAPK antibodies for pericytes did not show any change. These data indicate that in ECs, the ERK kinase phosphorylation and PLA2 activation (Fig. 1) are coincident.

In addition, as shown in Fig. 3, ECs coincubated for 24 h with pericytes in Transwell chambers (in this method of coculture, again, the pericytes are not in direct contact with ECs but are separated from them by the medium and a semipermeable membrane that can be crossed by soluble mediators) showed increases in the phosphorylated forms of cPLA2, PKCα, and ERK1/2 by 95, 128, and 300%, respectively, by 55% (statistically significant at \(P < 0.01 \)) or 75% (statistically significant at \(P < 0.01 \)), 44% (statistically significant at \(P < 0.05 \)), and 56% (statistically significant at \(P < 0.01 \)) decrease in AA release (Fig. 1A, C).
respectively, compared with control cells grown alone. Equal loading in each lane was demonstrated by similar intensities of actin. In GP8.39 ECs, the constitutive phosphorylated form of cPLA$_2$ is seen at the ~40% level, whereas constitutive p-ERK1/2 were at 50%, as shown previously (29). Thus, the increase of cPLA$_2$ synthesis and phosphorylation (p-cPLA$_2$/cPLA$_2$ ratio from 0.37 to 0.93) may support an increase in cPLA$_2$ activity (Fig. 1).

To investigate the possible signaling mechanisms by which pericytes may mediate the phosphorylation of endothelial cPLA$_2$, we used inhibitors of PI3-kinase phosphorylation upstream of phosphorylating activities of endothelial PKC$_\alpha$ and ERK1/2. Wortmannin (60 nM) plus LY294002 (20 μM), both inhibitors of upstream PI3-kinase, which regulates PKC phosphorylation, were able to significantly inhibit (p-cPLA$_2$/cPLA$_2$ ratio from 0.93 to 0.28) the stimulated expression of phosphorylated cPLA$_2$ measured in the lysates of cocultured ECs for 24 h in the presence of both drugs (Fig. 3). Preincubation of ECs and pericytes with wortmannin or LY294002 or a mixture of both inhibitors for 24 h did not result in significant changes in the viability of GP8.39 ECs ([3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyl-tetrazolium bromide] test; mean of four independent experiments) compared with untreated controls (data not shown).

The inhibitor mixture also suppressed to almost the basal level the expression of the pericyte-enhanced phosphorylated form of endothelial PKC$_\alpha$ (p-PKC$_\alpha$/PKC$_\alpha$ ratio from 0.82 to 0.36), whereas the same inhibitors were able to decrease significantly pericyte-stimulated ERK1/2 phosphorylation by 3.3-fold. PKC is involved in the regulation of intracellular PLA$_2$ in several cell types. The strong effect of upstream phosphorylating activity inhibitors we observed in ECs may be attributable to the pivotal function of PKC isoforms in the control by basal phosphorylation of many target regulatory proteins all over the cell compartments, which also include PLA$_2$, in both early (contraction and metabolism, for instance) and late (differentiation and proliferation) cellular events.

Therefore, these data indicate that immortalized ECs had good levels of endogenous cPLA$_2$ significantly increased by 24 h of exposure to medium conditioned by the copresence of pericytes. Treatment of ECs with kinase inhibitors reduced the cell content of cPLA$_2$ phosphorylated protein to the control level, providing evidence that soluble pericyte factors induced cPLA$_2$ protein increase by PKC$_\alpha$ and MAPK action. Interestingly, skin fibroblasts were used as control cells for cocultures with ECs. Factors released in cultures by them had no comparable effects to pericytes (data not shown).

Upregulation of cPLA$_2$ and iPLA$_2$ mRNA by pericytes

As the presence of pericytes in coculture increased cPLA$_2$ and iPLA$_2$ protein synthesis in ECs, we next assessed cPLA$_2$ and iPLA$_2$ mRNA levels by RT-PCR after pericyte stimulation for 24 h. As depicted in Fig. 4A, pericytes induced a significant increase of endothelial cPLA$_2$ mRNA (~2.1-fold; $p < 0.01$ compared with control levels). We extended our study to mRNA expression of Ca$^{2+}$-independent PLA$_2$ (type VI iPLA$_2$). Results shown in Fig. 4A indicate that, in ECs grown in serum-containing medium in the presence of retinal pericytes, the type VI iPLA$_2$ gene was constitutively expressed and that pericyte-soluble factors caused an increase (~2.4-fold compared with basal levels) in iPLA$_2$ gene expression. In contrast, parallel evaluations for cPLA$_2$ and iPLA$_2$ mRNA in cocultured pericytes (Fig. 4B) did not show any significant change compared with cell monolayers.
Expression of PKCα in different coculture systems

Because endothelial PKCα is involved in stimulated p42/p44 MAPK phosphorylation by pericytes via the Raf-MEK pathway, indirectly suggesting that PLA2 activation in ECs is mediated by PKCα, we analyzed the effect on PKCα expression of contact and noncontact conditions between cells in coculture. As shown in Fig. 5, in either the noncontact model (Fig. 5A) or the contact model (Fig. 5B) (i.e., ECs in contact with pericytes grown on the opposite sides of Transwell chamber inserts [pericyte processes made contact with opposing cell types through the semipermeable membrane]), the stimulation of endothelial PKCα protein expression reached almost the same values (2.0- to 2.5-fold). Equal loading in each lane was demonstrated by similar intensities of actin. On the contrary, pericyte PKCα did not show any stimulation (no statistical difference at P < 0.05); that is, the presence of ECs was without significant effect on pericyte protein expression.

Incidentally, in another set of experiments, mixed cultures of ECs and pericytes grown in contact on the same glass slide (Fig. 5C) showed the formation of net-like structures (phase-contrast micrograph).

Confocal microscopy

We next investigated by immunofluorescence microscopy the subcellular localization of PKCα in ECs and pericytes incubated in coculture for 24 h. To estimate PKCα fluorescence, ECs, double stained with a polyclonal vWF antibody coupled to a green fluorescent protein-labeled secondary antibody (to highlight EC architecture) and with a monoclonal PKCα antibody coupled to red Cy3 antibody, were acquired separately with the FITC and Cy3 filters, and the intensity of fluorescence was determined and corrected for background measured in areas devoid of cells.

As illustrated in Fig. 6, fusion of confocal images (Fig. 6A) reveals PKCα faintly accumulating in the cytoplasm of control ECs grown alone, as shown by Cy3 in red (Fig. 6C; PKCα staining). After cocultivation for 24 h with pericytes, merged confocal images (Fig. 6A) revealed considerable overlap of FITC with vWF and Cy3 with PKCα (yellow or orange in the perinuclear area [white arrows] and widespread throughout the cell. Strong red fluorescence (Fig. 6C; PKCα staining) suggests increased protein expression, and a major part of the pool of the PKCα isoform seems to be translocated into the perinuclear region and nucleus of ECs. vWF secretory granules are diffuse all over the cell body, and stimulation with pericytes in cocultures results in distinct clustering of a subset of Weibel-Palade bodies (WPBs) in the perinuclear region of the cell (Fig. 6B, B'). Emission intensities of FITC (Fig. 6B, B') and Cy3 (Fig. 6C, C') were also evaluated with Leica confocal software, and pixel values inside the cells on a scale of 0–200 pixels (fluorescence arbitrary units) are reported in the graph for quantitative analysis.

cPLA2 expression in ECs before and after cocultures is shown in Fig. 7. Cells were double stained with a polyclonal vWF antibody coupled to a green fluorescent protein-labeled secondary antibody (to highlight EC architecture) and with a monoclonal cPLA2 antibody coupled to red Cy3 antibody. Intensity of fluorescence was determined separately with the FITC (Fig. 7B, B') and Cy3 (Fig. 7C, C') filters, and the merged images are shown (Fig. 7A, A'). The merged image (Fig. 7A') shows that the immunofluorescent signal of total cPLA2 (yellow by overlapping of green/FITC and red/Cy3) is significantly greater in EC cocultures with pericytes than in ECs grown alone. Quantitative analysis of cPLA2 emission intensity (fluorescence arbitrary units) demonstrated enhanced expression of the enzyme in cocultured ECs.

A major expression of PKCα and cPLA2 was not induced in pericytes in the presence of ECs compared with control pericytes in the absence of ECs. Quantitative analyses of PKCα and cPLA2 emission intensity were very similar in controls and in pericytes in cocultures, demonstrating no activation of both pericyte enzymes by ECs (data not shown). In addition, results concerning mixed cultures of ECs and pericytes grown for 24 h on the same glass slide in the well (mixed model with cells in direct physical contact) to
observe PKCα reciprocal modulation show an intense red signal for PKCα in ECs compared with a faint signal in large pericytes (data not shown). In a similar manner, confocal micrographs of ECs and pericytes in cocultures grown on the same glass showed that the immunofluorescent signal of total cPLA2 was significantly greater in ECs than in pericytes (data not shown).

DISCUSSION

Mural cells such as smooth muscle cells and pericytes are important for stabilizing EC-to-cell contacts because they may influence vessel type-specific differences of the endothelial phenotype. Most research on the in vitro BBB has been performed with ECs with or without astrocytes (35). In the blood-nerve barrier, where cells equivalent to astrocytes are not found, endoneural pericytes support the integrity of the blood-nerve barrier determined by peripheral nerve microvascular ECs (36). In addition, pericytes induce microvascular endothelial maturation, which requires the downregulation of EC proliferation and the formation of adhering and tight junctions. All these processes could be mediated by AA derivatives that function as a phenotypic switch (exocrine and autocrine loop). This signaling may be achieved directly through physical contact (gap junctions, N-cadherin expression) or indirectly through an exchange of soluble mediators (4, 37, 38).

Although the in vitro growth conditions of ECs may be different from those seen in vivo, studies of their proliferation and cell interactions in vitro can be faithfully reproduced. This allows us to begin to determine the cross-talk between ECs and pericytes, which may play a role in neovascularization in vivo. To examine the role that pericytes might play in the formation of the BBB, we used immortalized rat brain EC-bovine retinal pericyte cocultures to mimic the phenotype cell-to-cell interactions that occur in microvessels in vivo. In this study, we tested the hypothesis that activation of the PKCα-ERK1/2-cPLA2 pathway is involved particularly in several endothelial functions, including angiogenesis and BBB promotion.

Using the coculture system, we demonstrated that AA release, cPLA2, and iPLA2 protein expression were enhanced in ECs when they were cocultured with pericytes compared with those measured in EC or pericyte monolayers alone (transcriptional reprogramming of ECs when exposed to pericytes). The switch for endothelial cPLA2 as well as iPLA2 protein synthesis and activity, induced by neighboring pericytes that share the same culture medium and that are separated by a microporous insert (juxtacrine signaling previously unknown), might serve to produce endothelium-derived prostaglandins (PGE2 and PGF2α) and prostacyclin. Our preliminary results indicated that cyclooxygenase-2, but not 15-lipoxygenase, was highly expressed in ECs cultured directly with pericytes for 24 h. Prostanoids may act as endogenous stimulators of angiogenesis (39), vascular cell adhesion molecule-1 expression, EC migration via autocrine and paracrine loop (40), and finally as a protection against early atherothrombogenesis.

It is known from previous studies that pericytes (or conditioned medium of retinal pericytes) inhibit EC migration and proliferation in cell culture (8–10). This inhibitory...
or antiangiogenic activity is mediated by pericyte TGF-β, which becomes activated mainly when pericytes make contact with ECs. ECs in turn release platelet-derived growth factor-β, which induces pericytes to migrate toward the endothelium and to make contact (3, 41). Thus, cells of the vessel wall and ECs reciprocally activate mechanisms, mediated by extracellular factors, that induce coordinated vascular differentiation.

Investigating signaling pathways triggered intracellularly, we report here that the pericyte presence induces a sustained phosphorylation of cPLA₂ and ERK1/2, with a concomitant increase in PKCα protein expression, regardless of the type of cell-to-cell interactions (i.e., either in the noncontact or the contact coculture model).

Our results suggest that proteins that play a role in signaling are upregulated particularly in ECs after 24 h in coculture with pericytes. These observations are consistent with previous published data demonstrating transient activation of PKC and increased phosphorylation of 85 kDa myristoylated adenine-rich C-kinase substrate protein induced by astrocytes in proliferating cerebromicrovascular ECs (42).

In our study, signaling pathways were explored using pharmacological inhibitors of PI3-kinase (wortmannin plus LY294002) and MEK1 (PD98059). Wortmannin plus LY294002 blocked the pericyte-induced enhanced expression of phosphorylated forms of cPLA₂, PKCα, and ERK1/2, whereas both inhibitors had similar effects in blocking
stimulated AA release in EC cocultures. These findings suggest that activation of PKCa, ERK1/2, and PLA2 enzymes may involve a mechanism dependent on PI3-PDK1 kinases. Extensive studies have provided evidence that 3-phosphoinositide-dependent protein kinase and PDK1 phosphorylate and activate members of the ABC protein kinase family and play an important role in the regulation of cell survival, differentiation, and proliferation (43).

More than 12 PKC isoforms, the conventional PKCs (α, β, γ), novel PKCs (δ, ε, η), and atypical PKCs (ζ), have been found over the years. Previously, it was demonstrated that PKC isoforms (α, β, γ, δ, ε, ζ) were detected in vascular ECs (44–48). The expression pattern of PKC isoforms, including α, β, δ, ε, and the calcium- and diacylglycerol-independent ζ isoform, was also demonstrated to be present in pericytes (44, 45, 49). Ca2+-dependent PKCζ isoform is required for ERK signaling to trigger gene expression of cPLA2.

Previously, we have demonstrated that PKC activation is required for ERK-cPLA2 phosphorylation after stimulation of ECs by oxidized LDL (29). Here, we have investigated how the interaction between the MAPK cascade and PKC affects ERK1/2 activation and phosphorylation upon cell-to-cell interaction in coculture. Our results suggest that activation of cPLA2 through the activation of PKCa is the main mechanism by which the cross-talk between pericytes and ECs develops. In fact, total PKC expression and PKCa translocation from the cytosol to the membrane system and the nucleus was increased in cocultures compared with both cell cultures grown alone. It has been established that PKCa is a predominantly cytosolic protein but is able to translocate to the membrane fraction after stimulation. The exact subcellular location, plasma membrane or nucleus, of PKC after stimulation varies depending on the cell line and the stimulus (17, 50, 51).
Endothelin-induced changes in the physiology of retinal pericytes. J. Histochem. Cytochem. 53:145–155.

Kondo, T., H. Kinouchi, M. Kawase, and T. Yoshimoto. 1996. Astroglial cells inhibit the increasing permeability of brain endothelial cells. Mod. Pathol. 18:212–220.

REFERENCES

18. Siira-Honigmann, M. R., J. R. Bradley, and J. S. Poher. 1996. Cytosolic phospholipase A2 is in the nucleus of subconfluent endothelial cells but confined to the cytoplasm of confluent endo-
plasmatic cells and redistibutes to the nuclear envelope and cell junctions upon histamine stimulation. *Lab. Invest.* **74**: 684–695.

38. Park, J-Y., N. Takahara, A. R. Gabriele, E. Chou, K. Naruse, K. Suzuma, T. Yamauchi, S-W. Ha, M. Meier, C. J. Rhodes, et al. 2000. Induction of endothelin-1 expression by glucose. An effect of protein kinase C activation. *Diabetes.* **49**: 1298–1308.

39. Moriarty, P. A., A. J. Dickson, J. T. Eirichsen, and M. Boulton. 2000. Protein kinase C isoenzyme expression in retinal cells. *Ophthalamic Res.* **32**: 57–60.

44. Park, J-Y., N. Takahara, A. R. Gabriele, E. Chou, K. Naruse, K. Suzuma, T. Yamauchi, S-W. Ha, M. Meier, C. J. Rhodes, et al. 2000. Induction of endothelin-1 expression by glucose. An effect of protein kinase C activation. *Diabetes.* **49**: 1298–1308.

45. Moriarty, P. A., A. J. Dickson, J. T. Eirichsen, and M. Boulton. 2000. Protein kinase C isoenzyme expression in retinal cells. *Ophthalamic Res.* **32**: 57–60.

