Fenofibrate increases HDL-cholesterol by reducing cholesteryl ester transfer protein expression

Netherlands Organization for Applied Scientific Research-Quality of Life, Gaubius Laboratory, 2301 CE Leiden, The Netherlands; Departments of General Internal Medicine, Endocrinology, and Metabolic Diseases, and Cardiology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands; Leiden/Amsterdam Center for Drug Research, Division of Biopharmaceutics, 2909 RA Leiden, The Netherlands; and Department of Internal Medicine, Erasmus University Rotterdam, 2300 DR Rotterdam, The Netherlands

Abstract In addition to efficiently decreasing VLDL-triglycerides (TGs), fenofibrate increases HDL-cholesterol levels in humans. We investigated whether the fenofibrate-induced increase in HDL-cholesterol is dependent on the expression of the cholesteryl ester transfer protein (CETP). To this end, APOE*3-Leiden (E3L) transgenic mice without and with the human CETP transgene, under the control of its natural regulatory flanking regions, were fed a Western-type diet with or without fenofibrate. Fenofibrate (0.04% in the diet) decreased plasma TG in E3L and E3L.CETP mice (−59% and −60%; P < 0.001), caused by a strong reduction in VLDL. Whereas fenofibrate did not affect HDL-cholesterol in E3L mice, fenofibrate dose-dependently increased HDL-cholesterol in E3L.CETP mice (up to +91%). Fenofibrate did not affect the turnover of HDL-cholesterol ester (CE), indicating that fenofibrate causes a higher steady-state HDL-cholesterol level without altering the HDL-cholesterol flux through plasma. Analysis of the hepatic gene expression profile showed that fenofibrate did not differentially affect the main players in HDL metabolism in E3L.CETP mice compared with E3L mice. However, in E3L.CETP mice, fenofibrate reduced hepatic CETP mRNA (−72%; P < 0.01) as well as the CE transfer activity in plasma (−73%; P < 0.01). We conclude that fenofibrate increases HDL-cholesterol by reducing the CETP-dependent transfer of cholesterol from HDL to (V)LDL, as related to lower hepatic CETP expression from HDL to (V)LDL pool.

High plasma triglyceride (TG) levels are correlated with an increased risk for cardiovascular disease (1). Fibrates are widely used to reduce hypertriglyceridermia, thereby generating a less atherogenic lipid phenotype. Fibrates perform their actions through the activation of peroxisome proliferator-activated receptor α (PPARα) (2, 3). Activated PPARα heterodimerizes with retinoid X receptor and subsequently binds to specific peroxisome proliferator response elements (PPREs) in target genes to alter their transcription (2, 4). Fibrates thus decrease TG levels by inhibiting hepatic TG production through increased hepatic β-oxidation and inhibition of de novo fatty acid synthesis, increasing LPL-mediated lipolysis, and providing higher affinity remnants for the LDL receptor (3).

A meta-analysis of 53 clinical studies using fibrates enrolling 16,802 subjects indicated that apart from a 36% reduction in plasma TG, fibrates increase HDL-cholesterol levels by ≈10% in humans (5). Studies in vitro and in (transgenic) mice showed that fibrates increase the hepatic transcription of human APOA1 (6) and APOA2 (7), decrease hepatic scavenger receptor class B type I (SR-BI) protein (8), increase the SR-BI-mediated (9) and ABCA1-mediated (10) cholesterol efflux from human macrophages, and increase plasma phospholipid transfer protein (PLTP) activity (11, 12). All of these effects may thus potentially contribute to the increase in HDL-cholesterol observed in humans.

Supplementary key words fibrate • high density lipoprotein • peroxisome proliferator-activated receptor α • transgenic mice

Manuscript received 1 March 2007 and in revised form 18 May 2007.
DOI 10.1194/jlr.M700108-JLR200

Copyright © 2007 by the American Society for Biochemistry and Molecular Biology, Inc.
This article is available online at http://www.jlr.org

Abbreviations: apoE, apolipoprotein E; CE, cholesteryl ester; CETP, cholesteryl ester transfer protein; COEth, cholesteryl oleyl ether; E3L, APOE*3-Leiden; FCR, fractional catabolic rate; LXR, liver X receptor; PLTP, phospholipid transfer protein; PPARα, peroxisome proliferator-activated receptor α; PPRE, peroxisome proliferator response element; SR-BI, scavenger receptor class B type I; TC, total plasma cholesterol; TG, triglyceride.

1 C. C. van der Hoogt and W. de Haan contributed equally to this study.
2 To whom correspondence should be addressed.
e-mail: p.c.n.rensen@lumc.nl
In contrast to humans, fibrates decrease HDL-cholesterol levels in apolipoprotein E (apoE)-deficient mice (13) and do not affect HDL-cholesterol levels but increase the HDL particle size in wild-type mice and human APOA1 transgenic mice by downregulation of SR-BI (8) and/or induction of PLTP (11). The fact that fibrates do not increase the level of regularly sized HDLs in mice may be attributed to the fact that, in contrast to the human APOAI promoter, which contains a functional positive PPRE leading to increased APOAI transcription, the murine apoAI promoter contains a nonfunctional PPRE (6). However, another major difference between both species is that, in contrast to humans (14), mice do not express the cholesteryl ester transfer protein (CETP) (15). CETP is a hydrophobic plasma glycoprotein that is involved in the exchange of cholesteryl ester (CE) and TG between HDLs and apoB-containing lipoproteins (e.g., VLDL and LDL), resulting in the net transfer of CE from HDLs to apoB-containing lipoproteins (16). CETP deficiency in humans is associated with increased HDL-cholesterol levels (17), and inhibition of CETP activity by small-molecule inhibitors increases HDL-cholesterol levels (18–21). Interestingly, bezafibrate (22, 23), fenofibrate (24), and ciprofibrate (25) increase HDL-cholesterol in subjects with hyperlipidemia, with a concomitant reduction in plasma CETP activity. In the latter study, plasma apoA-I levels were not affected, which indicates that fibrates may increase HDL-cholesterol levels via apoA-I-independent mechanisms, including a potential effect of fibrates on CETP expression.

Therefore, our aim was to investigate whether the fibrate-induced increase in HDL-cholesterol depends on CETP expression. To this end, we used APOE*3-Leiden (E3L) mice that express a natural mutation of the human APOE3 gene (i.e., tandem repeat of codons 120–126, yielding a protein of 306 amino acids) in addition to the human APOCI gene. Introduction of these genes results in an attenuated clearance of apoB-containing lipoproteins via the LDL receptor pathway. Therefore, these mice show moderately increased cholesterol and TG levels on a chow diet and a human-like lipoprotein profile on a cholesterol-rich diet (26, 27). E3L mice were cross-bred with mice expressing human CETP under the control of its natural flanking regions (28), resulting in E3L.CETP mice (29). E3L.CETP and E3L littermates were fed a cholesterol-rich (0.25%, w/w) diet with or without fenofibrate. After 2 weeks of administration, fenofibrate dose-dependently increased HDL-cholesterol in E3L.CETP mice but did not affect HDL levels in E3L mice. In addition, in E3L.CETP mice, fenofibrate reduced hepatic CETP mRNA expression as well as CE transfer activity in plasma. From these studies, we conclude that fenofibrate increases HDL-cholesterol by reducing the CETP-dependent transfer of CE from HDL to apoB-containing lipoproteins.

MATERIALS AND METHODS

Animals

Hemizygous human CETP transgenic (CETP) mice, expressing a human CETP minigene under the control of its natural flanking sequences (28), were purchased from the Jackson Laboratory (Bar Harbor, ME) and cross-bred with hemizygous E3L mice (30) at our Institutional Animal Facility to obtain E3L and E3L.CETP littermates (29). In this study, male mice were used, housed under standard conditions in conventional cages with free access to food and water. At the age of 8 weeks, mice were fed a semisynthetic cholesterol-rich diet, containing 0.25% (w/w) cholesterol and 15% (w/w) fat (Western-type diet; Hope Farms, Woerden, The Netherlands) for 3 weeks. Upon randomization according to total plasma cholesterol (TC) levels, mice received a Western-type diet without or with 0.004, 0.012, or 0.04% (w/w) fenofibrate (Sigma, St. Louis, MO). Experiments were performed after 4 h of fasting at 12:00 PM with food withdrawn at 8:00 AM, unless indicated otherwise. The institutional Ethical Committee on Animal Care and Experimentation approved all experiments.

Plasma lipid and lipoprotein analysis

Plasma was obtained via tail vein bleeding as described (31) and assayed for TC and TG using the commercially available enzymatic kits 236691 and 11488872 (Roche Molecular Biochemicals, Indianapolis, IN), respectively. The distribution of lipids over plasma lipoproteins was determined by fast-performance liquid chromatography using a Supercos 6 column as described previously (31).

CE transfer activity in plasma

The transfer of newly synthesized CE in plasma was assayed by a radioisotope method as described previously (32). In short, [3H]cholesterol was complexed with BSA and incubated overnight at 4°C with mouse plasma to equilibrate with plasma free cholesterol. Subsequently, the plasma samples were incubated for 3 h at 37°C. VLDL and LDL were then precipitated by the addition of sodium phosphotungstate/MgCl2. Lipids were extracted from the precipitate with methanol-hexane (1:2, v/v), and [3H]CE was separated from [3H]cholesterol on silica columns, followed by counting of radioactivity.

Plasma apoA-I concentration

Plasma apoA-I concentrations were determined using a sandwich ELISA. Rabbit anti-mouse apoA-I polyclonal antibody (ab20453; Abcam plc, Cambridge, UK) was coated overnight onto Costar strips (Costar, Inc., New York, NY) (5 μg/ml) at 4°C and incubated with diluted mouse plasma (dilution, 1:400,000) for 90 min at 37°C. Subsequently, goat anti-mouse apoA-I antibody (600-101-196; Rockland Immunochemicals, Inc., Gilbertsville, PA; dilution, 1:3,000) was added and incubated for 90 min at 37°C. Finally, HRP-conjugated rabbit anti-goat IgG antibody (605-4313; Rockland Immunochemicals; dilution, 1:15,000) was added and incubated for 90 min at 37°C. HRP was detected by incubation with tetramethylbenzidine (Organon Teknika, Bokxel, The Netherlands) for 15 min at room temperature. Purified mouse apoA-I (A25100m; Biodesigen International, Saco, ME) was used as a standard.

Radiolabeling of autologous HDL

One mouse from each experimental group was euthanized by cervical dislocation, and blood was drawn from the retro-orbital vein. Sera were collected and HDL was isolated after density ultracentrifugation in a SW 40 Ti rotor (Beckman Instruments, Geneva, Switzerland) (4°C, 40,000 rpm, overnight) (33). HDL (0.4 μmol of HDL-cholesterol) was radiolabeled by incubation (37°C, 24 h) with [3H]cholesterol oleyl ether ([3H]COEth)-labeled egg yolk phosphatidylcholine vesicles (40 μg, 0.5 mg of phospholipid) in the presence of lipoprotein-deficient serum.
According to the method of Lowry et al. (41), assayed for TC as described above. Protein was determined as described by Bligh and Dyer (40). Extracts were prepared using hypoxanthine-guanine phosphoribosyl transferase and cyclophilin as housekeeping genes (37, 38). Hepatic SR-BI protein expression was determined in duplicate by real-time PCR on a MyiQ Single-Color real-time PCR detection system (Bio-Rad Laboratories, Hercules, CA). Primers for Apoa1, ApoA1, Cyp7a1, and Pltp were listed in Table 1. Expression levels were normalized using hypoxanthine-guanine phosphoribosyl transferase and cyclophilin as housekeeping genes (37, 38). Hepatic SR-BI protein was determined by immunoblot analysis as described previously (39). Liver lipids were determined by homogenizing liver samples in water (39). Liver lipids were determined by homogenizing liver samples in water (39). Liver lipids were determined by homogenizing liver samples in water (39). Liver lipids were determined by homogenizing liver samples in water (39).

Hepatic mRNA expression, SR-BI protein analysis, and lipid analysis

Liver tissues were isolated after cervical dislocation. Total RNA was isolated using the NucleoSpin® RNA II kit (Macherey-Nagel, Düren, Germany) as recommended by the manufacturer. RNA expression was determined in duplicate by real-time PCR on a MyiQ Single-Color real-time PCR detection system (Bio-Rad Laboratories, Hercules, CA). Primers for CETP (36) and SREBP1 (37) have been described previously. Primers for Abca1, ApoA1, Cyp7a1, and Pltp are listed in Table 1. Expression levels were normalized using hypoxanthine-guanine phosphoribosyl transferase and cyclophilin as housekeeping genes (37, 38). Hepatic SR-BI protein was determined by immunoblot analysis as described previously (39). Liver lipids were determined by homogenizing liver samples in water (39, 10%, wet w/v) using a mini-bead beater (Biospec Products, Inc., Bartlesville, OK; 20 s, 5,000 rpm), followed by lipid extraction as described by Bligh and Dyer (40). Extracts were assayed for TC as described above. Protein was determined according to the method of Lowry et al. (41).

Statistical analysis

All data are presented as means ± SD unless indicated otherwise. Data were analyzed using the unpaired Student’s t test. P < 0.05 was considered statistically significant.

RESULTS

Fenofibrate increases HDL-cholesterol in E3L.CETP mice

To study the dose-dependent effect of fenofibrate on plasma lipid levels on a hyperlipidemic background, E3L.CETP mice were fed a cholesterol-rich diet with increasing doses of fenofibrate in the diet (0, 0.004, 0.012, and 0.04%) for 2 weeks each (Fig. 1). Fenofibrate caused a dose-dependent increase in plasma TG levels (to −62% at the highest dose; P < 0.05) (Fig. 1A) and only tended to reduce plasma cholesterol levels (to −35%; NS) (Fig. 1B). However, fenofibrate had a great impact on the distribution of cholesterol over the various lipoproteins. Whereas on a cholesterol-rich diet, most cholesterol in E3L.CETP mice is carried in (V)LDL, fenofibrate resulted in a dose-dependent shift of cholesterol from (V)LDL to HDL (Fig. 1C).

Subsequently, we compared the effect of fenofibrate on plasma lipid levels in E3L.CETP mice with those in E3L.

![Fig. 1. Dose-dependent effect of fenofibrate on plasma triglyceride (TG) and cholesterol in APOE*3-Leiden.cholesteryl ester transfer protein (E3L.CETP) mice. Mice received a Western-type diet with increasing doses of fenofibrate in the diet (0, 0.004, 0.012, and 0.04%) for 2 weeks each. At the end of the 2 week periods, plasma TG (A), plasma cholesterol (B), and the distribution of cholesterol over lipoproteins (C) were determined. Values are means ± SD (n = 7 per group). * P < 0.01 compared with controls.](http://www.jlr.org/content/10/12/1763.full.html)
mice by using the highest dose of fenofibrate (0.04%) (Fig. 2). In E3L mice, fenofibrate decreased plasma TG levels (−59%; P < 0.001) (Fig. 2A) to a similar extent as in E3L.CETP mice (−60%; P < 0.01) (Fig. 2B). In both E3L mice and E3L.CETP mice, these effects of fenofibrate on plasma TG levels were reflected by a strong reduction in VLDL-TG (data not shown). Fenofibrate also caused small trends toward lower plasma cholesterol levels in both E3L mice (Fig. 2C) and E3L.CETP mice (Fig. 2D). Fenofibrate similarly decreased (V)LDL-cholesterol in both E3L mice (−91%) and E3L.CETP mice (−93%). However, whereas fenofibrate did not affect HDL-cholesterol levels in E3L mice, fenofibrate increased HDL-cholesterol in E3L.CETP mice (+91%) (Fig. 3), consistent with the dose-increasing study (Fig. 1).

Fenofibrate increases the steady-state plasma HDL level without affecting net HDL-CE output in E3L.CETP mice

To examine the mechanism underlying the fenofibrate-induced increased HDL-cholesterol in E3L.CETP mice, E3L and E3L.CETP mice were injected with autologous [3H]COEth-labeled HDL and the plasma decay was determined (Fig. 4). The expression of CETP per second appeared to accelerate the plasma decay, reflected by an increased FCR as calculated pools of HDL-CE cleared per hour (+65%; P < 0.01) (Table 2). In E3L mice, fenofibrate administration did not affect the clearance of HDL-CE (Fig. 4A, Table 1). In contrast, fenofibrate decreased the FCR of HDL in E3L.CETP mice (−27%; P < 0.01). However, taking into account the fact that CETP expression and fenofibrate treatment influence plasma HDL levels (Fig. 3), the FCR was also calculated as millimolar HDL-CE cleared per hour. In fact, CETP expression in E3L mice,
Fenofibrate decreases hepatic CETP mRNA expression and CE transfer activity in plasma

To investigate whether the effect of fenofibrate on increasing HDL-cholesterol in E3L.CETP mice is caused by a reduction of CETP activity, we determined the hepatic CETP expression and CE transfer activity in plasma (Fig. 6). Indeed, fenofibrate markedly decreased CETP expression in E3L.CETP mice (−72%; P < 0.01) (Fig. 6A). Because the liver X receptor (LXR) strongly regulates the expression of CETP (42), we determined whether fenofibrate feeding would decrease the cholesterol content in the liver. Indeed, fenofibrate reduced the hepatic cholesterol content in E3L mice (4.9 ± 2.6 vs. 9.6 ± 3.7 μg TC/mg protein) and E3L.CETP mice (3.6 ± 1.0 vs. 13.0 ± 3.7 μg TC/mg protein; P < 0.05). The fenofibrate-induced reduction in hepatic CETP expression was accompanied by a similar reduction in CE transfer activity in plasma of E3L.CETP mice (−73%; P < 0.01) (Fig. 6B). Therefore, the HDL-increasing effect of fenofibrate in E3L.CETP mice is likely to be a direct consequence of lower CETP expression.

or fenofibrate feeding of either E3L or E3L.CETP mice, did not affect the amount (mM) of HDL-CE cleared per hour (Table 2). This indicates that CETP expression and fenofibrate feeding alter the steady-state plasma HDL-cholesterol level without affecting net HDL-cholesterol flux through the plasma. These data indicate that the residual CETP activity in E3L.CETP mice on fenofibrate is sufficient to maintain net HDL-CE output.

Fenofibrate does not differentially affect hepatic mRNA expression of genes involved in plasma HDL metabolism

Because differences in genes encoding proteins that are crucially involved in HDL metabolism may account for the increase in HDL-cholesterol in E3L.CETP mice upon fenofibrate treatment, we examined the effect of fenofibrate on their hepatic expression (Fig. 5). The expression of these genes was not substantially different in E3L.CETP mice compared with E3L mice. Fenofibrate increased Pltp in E3L (3.3-fold; P < 0.01) and E3L.CETP mice (2.7-fold; P < 0.05), consistent with previously reported effects of fenofibrate (11, 12). The expression of Abca1, which is involved in HDL formation, was similarly decreased in E3L (−50%; P < 0.05) and E3L.CETP (−33%; P < 0.05) mice. Likewise, Srb1 was decreased in E3L (−48%; P < 0.05) and E3L.CETP (−42%; P < 0.05) mice to a similar extent, as reflected by similar reductions in hepatic SR-BI protein levels (~−25%) for E3L mice (P = 0.06) and E3L.CETP mice (P < 0.05) (data not shown). Apoa1 expression was decreased in E3L (−49%; P < 0.05) and E3L.CETP (−41%; P < 0.05) mice, without substantially affecting the plasma apoA-I level (~80 mg/dl in all groups). The expression of Cyp7a1, Pltp, Abca1, Srb1, and Apoa1 is thus similarly affected by fenofibrate in E3L and E3L.CETP mice and cannot explain the differentially increased HDL in E3L.CETP mice compared with E3L mice.
DISCUSSION

In this study, we investigated whether CETP might play a role in the fenofibrate-induced increase in HDL-cholesterol. Here, we show that fenofibrate increases HDL-cholesterol in E3L.CETP mice, as paralleled by a reduction in hepatic CETP mRNA and plasma CE transfer activity, whereas fenofibrate does not increase HDL in E3L mice.

We showed previously that E3L mice are highly susceptible to dietary interventions with respect to modulating plasma lipid levels and that these mice show a human-like response to drug interventions aimed at reducing plasma levels of apoB-containing lipoproteins, including statins [atorvastatin (43) and rosvastatin (44)] and fibrates [gemfibrozil (45)]. This is in sheer contrast with wild-type mice (6, 13) and more conventional hyperlipidemic mice, such as apoE-deficient (13, 46) or LDL receptor-deficient (47) mice, which show either an adverse response or no response to such interventions. In particular, administration of fenofibrate to wild-type (13) and apoE-deficient (13, 48) mice showed an unexpected increase in plasma TG and TC levels caused by increased levels of lipoprotein remnants, with a concomitant reduction in HDL-cholesterol. Here, we demonstrate that E3L mice also show a human-like response to fenofibrate with respect to decreasing TG and cholesterol in apoB-containing particles, although HDL-cholesterol was not increased after 2 weeks of intervention (Fig. 3A). We reasoned that the introduction of human CETP in these E3L mice, which permits CE exchange between HDL and apoB-containing lipoproteins, would result in an excellent mouse model to study the effects of fenofibrate on HDL metabolism.

Indeed, we demonstrate that although E3L.CETP mice retain their ability to respond to fenofibrate with respect to a similar reduction of VLDL-TG and VLDL-cholesterol compared with E3L mice, they also respond with an increase in HDL-cholesterol level. Apparently, the fact that mice normally do not express CETP prevents a human-like response to HDL-modulating drug interventions, such as fibrate treatment. In agreement with this hypothesis, we observed previously that treatment of E3L mice with statins also did not increase HDL-cholesterol, even though VLDL reductions of as much as 60% were achieved (43, 45, 49).

HDL-cholesterol levels can theoretically be modulated by several key proteins involved in HDL metabolism, including ABCA1 (10), SR-BI (9), PLTP (11, 23), apoA-I (3, 6, 48, 50, 51), and CETP (22, 24, 25). Therefore, we examined the potential contribution of each of these factors in the fenofibrate-induced increase of HDL-cholesterol in E3L.CETP mice. The HDL-cholesterol level in mice is largely determined by the hepatic expression of ABCA1, which plays an important role in HDL formation by mediating hepatic cholesterol efflux to apoA-I (52). In fact, it has been reported that treatment of chow-fed rats with ciprofibrate increased their hepatic Abca1 expression, concomitant with an increase in plasma HDL-cholesterol levels (53). However, fenofibrate did not increase hepatic Abca1 expression in either E3L or E3L.CETP mice. On the contrary, fenofibrate decreased Abca1 mRNA in both genotypes and thus cannot explain the selective increase of HDL-cholesterol in E3L.CETP mice.

Whereas bezafibrate did not increase plasma PLTP mass and activity levels in humans (23), fenofibrate has been shown to increase hepatic Pltp expression in mice, which was associated with increased plasma PLTP activity and HDL size, at least in human apoA-I transgenic mice (11). Accordingly, we found that fenofibrate induced the hepatic Pltp expression in both E3L and E3L.CETP mice. However, the relative increase was even more pronounced in E3L mice compared with E3L.CETP mice, whereas HDL-cholesterol was not affected in E3L mice. It is also of note that adenovirus-mediated hepatic expression of PLTP results in a dose-dependent reduction of HDL-cholesterol levels, instead of increasing HDL-cholesterol, in both wild-type and human apoA-I transgenic mice (54). It is thus unlikely that the induction of PLTP is the cause of the increase in HDL-cholesterol in E3L.CETP mice.

In mice, hepatic SR-BI represents the most important pathway for the selective clearance of HDL-associated CE from plasma (55). It has been shown that fenofibrate can downregulate hepatic SR-BI protein in wild-type mice, independent of Sr-b1 expression, via a posttranscriptional mechanism. This was correlated with a substantially increased HDL size, based on fast-performance liquid chromatography profiling (8). We found that fenofibrate treatment did result in a similar reduction of Sr-b1 expression in E3L mice (~48%) and E3L.CETP mice (~42%), with a concomitant reduction in hepatic SR-BI protein levels (~25%). Although fenofibrate did not increase large HDL1 in E3L mice after only 2 weeks of fenofibrate intervention (Fig. 3A), cholesterol within large HDL1 was indeed increased (+69%) after prolonged treatment of E3L mice (i.e., 6 weeks), as has been shown for wild-type mice (8). In E3L.CETP mice, fenofibrate treatment for 2 weeks mainly increased the levels of cholesterol in regularly sized HDLs but also increased the levels of HDL1 to some extent (Figs. 1C, 3B). Therefore, the reduction in hepatic SR-BI levels may contribute to the appearance of HDL1 in both E3L and E3L.CETP mice but does not explain the increase of regularly sized HDL in E3L.CETP mice.

In ApoA1 transgenic mice, human apoA-I hepatic mRNA and plasma protein levels were increased after fenofibrate treatment (6), probably by the binding of PPARα to a positive PPRE in the human apoA-I gene promoter (51). Given the tight relation between HDL-cholesterol and apoA-I levels in humans, it could be expected that the upregulation of apoA-I expression would be the main causal factor for increasing HDL-cholesterol levels in humans. Fenofibrate treatment has an opposite effect on murine apoA-I (i.e., reduction of expression and plasma levels) (6), which theoretically could easily explain why fenofibrate does not increase HDL-cholesterol in mice. However, although we did observe a reduction in hepatic Apoa1 expression upon fenofibrate treatment of E3L (~49%) and E3L.CETP (~41%) mice, HDL-cholesterol was nevertheless markedly increased in
E3L.CETP mice. The fact that plasma apoA-I was not affected by fenofibrate treatment may be explained by increased lipidation of apoA-I, thereby preventing the clearance of apoA-I.

Collectively, these data suggest that downregulation of CETP expression is the predominant cause of the fenofibrate-induced increase of HDL-cholesterol. Expression of CETP in E3L mice decreased the HDL-cholesterol level (~35%) but did not affect HDL turnover, calculated as millimolar HDL-CE cleared per hour. Likewise, CETP inhibition in rabbits, although increasing HDL-cholesterol, does not compromise the HDL-CE clearance from plasma (56). Treatment of E3L.CETP mice with fenofibrate resulted in an increased HDL-cholesterol level, strongly decreased hepatic CETP expression levels, and reduced CE transfer activity in plasma. Thus, the increase in HDL-cholesterol may be caused by the combination of reduced hepatic CETP expression and reduced levels of apoB-containing lipoproteins as CE acceptors, thereby inhibiting the CETP-mediated transfer of CE from HDL to VLDL.

It is tempting to speculate about the mechanism(s) underlying the effect of fenofibrate on hepatic CETP expression. Dietary cholesterol has been shown to increase CETP mRNA expression in CETP transgenic mice (28, 29), presumably via an LXR-responsive element in the CETP promoter (42). Conversely, a decrease in hepatic CETP mRNA expression might be the consequence of a reduction in LXR signaling. Fenofibrate treatment indeed decreased hepatic cholesterol, which is likely to reduce the level of oxysterols, the natural ligands of LXRα. Downregulation of LXRα is supported by a concomitant decrease in the expression of Cyp7a1, another LXR target gene (57). This is in accordance with the observation that administration of ciprofibrate to wild-type mice caused a 65% reduction in hepatic Cyp7a1 mRNA (58). Nevertheless, it should be mentioned that Cyp7a1 is also regulated directly by fibrates via a negative PPRE in its promoter sequence (59). A reduction in LXRα might also explain the reduction of abca1 expression (60). In addition to these mechanisms explaining reduced CETP expression by fenofibrate, a potential PPRE in the promoter region of CETP was recently identified (61), which provides the possibility for direct regulation of CETP by PPARα agonists, although it is unclear whether this potential PPRE is functional.

Our finding that fenofibrate reduced CETP activity in E3L.CETP mice corroborates the outcome of two human studies. Although one study failed to detect an effect of fenofibrate on plasma CETP activity (62), fenofibrate treatment did decrease CETP activity by 26% in subjects with combined hyperlipidemia (24) and by 18% in subjects with the metabolic syndrome (63). Based on our experimental study, the fenofibrate-induced decrease in CETP activity in humans is likely also a causal factor for the generally observed increase in HDL-cholesterol.

Fibrate treatment has been associated with a reduction of cardiovascular disease (5). The recent FIELD study, which assessed the effects of fenofibrate on cardiovascular risk in subjects with type 2 diabetes mellitus in a long-term, controlled trial, showed a reduction in total cardiovascular events but did not reveal a reduced risk of the primary outcome of coronary events (64). Nevertheless, the authors suggested that a more beneficial outcome might have been masked by a larger portion of statin treatment in the placebo group compared with the fenofibrate group. Even though the benefit of an increase in HDL-cholesterol by CETP inhibition is still under debate (65–68), and despite the recent failure of the CETP inhibitor torcetrapib in the ILLUMINATE study (69), increasing HDL-cholesterol levels is still generally considered antiatherogenic. Besides the ability of fibrates to potentially reduce plasma TG, their concomitant effect on increasing HDL by reducing CETP expression may be an additional advantageous antiatherogenic property. We speculate that combination therapies of fibrates (i.e., reducing CETP expression) and small-molecule CETP inhibitors (i.e., reducing plasma CETP activity) may help to further reduce cardiovascular risk.

Together, our data show that fenofibrate increases HDL-cholesterol by reducing CETP expression and plasma CE transfer activity in E3L.CETP mice. Therefore, we postulate that reduction of CETP expression also contributes to the increase in HDL that is found in human subjects treated with fibrates. Furthermore, we anticipate that the E3L.CETP mouse is a valuable model in which to test the effect of combination therapies (i.e., fibrates and CETP inhibitors) on plasma lipid metabolism and atherosclerosis.

This work was performed in the framework of the Leiden Center for Cardiovascular Research and was supported by the Leiden University Medical Center (Gisela Thier Fellowship to P.C.N.R.), the Netherlands Organization for Scientific Research (Grant 908-02-097 and VIDI Grant 917.36.351 to P.C.N.R.), the Netherlands Heart Foundation (Grant 2003B136 to P.C.N.R.), and the Center for Medical Systems Biology (Project 115). J.W.J. is an established clinical investigator of the Netherlands Heart Foundation (2001D032). The authors thank L. C. van der Zee-van Vark and E. Hoegee-de Nobel for excellent technical assistance.

REFERENCES

