Activation-dependent stabilization of the human thromboxane receptor: role of reactive oxygen species

Stephen J. Wilson, Claire C. Cavanagh, Allison M. Lesher, Alexander J. Frey, Shane E. Russell, and Emer M. Smyth

Institute of Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104

Abstract Thromboxane A2 (TxA2), the principle product of platelet COX-1-dependent arachidonic acid metabolism, directs multiple pro-atherogenic processes via its receptor, TP. Oxidative challenge offsets TP degradation, a key component in limiting TxA2’s actions. Following TP activation, we observed cellular reactive oxygen species (ROS) generation coincident with increased TP expression. We examined the link between TP-evoked ROS and TP regulation. TP expression was augmented in TPα-transfected cells treated with a TxA2 analog [1S-1′,2β(5Z),3α(1E,3R*),4α]-7-[3-(3-hydroxy-4-(4′-iodophenoxy)-1-butenyl)-7-oxabicyclo[2.2.1]heptan-2-yl]-5-heptenoic acid (IBOP). This was reduced with a cellular antioxidant, N-acetyl cysteine, or two distinct NADPH oxidase inhibitors, diphenyleneiodonium and apocynin. Homologous upregulation of the native TP was also reduced in apocynin-treated aortic smooth muscle cells (ASMCs) and was absent in ASMCs lacking an NADPH oxidase subunit (p47S). TP transcription was not increased in IBOP-treated cells, indicating a posttranscriptional mechanism. IBOP induced translocation of TPα to the Golgi and reduced degradation of the immature form of the receptor. These data are consistent with a ROS-dependent mechanism whereby TP activation enhanced TP stability early in posttranscriptional biogenesis.

Supplementary key words NADPH oxidase • prostanoids • vascular smooth muscle cells • cardiovascular disease

Thromboxane A2 (TxA2), derived predominantly from platelet COX-1-dependent metabolism of arachidonic acid, is integral to cardiovascular disease (CVD). TxA2 directs multiple processes, including vasoconstriction, platelet aggregation, and smooth muscle cell (SMC) proliferation via its cell surface G-protein-coupled receptor (GPCR), the TP (1). Antagonism or deletion of TP retarded atherogenesis (2, 3) and blunted the proliferative response to vascular injury (4) or remodeling (5) in mice.

Regulation of TP expression, which is augmented in human CVD (6, 7), has received less attention compared with the coincident increase in the biosynthesis of its ligand, TxA2 (3, 8). Indeed, despite the diversity of platelet agonists, the cardioprotective effects of aspirin are realized through irreversible inhibition of platelet COX-1-derived TxA2 (9). Conversely, the unrestricted TxA2 generation, with concomitant depression of its opposing mediator prostacyclin, associated with selective COX-2 inhibitors, is the leading explanation for the cardiovascular hazard associated with that class of drugs (10), underscoring the central role played by this eicosanoid during cardiovascular function and disease. However, a TP antagonist was more effective in offsetting lesion formation compared with inhibitors of TxA2 synthesis in atherosclerotic mice (2, 3), warranting examination of receptor-specific events in CVD.

In addition to their role as signaling intermediates (11), reactive oxygen species (ROS) may regulate GPCR function and expression. Exogenous hydrogen peroxide (H2O2) promoted desensitization of the dopamine D1 receptor (12). In contrast, the sphingosine 1-phosphate SIP1 receptor (13) and the TP (14) are posttranslationally upregulated by H2O2. These observations suggest a role for intracellular ROS in controlling protein expression and represent a potential mechanism for regulating TP.
expression. This currently untested hypothesis is especially interesting given that NADPH oxidase, a major source of vascular ROS (15), is an effector for TP (16, 17), while antagonism of the TP offset NADPH oxidase expression and renal oxidant stress in diabetic hyperlipidemic mice (18). Indeed, similar to other vasoactive mediators (15), NADPH oxidase-derived cellular ROS may be integral to TxA2’s cardiovascular actions (16, 17).

We examined the role of TP-generated cellular oxidants in regulation of TP expression. We report a novel feed-forward loop in which TP activation promotes upregulation of TP expression through a ROS-dependent mechanism of enhanced receptor stability early in biogenesis.

METHODS

Cell Culture and Transfection

Hemagglutinin (HA) epitope tagged human (h) TPα was generated as described (19). hTPα, triple (3x) HA-tagged, was from the Missouri S and T DNA Resource Center. HEK 293 cells (ATCC, Rockville, MD) and human (h) aortic (A) SMCs (Biowhittaker, MD) were maintained as described (20). SMCs were isolated from wild-type or p47⁻/⁻ mouse aortic explants as described (19). HEK 293 cells were transfected with HA-hTPα for stable expression (hereafter termed TPα-HEK), or transiently with 3xHA-hTPα (hereafter termed 3xHA-hTPα-HEK) as described (21). Experiments were carried out 48 h after transfection.

Radioligand binding

TPα-HEK were scraped into buffer (10 mM HEPES, pH 7.4, 1 mM EDTA, and protease inhibitors) and homogenized (TissueLyser™, Qiagen; 2 x 3 min at 30 MHz). Intact cells and nuclei were removed (2 x 1,800 g, 10 min). The crude membrane fraction was isolated from the resulting supernatant by ultracentrifugation (100,000 g, 1 h at 4°C) and resuspended in buffer. TP radiolabeled using a saturation binding assay was quantified using excess unlabeled SQ 29548.

Membrane fractionation

TPα-HEK were scraped into buffer (10 mM HEPES, pH 7.4, 1 mM EDTA, 0.25 M sucrose, and protease inhibitors) and homogenized (TissueLyser™, Qiagen; 2 x 3 min at 30 MHz). Intact cells and nuclei were removed (2 x 1,800 g, 10 min). The membrane fraction was isolated by ultracentrifugation (65,000 g, 1 h at 4°C) and resuspended in buffer.

Discontinuous density gradients (2.5, 5, 7.5, 10, 12.5, 15, 17.5, 20, and 50%) were prepared using Optiprep™ (Axis-Shield, Norway) to the manufacturer’s instructions. Membrane homogenates were loaded onto the gradient and centrifuged (97,000 g for 2.5 h at 4°C). Fractions (1 ml) were collected from the bottom of the tube. The distribution of 3xHA-hTPα, calnexin [endoplasmic reticulum (ER)], and golgin-97 (Golgi) was determined by immunoblotting.

Immunofluorescence microscopy

3xHA-hTPα were fixed (4% paraformaldehyde, 30 min, 4°C) and permeabilized (0.1% Triton X-100, 10 min, room temperature). Slides were blocked in PBS containing 5% goat serum and 2% BSA. 3xHA-hTPα and Golgin-97 were stained with rat anti-TP (1:500 dilution; Invitrogen) overnight at 4°C. Staining was visualized with Alexi-Fluor 555-labeled anti-rat and Alexi-Fluor 488-labeled anti-mouse (1:1,000 dilution; Invitrogen) for 30 min using an Olympus AX60 microscope.

Statistical analysis

Data were analyzed using Graphpad Prism software. Comparisons were made using a one-sample t-test or by ANOVA, with suitable post hoc multiple comparison testing as appropriate.

RESULTS

TP is coupled to ROS generation

We first confirmed intracellular ROS generation following TP activation. ROS generation was increased in human (h; Fig. 1A, B) and mouse (m; Fig. 1C) ASMC treated with the TP agonist IBOP. Consistent with other reports (16, 18), this was inhibited by either diphenyleneiodonium (DPI), a general inhibitor of flavoenzymes, including NADPH oxidase, or apocynin, a nonselective NADPH oxidase inhibitor. IBOP did not induce ROS in mASMC lacking the p47phox subunit of NADPH oxidase (p47⁻/⁻; Fig. 1C). Taken together,
TP in vitro (19) and in vivo (26). TP expression was determined arachidonic acid metabolite that activates the activation, when biosynthesis of TxA2 is markedly increased to increased TP responsiveness in settings of platelet activation of GPCR regulation, in which the activated receptor signaling cascade. This concept deviates from the classical no- similarly enhanced by ROS generated as part of the TP sig- naling (14). We considered whether TP expression was of either IBOP, a TxA2 analog, or iPE2III, a free-radical (24, 25). HEK 293 cells stably expressing HAhTP expres- sion (100 nM; 3 h). C: mASMC from wild-type (WT) mice or p47 - a alopoxyn, 100 μM) for 30 min prior to IBOP (100 nM; 3 h). C: mASMC from wild-type (WT) mice or p47 - fold over basal; [\textit{P} < 0.05, n = 5], consistent with the dose response for TP signaling in these cells (19). A higher concentration of iPE2III (500 nM) was required for TP upregulation (1.7 ± 0.21-fold over basal; \textit{P} < 0.05, n = 3), consistent with its lower affinity for the receptor (19, 26). TP upregulation was time dependent, with increased expression observed within 6 h (3.03 ± 0.68-fold over basal; \textit{P} < 0.05, n = 3; Fig. 2E). Pretreatment with the TP antagonist SQ 29548 inhibited IBOP-induced TP upregula- tion (Fig. 2F).

Increased TP expression in IBOP-treated TPα-HEK was confirmed by radioligand binding of \(^{3} \text{H}-\text{SQ} 29548\) to crude cell membrane (Fig. 3A). The saturation binding isotherm showed a ~40% increase in the Bmax (\textit{P} < 0.05, n = 5), with- out alteration of the dissociation constant (~70 nM; Fig. 3B), following IBOP treatment. Importantly, increased TP expres- sion following TP activation was not restricted to HEK 293 cells: IBOP (100 nM) increased expression of the native TP in both human, as assessed by binding of \(^{3} \text{H}-\text{SQ} 29548\) to intact cells (2.6 ± 0.5-fold over basal; \textit{P} < 0.05, n = 3), and mASMC (see Fig. 6).

In our HEK 293 cell model, TPα expression is under control of the constitutive cytomegalovirus promoter, making it unlikely that transcriptional changes contributed to TP expression. Indeed, we observed no significant in- crease in TP mRNA levels in TPα-HEK cells treated with IBOP for 6 h (Fig. 4A) or 12 h (data not shown). Similarly, we observed no increase in TP mRNA in hASMC treated with IBOP (100 nM) for 12 h or 1 μM for up to 24 h (Fig. 4B, C). These data argue against contribution of a gene transcriptional event to ROS-dependent upregulation of TP expression.

The role of ROS in homologous regulation of TP expression

We next examined whether a redox-dependent mecha- nism was involved in upregulation of the activated TP. Pre- treatment of TPα-HEK with a cell-permeable antioxidant, \textit{n}-acetyl-cysteine (NAC; 20 mM), abrogated the IBOP- induced (Fig. 5A, B) and iPE2III-induced (data not shown) increase in TPα expression, implicating intracellular ROS generation in TP-dependent TP upregulation. Similar- ly, DPI or apocynin significantly inhibited IBOP- induced TPα upregulation in TPα-HEK (Fig. 5A–D) or ASMC (Fig. 6A, B). Furthermore, IBOP-induced TPα upregulation in mASMC was abolished in p47-/- mASMC (Fig. 6C, D). These results indicate that ROS, generated via TP-dependent

Fig. 1. TP-mediated ROS generation. hASMC were treated with IBOP for 3 h (A) or pretreated with NADPH oxidase inhibitors (B) (DPI, 10 μM, or apocynin, 100 μM) for 30 min prior to IBOP (100 nM; 3 h). C: mASMC from wild-type (WT) mice or p47-/- mice were treated with IBOP (1 μM) for 3 h. ROS generation was assessed by fluorescent spectrophotometry or microscopy. Data in A and B are fold over basal ± SE (\textit{n} = 3). *** \textit{P} < 0.001 with reference to (w.r.t.) control. Data in C are a representative experiment that was repeated with similar results.

these internally consistent data place one or more NADPH oxidas downregulated (23), and may be highly relevant the role of ROS in homologous regulation of TP expression.

Homologous regulation of TP expression

Oxidative challenge of cells with \(\text{H}_2\text{O}_2\) increased TP expression (14). We considered whether TP expression was similarly enhanced by ROS generated as part of the TP signaling cascade. This concept deviates from the classical notion of GPCR regulation, in which the activated receptor becomes downregulated (23), and may be highly relevant to increased TP responsiveness in settings of platelet activation, when biosynthesis of TXa2 is markedly increased (24, 25). HEK 293 cells stably expressing HAhTPα (TPα-HEK) were treated for 12 h with increasing concentrations of either IBOP, a TXa2 analog, or iPE2III, a free-radical generated arachidonic acid metabolite that activates the TP in vitro (19) and in vivo (26). TP expression was deter- mined by Western blot analysis. Similar to other GPCRs, differential glycosylation of the TPα (27) gives rise to two major species: the mature, fully glycosylated receptor appears as a broad complex species from 45–60 kDa, while the immature unglycosylated form appears at 39 kDa. These multiple bands were not due to nonspecific antibody binding because neither the mature nor immature TPα species were evi- dent in Western blots of untransfected wild-type HEK cells (Fig. 2A, left panel). Treatment with IBOP (Fig. 2A, C) or iPE2III (Fig. 2B, D) increased expression of both the forms of TPα in a concentration-dependent manner. Maximum in- duction was evident following treatment with 10–100 nM IBOP (2.63 ± 0.52-fold over basal; \textit{P} < 0.05, \textit{n} = 5), consistent with the dose response for TP signaling in these cells (19). A higher concentration of iPE2III (500 nM) was required for TP upregulation (1.7 ± 0.21-fold over basal; \textit{P} < 0.05, \textit{n} = 3), consistent with its lower affinity for the receptor (19, 26). TP upregulation was time dependent, with increased expression observed within 6 h (3.03 ± 0.68-fold over basal; \textit{P} < 0.05, \textit{n} = 3; Fig. 2E). Pretreatment with the TP antagonist SQ 29548 inhibited IBOP-induced TP upregula- tion (Fig. 2F).

Figure 1: TP-mediated ROS generation. hASMC were treated with IBOP for 3 h (A) or pretreated with NADPH oxidase inhibitors (B) (DPI, 10 μM, or apocynin, 100 μM) for 30 min prior to IBOP (100 nM; 3 h). C: mASMC from wild-type (WT) mice or p47-/- mice were treated with IBOP (1 μM) for 3 h. ROS generation was assessed by fluorescent spectrophotometry or microscopy. Data in A and B are fold over basal ± SE (n = 3). *** P < 0.001 with reference to (w.r.t.) control. Data in C are a representative experiment that was repeated with similar results.
activation of an NADPH oxidase, underlies TP-dependent increase TP expression.

TP activation induces translocation of TP from the ER to the Golgi

Following synthesis in the ER, correctly folded GPCRs traffic to the Golgi and on to the plasma membrane in their mature form. Posttranslational modifications that occur during this process include glycosylation of the immature receptor, a step that is essential for ER export, and membrane localization of the mature TP (27). The presence of an intracellular receptor reserve has been reported for some GPCRs, including the TP (14) and thrombin receptors (28). Exogenous \(\text{H}_2\text{O}_2 \) facilitated TP mobilization from the ER to the Golgi (14). We examined whether mobilization of the TP along its biogenic pathways coincided with its upregulation via the TP-derived intracellular ROS pathway. Cell lysates were prepared from TPα-HEK cells, treated (100 nM IBOP; 3 h), and fractionated on discontinuous density gradients optimized for resolution of ER and Golgi membrane fractions (29). In untreated cells, the majority of HAhTPα resided in the heavier fractions (Fig. 7A, fractions 3–8) and colocalized with the ER marker calnexin; little HAhTPα was present in lighter fractions that costained for the Golgi marker, golgin-97. IBOP treatment shifted this distribution, with increased proportion of HAhTPα found in the Golgi fractions (Fig. 7B, fractions 10–12). Similarly, prominent colocalization of HAhTPα with golgin-97 was evident in IBOP-treated cells (Fig. 7C). These data strongly support the concept that activation of the TP facilitates its translocation from the ER to the Golgi along the receptor’s biogenic pathway.
Homologous stabilization of TPα

Degradation of TPα was slowed substantially in cells treated with exogenous H₂O₂ (14). We examined whether the TP-ROS-TP feed-forward cycle involved such a post-translational mechanism of receptor stabilization. HEK 293 cells, transiently transfected with 3xHahTPa, were pretreated with or without IBOP for 1 h before treatment with cycloheximide, to inhibit de novo protein synthesis and unmask receptor degradation. Conventional pulse-chase methods, which require metabolic labeling with 35S-methionine/cysteine, were not successful, probably because of the small number of these residues in the hTP (data not shown). Therefore, we examined the mature glycosylated, and immature unglycosylated, form of the TP by Western blot. In control cells, levels of the mature and immature TPa were significantly reduced, following cycloheximide treatment, to inhibit de novo protein synthesis and unmask receptor degradation. Following pretreatment with IBOP (100 nM, 1 h), degradation of mature TP was unchanged (Fig. 8B). In contrast, degradation of the immature TP form was significantly offset (Fig. 8C) with sustained upregulation despite the presence of cycloheximide. These data are consistent with IBOP-induced stabilization of the TP, early in the receptor’s posttranslational processing. This IBOP-induced early stabilization event was reduced in cells treated with DPI (Fig. 9C); in the presence of cycloheximide, the immature TP band was significantly degraded in cells pretreated with DPI prior to addition of IBOP. These data implicate the TP-ROS signaling pathway in promoting TP biogenesis.

DISCUSSION

Oxidative stress and TxA₂ are established mediators of CVD that contribute to vascular injury (4), atherosclerotic lesion formation, and plaque destabilization (5). Our study confirms that, similar to other vasoactive mediators, such as thrombin (30) and angiotensin II (31), TxA₂ activates NADPH oxidases (16). However, the relevance of TP-induced ROS generation in mediating the physiological and pathophysiological actions of TxA₂ has not been elucidated. Application of exogenous H₂O₂ promotes stabilization of the TP in transfected cells (14), suggesting a role for ROS in regulating TP responsiveness. This study set out to determine if endogenous ROS, generated as signaling intermediates secondary to TP activation, could stabilize TP and, consequently,
augment the receptor’s expression. This hypothesis is a departure from the classical understanding of GPCR regulation in which the activated GPCR is downregulated. Two isoforms of the hTP have been described (32). We concentrated on the more ubiquitous TPα (33). TPα was significantly upregulated, in a time- and concentration-dependent manner following treatment with the TP agonist IBOP, in both transiently and stably transfected HEK 293 cells. This reflected an increase in the receptor Bmax, with no significant change in the dissociation constant for binding, indicating that activation of the TPα produced an increase in functional receptor capable of binding agonist. We did not, however, examine whether TPα signaling was similarly augmented because of the confounding issues of receptor activation, desensitization, and internalization (20, 34), during the continued presence of agonist. Indeed, Western blot does not discriminate between receptor that is available for ligand binding at the plasma membrane versus receptor that is trafficking to or from the membrane. This may explain the apparent discrepancy between the levels of TPα quantified by Western blot (~2- to 3-fold increase) versus radioligand binding (~40% increase) in TPα-HEK. Importantly, we observed a similar upregulation response of the native TP in two ASMC models (human and mouse), arguing against experimental artifacts due to TPα overexpression. The consistent increase in high-affinity membrane-associated TPα, particularly the 2-fold increase observed in whole-cell binding of SQ 29548 to hASMC, strongly suggests an upregulation of functional receptor at the cell surface in IBOP-treated cells. This is a remarkable finding, given our previous report that exposure to TxA2 analogs, for a shorter time period (2 h), results in TP internalization and that the internalized receptor is not recycled to the plasma membrane (20). Indeed, these data suggest a distinct feed-forward pathway for upregulation...
of the homologously activated TP that predominates during continual agonist activation. Such continual activation would be expected in many disease settings, including syndromes of platelet activation and inflammation.

Given the sensitivity of TP expression to exogenous H₂O₂ (14), we considered whether endogenous ROS generation in response to TP activation can drive TP expression. Pretreatment of TPα-HEK cells with the cell-permeable antioxidant NAC inhibited homologous TP upregulation, consistent with a ROS-dependent mechanism. Several cellular sources of ROS have been described (35–37). Of these, NADPH oxidase is reportedly the major source of ROS in the vasculature (15) and has been consistently implicated in models of CVD (38). This oxidase is a multimeric enzyme complex, consisting of membrane-associated (Nox homologs and p22phox) and cytosolic (p47phox homologs, p67phox homologs, and rac) subunits (39). Several variants of NADPH oxidase, expressed in a cell- and tissue-specific manner, have been reported (40). Both Nox-1 and -4 are expressed in human and mouse ASMC (41, 42). Studies implicate NADPH oxidases as TP effectors (16, 18), although the particular isoform that couples with the TP has not been identified.

We used two pharmacological inhibitors of NADPH oxidases. DPI, a general inhibitor of flavoproteins, including NADPH oxidases, and apocynin, a nonselective NADPH oxidase inhibitor, virtually abolished IBOP-induced TP upregulation in TPα-HEK. Moreover, IBOP treatment did not initiate TP upregulation in ASMCs treated with apocynin or derived from mice genetically lacking the functionally critical p47phox subunit. The internal consistency across the cell types, and between the pharmacological and genetic manipulations used, strongly implicates one or more NADPH oxidases in enhanced expression of the activated TP. We did not assess directly which NADPH oxidase isoform

Fig. 7. IBOP induces translocation of 3xHAhTPα from the ER to the Golgi. TPα-HEK cells were treated with vehicle or IBOP (100 nM, 3 h). A, B: Cell lysates were fractionated on a discontinuous density gradient and resolved by SDS-PAGE. Fractions were identified with marker proteins for Golgi (golgin-97; green arrows) and ER (calnexin; blue arrows). Western blots are representative of three independent experiments. C: HAhTP (red staining) and Golgi is in yellow (arrows). Images are from a representative experiment that was repeated with similar results.

Fig. 8. Effect of IBOP treatment on TP stabilization. Transiently transfected 3xHAhTPα-HEK were treated with vehicle or IBOP (100 nM) for 1 h. Cells were then treated with or without cycloheximide (CHX; 50 μg/ml) for 6 h to unmask TP degradation. A: Representative Western blot. Data from densitometric analysis of mature TP (B) and immature TP (C) degradation, normalized to β-actin, were expressed as fold change compared with control (cells that received neither IBOP nor CHX; gray bar). Data are mean ± SEM (n = 7). * P < 0.05 w.r.t. control unless otherwise indicated.
oxidase ROS-generating complex. Thus, TP-mediated NADPH oxidase activation may augment formation of isoprostanes, incidental TP agonists, and established biomarker of CVD, driving increased TP expression.

Homologous upregulation of TPα was not dependent on modulation of TPα transcription, suggesting a post-transcriptional mechanism. We examined changes in stability of the activated TP protein. The ER plays a crucial role in protein biosynthesis and quality control (45). Proteins retained in the ER typically undergo rapid proteosomal degradation. Alternatively, proteins may proceed to the Golgi before localization of the mature protein in its appropriate cellular compartment (46). Maturation of many GPCRs, including the TPα (27), involves glycosylation as the receptors move along this ER-Golgi biogenic pathway. By subcellular fractionation and immunofluorescence microscopy, we observed mobilization of the TPα from the ER to the Golgi following IBOP treatment, consistent with the concept that agonist activation drives TPα biogenesis.

Using cyclohexamide to inhibit protein biosynthesis, we previously demonstrated agonist-dependent degradation of TPα (20). In this study, activation of the TPα with IBOP, prior to addition of cyclohexamide, allowed us to examine whether agonist activation altered TPα stability. We observed that TPα degradation was significantly offset in IBOP-pretreated cells, but not when DPI was added to the IBOP treatment, consistent with ROS-dependent receptor stabilization. Interestingly, stabilization was evident only for the immature (39 kDa) form of the TPα, which localized to the ER fraction (data not shown). Taken together with the observed cellular localization of agonist-activated TPα in the Golgi, these data suggest that ROS-mediated TPα stabilization occurs early in TPα generation, driving immature receptor into the ER-Golgi biogenic pathway. NADPH oxidase subunits are ER localized in both vascular SMCs (47) and endothelium (48), placing this ROS-generating system in an appropriate cellular compartment for manipulation of ER-localized TP.

Under cyclohexamide-treated conditions, stabilization of immature TPα did not translate into a sustained elevation of mature receptor, perhaps because of simultaneous degradation of the mature receptor. Alternatively, the sensitivity of mature TP to cycloheximide in IBOP-pretreated cells may indicate that a chaperone, or other modifying protein, is required for trafficking of the TPα along its biogenic pathway. Indeed, several candidate mechanistic pathways for ROS-dependent upregulation of TPα expression exist. Exogenous H2O2 increases expression of ER chaperone proteins, such as HSP70 (49), and several members of the 14-3-3 family (50). Interestingly, 14-3-3ζ (51) is one of several reported TPα interacting proteins, along with RACK1 (52), Rab11 (53), and peroxiredoxin-4 (54). Recently, a ROS signaling pathway was implicated in TP-dependent activation of AMP-activated kinase in vascular SMCs (55). The contribution of these potential mechanistic pathways to homologous ROS-dependent TPα upregulation is currently being explored.

Both TxA2 (4, 56) and NADPH oxidases (57, 58) have an established role in atherogenesis and in the proliferative was involved. Indeed, given the consistent responses observed across different cell types, it is possible that more than one isozyme can subserve this function. However, since both apocynin and p47phox deletion can inhibit the function of Nox1, but not Nox4 (38), the former enzyme is a likely candidate. Currently, we are characterizing the particular NADPH oxidase subunits that direct regulation of its expression.

TP upregulation was also induced by the isoprostane iPε2III (Fig. 2C, D). Isoprostanes are free radical-catalyzed products of arachidonic acid that activate the TP in vivo (26). Like TxA2 (43), isoprostanes are elevated in syndromes of vascular disease and are thought to act as pro-atherogenic TP ligands (2, 3). Isoprostane formation in vitro (16) and in vivo (44) occurs secondary to activation of the NADPH
response to vascular injury. This study demonstrates that signa-
ling levels of ROS, derived from one or more NADPH oxi-
dases, drive a novel pathway of TP upregulation. Thus, while
the activated receptor is being internalized and degraded
(20), a distinct ROS-dependent feed-forward pathway drives
enhanced receptor biogenesis to ultimately increase expres-
sion of functional TP. Activation of this feed-forward loop
may underlie the augmented TP expression observed in
CVD (6, 7). In addition, oxidant-dependent mobilization
of an intracellular TP reserve, via this novel mechanism,
may explain the enhanced response to 8-isoprostaglandin
F2α, another TP-dependent isoprostane (2), in oxidatively
stressed isolated rat hearts (59). Conceptually, this feed-
forward loop is highly relevant to CVD where the milieu of
vasoactive mediators generated includes TxA2, isoprostanes,
and other NADPH oxidase activators.

The assistance of Ms. Jennifer Bruce is gratefully acknowledged.

REFERENCES

In Handbook of Cell Signaling. R. D. Bradshaw, editor. Academic

2. Cayatte, A. J., Y. Du, J. Oliver-Krasinski, G. Lavielle, T. J. Verbeuren,
and R. A. Cohen. 2000. The thromboxane receptor antagonist
S18886 but not aspirin inhibits atherogenesis in apo E-deficient
mice: evidence that eicosanoids other than thromboxane contrib-

and G. A. FitzGerald. 2005. Cyclooxygenases, thromboxane, and
atherosclerosis: plaque destabilization by cyclooxygenase-2 inhibi-
tion combined with thromboxane receptor antagonism. Circulation.
111: 334–342.

Grosser, J. A. Lawson, and G. A. FitzGerald. 2002. Role of prostacy-
296: 539–541.

5. Rudic, R. D., D. Bruster, Y. Cheng, S. Sries, W. L. Song, S. Austin, T. M.

6. Katugampola, S. D., and A. P. Davenport. 2001. Thromboxane re-
ceptor density is increased in human cardiovascular disease with
evidence for inhibition at therapeutic concentrations by the AT

Halushka. 1990. Increased platelet thromboxane A2/prostaglandin
81: 212–218.

platelet activation and oxidant stress in atherothrombotic dis-

tors, aspirin, and cardiovascular disease: a reappraisal. Arthritis

the cardiovascular consequences of COX-2 inhibition: therapeutic

phorylation and translocation of p47phox: role in superoxide gen-
eration by angiotensin II in human vascular smooth muscle cells.

2006. Hydrogen peroxide causes uncoupling of dopamine D1-like
receptors from G proteins via a mechanism involving protein kinase

2007. Hydrogen peroxide induces S1P1 receptors and sensitizes vas-
cular endothelial cells to sphingosine 1-phosphate, a platelet-

oxidative stress stabilization of the thromboxane receptor in COS-7

2004. Biprost inhibits superoxide formation and gp91phox expres-
sion induced by the thromboxane A2 analogue U46619, 6-sopropionate
F2alpha, prostaglandin F2alpha, cytokines and endotoxin in the pig

2005. Sildenafil inhibits the formation of superoxide and the ex-
pression of gp47 NADPH oxidase induced by the thromboxane
A2 mimetic, U46619, in corpus cavernosum smooth muscle cells.

18. Xu, S., B. Jiang, K. A. Mairland, H. Bayat, J. Gu, J. L. Nadler, S. Corda,
G. Lavielle, T. J. Verbeuren, A. Zuccollo, et al. 2006. The thromboxane
receptor antagonist S18886 attenuates renal oxidant stress and protein-

Dimerization of the human receptors for prostacyclin and throm-
boxane facilitates thromboxane receptor-mediated CAM genera-

2007. Regulation of thromboxane biosynthesis during coronary
thrombolysis. Evidence that platelet activation and thromboxane
A2 modulate the response to tissue-type plasminogen activator in vivo.
Circ. Res. 65: 85–94.

thromboxane biosynthesis during coronary thrombolysis. Evidence
that platelet activation and thromboxane A2 modulate the response
to tissue-type plasminogen activator in vivo. J. Biol. Chem. 264: 116–119.

22. Kelley, L. P., and B. T. Kinsella. 2003. The role of N-linked glycosyla-
tion in determining the surface expression, G protein interaction
and effector coupling of the alpha (alpha) isoform of the human

thromboxane biosynthesis during coronary thrombolysis. Evidence
that platelet activation and thromboxane A2 modulate the response
to tissue-type plasminogen activator in vivo. Circ. Res. 65: 85–94.

responses to the isoprostanes iPF(2alpha)-III and iPF(2)-II are
mediated via the thromboxane A(2) receptor in vivo. Circulation.
101: 2833–2840.

tion in determining the surface expression, G protein interaction
and effector coupling of the alpha (alpha) isoform of the human
thromboxane receptor (2) are mediated via the thromboxane A(2) receptor

27. Kelley, L. P., and B. T. Kinsella. 2003. The role of N-linked glycosyla-
tion in determining the surface expression, G protein interaction
and effector coupling of the alpha (alpha) isoform of the human
thromboxane receptor (2) are mediated via the thromboxane A(2) receptor

tion in determining the surface expression, G protein interaction
and effector coupling of the alpha (alpha) isoform of the human
thromboxane receptor (2) are mediated via the thromboxane A(2) receptor