Effects of dietary n-3 or n-6 fatty acids on interleukin-1beta-induced anxiety, stress and inflammatory responses in rats

Cai Song*, Xuwen Li*, Brian E. Leonard#, David F. Horrobin^

Department of Psychiatry, University of British Columbia, Canada*, Brain and Behaviour Research Institute, Academic Hospital Maastricht, University of Maastricht, The Netherlands#, Laxdale Research, Scotland, UK^ (deceased).

Running title: Effects of n-3 and n-6 fatty acids on IL-1-induced changes

Correspondence address: Cai Song (M.D., Ph.D.), Neuroscience Division, Department of Psychiatry, University of British Columbia, 2255 Westbrook Mall, Vancouver, B.C. Canada, V6T 2A1. Tel: 604-822-9756, Fax: 604-822-7981,
E-mail: caisong@interchange.ubc.ca

Abbreviations: AA, arachidonic acid; EPA, eicosapentaenoate acid; GLA, gamma-linolenic acid, IL, interleukin; PGE2, prostaglandin E2; HPA, hypothalamic-pituitary-adrenal.
Abstract

The present study demonstrated that an omega (n)-3 fatty acid, ethyl-eicosapentaenoic acid (Ethyl-EPA), supplemented diet significantly attenuated the stress/anxiety behavior of rats in the “open field” and elevated plus maze, which was induced by sub-chronic intracerebroventricular administration of proinflammatory cytokine interleukin (IL)-1β. Ethyl-EPA also reduced the rise in serum corticosterone induced by IL-1. The n-6 fatty acid, ethyl-γ-linolenic acid (GLA) had little effect on the IL-1-induced changes in behavior and the corticosterone concentration. Following IL-1β administration, ethyl-EPA reduced the elevated prostaglandin (PG) E2 secretion, and increased the secretion of anti-inflammatory cytokine IL-10, from whole blood cells. Ethyl-GLA showed a similar anti-inflammatory effect to ethyl-EPA. By contrast, n-6 fatty acid arachidonic acid (AA) had no effect on the behaviour, immune and endocrine changes induced by IL-1. AA alone enhanced the basal inflammatory response, raised serum corticosterone concentrations and induced anxiety behaviour in the elevated plus maze. The reduced growth rates of rats following the administration of IL-1 was attenuated by ethyl-EPA, and to a greater extent by ethyl-EPA plus ethyl-GLA, but not by AA alone or in combination with ethyl-EPA. Thus, ethyl-EPA would appear to antagonise the endocrine, immune and behavioural effects of sub-chronic IL-1 administration. Ethyl-GLA only antagonised IL-1-induced inflammatory changes, whereas AA caused an increase in the secretion of corticosterone and PGE2, and induced anxiety-like behaviour without enhancing the effects of IL-1.

Key words

EPA, GLA, AA, phospholipid supplementation, open field, inflammation, PGE2, IL-10.
Long-chain polyunsaturated fatty acids synthesized from dietary precursors such as α-linolenic and linoleic fatty acids are important components of membrane phospholipids in microglia, neurons and immune cells (1, 2). Free fatty acids released into the blood, or passing through the blood-brain barrier, can act at specific binding sites such as the peroxisome proliferator-activated receptor, ion channels, or at allosteric sites on various proteins (1, 2). Docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), synthesized from α-linolenic acids (18:3, n-3), and γ-linolenic acid (GLA) and arachidonic acid (AA) from linoleic acids (20:4, n-6), play major roles in membrane fluidity, lipid peroxidation, eicosanoid production, receptor and channel functions and gene expressions (1-3). Changes in the phospholipid content of neuronal membranes can result in changes in signal transduction, neurotransmitter release, enzyme activity and in neurotransmitter receptor and ion channel functions (1-3). Such changes have been implicated in the aetiology of mood disorder and stress response in man and behavioral changes in animals (1, 2, 4-6). In addition, changes in n-3 and n-6 concentrations have been linked to inflammatory and autoimmune diseases, including those affecting the brain, such as Alzheimer’s disease and multiple sclerosis (7-10). These diseases are associated with inflammation in the brain and disturbances in brain function (11-13).

The phospholipid composition of cell membrane varies with their functions (14). n-3 and n-6 fatty acids have been shown to fulfill different roles in the central nervous and immune system (2, 15). The precursor of the n-6 and n-3 long chain fatty acids may only be converted slowly to their longer chain metabolites and may have actions that differ from their metabolites (3). For example, AA, an n-6 fatty acid released from membranes by the action of phospholipase (PL) A2, can be converted to proinflammatory eicosanoids such as prostaglandin (PG) E2, leukotriene B4 and thromboxane (TX) A2. These three lipophilic molecules consequently induce
inflammatory responses, such as fever, proinflammatory cytokine synthesis, activation of phagocytosis and induce cytotoxic changes (9, 16). By contrast, GLA that is the precursor of AA has been shown to inhibit inflammation (21). n-3 fatty acids, such as EPA, a precursor of DHA reduce the synthesis of antibodies and pro-inflammatory cytokines, and suppress inflammatory responses by reducing membrane AA and eicosanoid synthesis (9, 17). A diet enriched with n-6 fatty acids has been shown to increase aggressive behavior in rodents, while one enriched with n-3 fatty acids reduced the stress response and improved learning and memory (18, 19). However, n-3 and n-6 fatty acids also interact with each other. For example, there is clinical evidence that ethyl-EPA improves symptoms of schizophrenia, an effect which may be related to an increase in AA synthesis (20), whereas a combination of EPA and GLA exhibit a greater anti-inflammatory effects than GLA or EPA alone (21). Therefore the interaction between n-3 and n-6 fatty acids at certain ratios would appear to be important for optimal membrane structure and functions, and for normal signal transduction processes (1-3). There is however much to be learned about the relationship between the n-3 and n-6 fatty acids.

The inflammatory response initiated or attenuated by the polyunsaturated fatty acids are linked to the synthesis of the pro- or anti-inflammatory cytokine. Interleukin (IL)-1β, the most potent pro-inflammatory cytokine has been found to induce stress and anxiety-like behaviour in rodents (22-24). This cytokine stimulates the hypothalamus to release corticotropin-releasing factor (CRF) which, via ACTH, induces the secretion of glucocorticoids from the adrenals. IL-1β also activates central neurotransmitters thereby increasing the turnover of noradrenaline, serotonin and dopamine. The observed changes are similar to those seen when rodents respond to a stressor (23, 25).
Recent studies have demonstrated that lipopolysaccharide and IL-1β can induce the expression of β-amyloid protein and trigger microglia to produce proinflammatory cytokines and antibodies that result in brain inflammation (26, 27). Some of the effects of IL-1β on brain function are mediated by prostaglandins (PGs) by activation of the PLA2-AA-COX2-PGE2 pathway during stress and also following immune stimuli (28). An inhibitor of cyclo-oxygenase (COX inhibitor) has been reported to block the IL-1-induced elevation of corticosterone and also the behavioral response to pain (29). The evidence presented above suggests that a neuroinflammation may be causally related to mental disturbance such as stress and anxiety. Because n-3 and n-6 fatty acids can modulate both CNS function and inflammatory response, these questions arise: 1) can single n-3 or n-6 fatty acid or a combination of both reverse changes induced by brain inflammation? and 2) what are the mechanism whereby the different types of fatty acids modulate the inflammatory changes? In the present study, the effect of diets enriched with different fatty acids and their combinations (ethyl-EPA, ethyl-GLA, AA, combination of EPA and GLA or EPA and AA) on anxiety, stress and inflammatory response induced in rats by the central administration of IL-1β was evaluated.

MATERIALS AND METHODS

Animals and treatment

Male Wistar rats (initially weighing 200-220g from Charles River, Quebec, Canada) were housed two per cage and maintained in a 12-hour of dark-light cycle, at 21±1 °C. After habituation for 3 days, the rats were divided into 12 groups of 10 rats and fed with one of 6 different diets for 6 weeks; 5% palm oil was fed to rats as a control diet. The experimental diets were 4.5 % palm oil mixed with 0.5% of each of fatty acid (ethyl-EPA, ethyl-GLA or AA) and
4% palm oil mixed with a combination of 0.5%EPA and 0.5%GLA, or a combination of 0.5%
EPA and 0.5% AA respectively. The rats in each group were either treated with saline or 15 ng
IL-1β by the intracerebroventricular (i.c.v.) route.

The body weights were determined twice weekly for the first 4 weeks during the pre-surgery
period in which animals received the diets described above. Following the surgical insertion of
the cannula for the i.c.v. administration, and following saline or IL-1 administration for 3 days,
body weights were then measured daily.

Diets and preparation

The basal mix (Rx 991698 from Harlan Teklad Test Diet, USA), palm oil (from Harlan Teklad
Test Diet, USA) and pure ethyl-EPA, ethyl-GLA and AA oil (from Laxdale Ltd, UK) were
stored at 4°C. The basal mix did not contain any fatty acids; 5% of the appropriate fatty acid
mixture was added to 95% of the basal mix. The composition of diets is listed in Table 1 (Insert
Table 1 about here). Palm oil was added to a beaker and then melted in a warm water bath (< 50
°C). The basal diet was then mixed with the palm oil followed by the addition of the appropriate
concentration of the other fatty acids. The food was freshly prepared every 3-4 days and stored at
4°C.

Surgery

All rats were anesthetized with 100 mg/kg ketamine and 20 mg/kg xylazine. Tetracycline was
used for treatment of the wound. A guide cannulae was stereotaxically implanted at a position 1
mm posterior and 1.6 mm lateral of the bregma, via a 1 mm-diameter burr hole. The guide
cannulae was inserted to 1 mm depth and secured to the skull with three screws using dental
cement. A dummy cannula was then screwed into the guide cannula (30). The animals were allowed to recover for 14 days.

IL-1β and i.c.v. injection

Rat recombinant IL-1β was obtained from NIBSC, Potters Bar, UK (biological activity: 317 IU/mg), and dissolved in sterile, pyrogen-free saline at doses of 15 ng/10 µl/rat and prepared for i.c.v. administration.

Rats were gently handled and held with a soft cotton towel daily for two weeks before the start of the i.c.v. injections. On the injection day, IL-1β or saline in a total 10 µl volume were taken into an internal needle (4.2 mm length) that was connected to a PE 50 polyethylene tube. After unscrewing the cap of a guide cannula, the needle was gently inserted into the guide cannula and IL-1 or saline was slowly infused into the brain over a period of 30 s. The injection needle was allowed to remain inside the guide cannula for 1 min, and then removed. Animals were returned to their cage after replacing the cap on the guide cannula. Rats were injected with saline or IL-1β every morning 50 min before behavioral testing (22).

Behavioral Tests

The open field apparatus was made of aluminium and consisted of a white open circular area with a 90 cm diameter. A grid was marked on the floor of the apparatus, divided into 60 squares of 10 cm² for quantifying locomotor activity. A 60 W bulb was positioned 90 cm above the centre of the apparatus. Rats were placed singly in the centre of the apparatus. The ambulation, rearing, grooming and defecation scores, and the number of entries into the central zone of the
apparatus, were recorded for a period of 3 min by means of a video camera (31). The apparatus was cleaned thoroughly with water after each animal had been tested.

The elevated plus maze consisted of an x-shaped maze elevated 1 m from the floor and comprised of 2 oppositely located enclosed and two open arms. The arms were 45 cm long and 10 cm wide. The rat was placed on the open central square formed by the arms at the start of each trial. The maze was lit by a 60 W bulb positioned in the centre of the room. On the day of testing, each rat was placed singly on the central square of the maze, facing the open arm (32). The entries into open and closed arms and the time spent on these arms were recorded over a 5-min observation period. The arms were cleaned thoroughly with water after each test session.

Release of IL-10 and PGE2 from whole blood culture

Blood samples, taken by cardiac puncture under halothane anesthesia, were incubated, with or without mitogens. The heparinized blood samples were diluted 1:10 with RPMI-1640 medium containing 1% of penicillin, phytohaemagglutinin, 5µg/ml, and lipopolysaccharide, 20 µg/ml. For a blank solution, the blood was diluted with RPMI-1640 containing 1% penicillin only. Samples (200 µL) were then pipetted into 24 well-plates pre-filled with medium (1800 µl) and incubated for 72 hours in a humidified atmosphere at 37°C, 5% CO2. After incubation, the plates were centrifuged at 1500 rpm for 15 minutes. The supernatant was removed under sterile conditions and frozen immediately at -70°C until the cytokine could be assayed (33).

The release of IL-10 and PGE2 were measured by a quantitative enzyme-linked immunosorbent assay (ELISA) (Biosource International, California, USA) and enzyme immunoassay (EIA) (Assay Designs, Inc., Ann Arbor, USA) respectively as described previously (33).
Measurement of corticosterone concentrations

Serum samples from trunk blood were used for the corticosterone measurement with a commercial radioimmunoassay kit (Immuchem corticosterone RIA kit for rats; catalogue No. RCBK9906A; ICN Biochemical, Costa Mesa, CA, USA). Intra- and interassay coefficients of variation were 6.8% and 5.6% respectively.

Histological examination.

After decapitation, brains were rapidly removed, placed on an ice block and the location of the cannulae and injection site were quickly checked by slicing the brain coronally. Data was excluded from any animals in which the injection site failed to reach the lateral ventricle.

Statistical analysis

Results were analyzed by two-way ANOVA (IL-1 x diet) followed by Newman-Keuls post hoc for the comparison between two groups (as shown in table 2 and figures). The statistical package was obtained from GB-STAT, Dynamic Microsystems, Inc. USA. Significance was set at a value of p<0.05. Results are expressed as mean ± SEM.

RESULTS

EPA and GLA, alone and in combination, prevents the reduction of body weight after surgery or central IL-1β administration

There were no significant differences between the 12 groups in the gain of body weight after feeding with different diets for the first 4 weeks (5% of palm oil: 126 g ± 7.07; 4.5% of palm oil and 0.5% of ethyl-EPA: 134.3 g ± 6.43; 4.5% of palm oil and 0.5% ethyl-GLA: 128.58 g ± 5.58;
4.5% of palm oil and 0.5% AA oil: 131.43 g ± 6.82; 4% of palm oil, 0.5% of ethyl-EPA and 0.5% ethyl-GLA; 140.13 g ± 7.33; 4% of palm oil, 0.5% of ethyl-EPA and 0.5% AA oil: 128.18 g ± 7.11). Three days following the implantation of the ventricular cannulae, the gain of body weight in the group fed with palm oil was significantly decreased (-4.44 g ± 2.11) when compared to the weight gain before surgery (8.75 g ± 3.36) (P < 0.05). This change was significantly attenuated in the group fed with the combination of ethyl-EPA and ethyl-GLA (F 5,115 = 3.89, p<0.05) (Figure 1A). The gain of body weight was significantly reduced in palm oil fed rats after i.c.v. IL-1β administration for 2 or 3 days (F 1,115 = 8.27, P<0.01) (data on day 2 not shown). When fed with ethyl-EPA alone, and in combination with ethyl-GLA, the weight reduction induced by central IL-1β administration were reversed (F 5,105 = 2.82, P<0.05) (Figure 1B). Ethyl-EPA in combination with AA or any single fatty acid has no effect on the gain of body weight after surgery or IL-1 administration (Figure 1). (Insert Figure 1 about here)

Effects of different diets on behaviors in the “open field” and elevated plus maze

Animals fed with different diets for 6 weeks did not show significant behavioral changes in the “open field” after i.c.v. saline administration. In the palm oil fed group, i.c.v. IL-1β administration significantly reduced the locomotor activity (number of squares crossed), exploration (number of rears) and central zone entries (locomotor: F1, 115 = 3.56, P<0.05; Rearing: F1, 115 = 3.33, P<0.05; central zone: F1, 115 = 2.91, P<0.05) (Table 2) (insert Table 2 about here). ANOVA analysis indicated that IL-1-induced changes were attenuated by the n-3 and n-6 fatty acids (Locomotor: F5, 105 = 7.94, P<0.0001; Rearing: F5, 105 = 7.65, P<0.0001; central zone: F5, 105 = 5.54, P<0.001). The scores returned to control levels in animals fed with ethyl-EPA when compared to the scores in rats fed with palm oil diet and treated with IL-1β
(P<0.05). Ethyl-GLA feeding alone slightly attenuated the reduction in locomotor activity and the reduction in rearing scores in the rats treated with IL-1β (P = 0.07). The combination of ethyl-EPA together with GLA or AA, or AA alone, did not significantly attenuate the effects of IL-1β (Table 2).

In the elevated plus maze, rats fed with AA oil and treated with saline showed a decrease in the ratio of the number of entries into open/closed arms when compared to the ratio in animals fed with palm oil (P<0.05) (Figure 2A). Rats fed with palm oil diets and treated with i.c.v. IL-1β significantly decreased the ratio of time spent in open/closed arms when compared to saline treated rats fed with palm oil alone (entry number: F1, 115 = 5.98, p<0.01; time spent: F1, 115 = 5.67, P<0.01) (Figure 2AB) (insert Figure 2 about here). These anxiety-like changes in the elevated plus maze were markedly attenuated by ethyl-EPA treatment (ratio number: F5, 115 = 9.51, P<0.0001; ratio time: F1, 105 = 5.18, P<0.001). The other fatty acids, fed alone or in combination, did not prevent IL-1-induced changes (Figure 2AB).

Changes in serum concentrations of corticosterone after IL-1 administration in rats with different diets

Four of the five diets did not significantly change the serum concentrations of corticosterone following saline treatment. A small but significant increase in corticosterone was found in rats fed with AA oil (P<0.05) (Figure 3). A marked increase in corticosterone concentrations occurred in IL-1β treated groups fed the supplemented diet with palm oil, ethyl-GLA, AA or the combination of ethyl-EPA and ethyl-GLA (F1, 115 = 11.58, P<0.0001) (Figure 3). Only ethyl-EPA treatment alone significantly blocked the elevation of corticosterone induced by IL-1β administration (P<0.05) (Figure 3) (Insert figure 3 about here).
Modulation of different fatty acids on IL-1-induced inflammatory response

When comparing PGE2 release from the blood of animals fed with palm oil after saline treatment, i.c.v. saline treatment did not cause significant changes in the release of PGE2 or IL-10 in animals fed with ethyl-GLA or a combination of EPA and ethyl-GLA. The ethyl-EPA supplemented diet suppressed PGE2 release from both non-stimulated and stimulated blood, while AA enhanced PGE2 release in stimulated blood (P<0.05). In non-stimulated blood, central IL-1β administration significantly increased PGE2 release in animals fed with palm oil when compared to the saline injected group on the palm oil diet (F1, 115) = 5.76, P<0.01). PGE2 release was blocked by a diet enriched with ethyl-EPA, or a combination of ethyl-EPA and ethyl-GLA, but not by other fatty acids (F5, 115) = 4.29, P<0.01). In mitogen-stimulated blood, IL-1β administration also induced a large increase in PGE2 release in animals fed with palm oil or AA oil (F1, 115 = 7.02, P<0.0001). This elevation was prevented by ethyl-EPA, ethyl-GLA or a combination of ethyl-EPA and ethyl-GLA (F5, 105 = 7.12, P<0.0001) (Figure 4) (insert Figure 4 about here).

IL-10 release from either non-stimulated or stimulated blood did not differ between the 12 groups following central saline injection. In non-stimulated blood, i.c.v. IL-1β administration induced a significant decrease in IL-10 release in most groups with exception of rats fed with a combination of ethyl-EPA and ethyl-GLA in which IL-10 release was significantly higher than that in animals fed palm oil alone (P<0.05). In mitogen-stimulated blood, IL-1β significantly suppressed IL-10 release in the palm oil fed groups (F1, 115) = 3.31, P<0.05), whereas, in animals fed with ethyl-EPA or ethyl-GLA, the reduction of IL-10 by IL-1 was significantly prevented (F5, 105 = 3.22, P<0.05) (Figure 5) (insert Figure 5 about here).
DISCUSSION

In the present study, the central administration of IL-1β significantly induced two types of changes. The first is an inflammatory-sickness response and the second a stress-anxiety-like response. The former response included lethargy (reduced locomotor activity), reduced body weight, enhanced PGE2 secretion and suppressed release of anti-inflammatory cytokine IL-10. The latter response consisted of a decrease in the ratio of the number of entries into and time spent in the open/closed arms of the elevated plus maze, and a decrease in exploration and central zone entries in the “open field”. The dramatic increase in serum corticosterone concentrations following IL-1β administration is also a reflection of a significant stress response.

Diets supplemented with n-3, n-6 fatty acids, or a combination of both, exerted different effects on stress/anxiety-like behavior and inflammatory response, which is probably related to different roles that fatty acids play in the modulation of inflammatory response and glucocorticoid secretion.

The anti-inflammatory effects of n-3 fatty acid EPA have been widely studied. Dietary supplementation with EPA inhibits the production of proinflammatory cytokines and suppresses macrophage and other immune functions in both human subjects and laboratory animals (16, 34, 35). A fish oil enriched diet has been shown to prevent weight loss and reduce the production of PGE2 and pro-inflammatory cytokines induced in rats by the systemic injection of lipopolysaccharide (36). Other investigators have shown that the anorectic effect of IL-1 is attenuated by n-3 fatty acids (52). In the present study, after surgery, the reduction of weight gain was partially attenuated in the group fed ethyl-EPA diet and significantly blocked in the group
fed with the combination of ethyl-EPA and ethyl-GLA. The IL-1β-induced reduction in the
growth rate was prevented in animals fed with ethyl-EPA or the combination of ethyl-EPA and
GLA. The effect of the combination was more marked. These results indicated that a
combination of ethyl-EPA and ethyl-GLA has greater anti-inflammatory effects than ethyl-EPA
alone for physical recovery from injury and inflammation.

Previous studies revealed that a GLA supplemented diet reduced the production of lipid
mediators of inflammation and attenuated clinical symptoms of chronic inflammatory diseases
(21, 37). Recently, GLA has been also found to reduce IL-1β release from monocytes (38).
However, it is known that GLA increases AA synthesis (21) and that the excessive synthesis of
AA may conversely lead to an increase in proinflammatory cytokines via the PLA2-COX2-
PGE2 pathway (9, 16). Conversely, a combination of EPA and GLA treatment has been reported
to suppress the generation of AA and the inflammatory mediator leukotrienes in the serum since
EPA blocks 5-desaturase activity, the terminal enzymatic step in AA synthesis (21). In the
present study, the ethyl-EPA and ethyl-GLA combination showed a greater effect than either
ethyl-EPA or ethyl-GLA alone in attenuating the reduction of body weight following surgery or
after IL-1β administration. However, neither the combination of ethyl-EPA and AA nor 0.5%
GLA supplemented diet significantly reverse this reduction in weight gain caused by IL-1.

The different effects of these fatty acids on body weight recovery or maintenance may be
partially related to the effects of fatty acids on inflammatory changes. It has been shown in the
present study, i.c.v. IL-1β administration induced a marked increase in the release of PGE2 and a
decrease in IL-10 in non-stimulated blood (baseline condition) in rats fed palm oil. After feeding
the rats with a diet enriched with ethyl-EPA or combination of EPA and GLA, these changes
were attenuated. Diets enriched with AA, or a combination with ethyl-EPA, did not significantly
prevent these inflammatory changes and also did not attenuate the IL-1-induced decrease in the body weight. Neither did the ethyl-GLA supplemented diet, that reduced PGE2 and increased IL-10 release in mitogen-stimulated blood (antigen stimulated condition), significantly reverse the weight decrease induced by IL-1β. However, it was also noted that the anti-inflammatory effect of ethyl-EPA was greater than the combination of EPA and GLA. Thus, there is a disparity between the effects of these fatty acids on the inflammatory response and the change in the body weight initiated by IL-1. Other mechanisms may be involved.

The “open field” apparatus is normally used to test animal response to a novel and stressful environment (31). In the “open field”, central IL-1β administration significantly reduced locomotor, rearing and central zone entries in the animals fed with the control diet of palm oil. In the elevated plus maze, a reduction of the ratio between number of entries into and time spent on open/closed arms was observed following IL-1β administration in animals fed with the control diet. In addition, the stress hormone corticosterone concentration was significantly increased following the cytokine infusion. These results suggest that IL-1 induced a stress and anxiety-like behaviour. We, and others, have reported similar findings previously (22, 24, 25). The present study demonstrates that an ethyl-EPA supplemented diet significantly attenuated the proinflammatory cytokine induced stress and anxiety-like behavior. The evidence observed from the present study strongly suggests that the behavioral modulation of ethyl-EPA on both stress and anxiety-like behavior may be related to the reduction in the stress hormone corticosterone. Thus, ethyl-EPA significantly blocked the elevation of corticosterone levels induced by IL-1β and also normalized the behaviour observed in both “open field” and elevated plus maze. Ethyl-GLA alone, or in combination with ethyl-EPA, did not prevent the increase in corticosterone levels or improve the behaviour. Furthermore, the AA supplemented diet increased
corticosterone concentration and induced anxiety-like behavior (reduced the ratio of entry number into open/closed arms in the elevated plus maze). This may be explained by the fact that an increase in the release of CRF by IL-1 is dependent on the release of eicosanoids of n-6 series (53). Previous studies by others have reported that n-6 supplemented diet increased aggressive behaviour in rats and that a diet enriched with AA oil increased corticosterone concentrations (54, 55). The n-6 fatty acid ethyl-GLA did not attenuate the stress response and corticosterone secretion, while n-3 fatty acids have been shown to reduce cardiovascular and adrenal responses following exposure to stress (39-42). In depressed patients, or in students exposed to psychological stress, EPA/AA was decreased and PGE2 was increased, which indicates that increased AA may play a role in stress or depression (5, 43, 44). The findings from the present study showed that AA increased corticosterone and PGE2, and decreased ratio number of entries into the open/closed arms, which was further support the clinical findings.

The suppressive effect of ethyl-EPA on corticosterone cannot be separated from its anti-inflammatory effects on PGE2. Among the three fatty acids, ethyl-EPA has the most potent anti-inflammatory property (as observed its effects on PGE2 and IL-10), which is significantly correlated with its suppression of corticosterone and normalization of stress and anxiety-like behavior. Ethyl-GLA alone, or in combination with EPA, has a mild anti-inflammatory action, did not block the corticosterone elevation induced by IL-1 and only slightly reduced anxiety-like behaviour. Conversely, AA increased PGE2 and corticosterone and increased anxiety-like behaviour. IL-1β induces changes in the inflammatory response and corticosterone secretion through the activation of PGE2 and its receptor (29, 45, 46). This cytokine also markedly increases gene expression of the PGE2 receptor in the several brain regions (47). The mechanism by which ethyl-EPA suppresses PGE2 may be via the inhibition of eicosanoid synthesis (9, 16,
34), whereas the reduction in corticosterone secretion following stress by the combination of EPA and GLA could arise from a reduction in the availability of cholesterol, the precursor of corticosterone (48). The lack of effect of ethyl-GLA alone, or in combination with ethyl-EPA, on the behavior may be explained by the GLA induced synthesis of AA that results in increases corticosterone and PGE2 (9, 55).

In a previous study, we found that 0.2% EPA partially but significantly, and 1% EPA completely, reversed some changes induced by IL-1β (50). Little is known about the optimal dose of GLA which modulates inflammatory processes in the brain. In addition, there appears to be no consistent information on n-3 and n-6 ratios used by other investigators. Several studies reported that optimal ratio of n-3: n-6 is 1: 4 (49). The reason that we chose a 1: 1 ratio in the present study is based on the following evidence:

(1) In a pilot experiment, the ratio 1: 4 (EPA: GLA) did not reverse IL-1 induced changes.
(2) We have previously reported that soy bean oil in which ratio of n-3: n-6 is 1: 7 cannot reverse IL-1-induced changes (50, 51),
(3) Others have reported that when n-6 concentration in the brain is high, a much higher ratio between n-3: n-6 (1: 1 or 2: 1) was needed to reverse abnormal behavioral induced by n-3 deficiency (19).
(4) After central IL-1β infusion, inflammation may increase n-6 synthesis and metabolism.

However, in the present study, even a ratio of EPA: GLA of 1: 1, did not significantly attenuate some of behavioral and inflammatory changes. In future studies, a higher dose of ethyl-GLA, and different ratios between EPA and GLA or AA, shall be studied.

In summary, the present study demonstrated that n-3 fatty acid ethyl-EPA at 0.5% of total dietary fat significantly reversed central IL-1β induced stress and anxiety-like behaviour, stress
hormone secretion and inflammatory responses in both non- and stimulated blood. An ethyl-GLA supplemented diet, at the same dose, significantly blocked increased PGE2 and decreased IL-10 induced by IL-1β in mitogen-stimulated blood but did not significantly attenuate the elevated corticosterone and stress and anxiety-like behaviour. A 0.5% AA supplemented diet significantly increased PGE2 and corticosterone secretion and induced anxiety-like behavior in the elevated plus maze. This n-6 fatty acid lacked an effect on IL-1-induced changes. The combination of ethyl-EPA and ethyl-GLA synergistically prevent the reduction of body weight after surgery or IL-1β administration, corrected some inflammatory changes but did not significantly affect the corticosterone and behaviour induced by IL-1β. The combination of ethyl-EPA and AA did not affect any of the changes induced by IL-1β. These results indicate that among three different fatty acids at 0.5% concentration, EPA treatment alone is more effective in the modulation of stress hormone corticosterone, stress and anxiety-like behavior, which were increased by IL-1β. The range of anti-inflammatory effects of these fatty acids on IL-1-induced changes in the release of PGE2 and IL-10 appeared as ethyl-EPA > ethyl-EPA+GLA > ethyl-GLA > AA. However, the combination of EPA and GLA was more effective for body weight recovery following a surgery and IL-1 administration.

Acknowledgement: The authors thank Professor A.G. Phillips for providing the facilities to enable this study to be undertaken. Thanks are also due to Miss Shannon Zhao for her assistance with animal care and weight measurement. This work was financially supported by Laxdale Ltd, Scotland, UK and CIHR, Canada.
REFERENCES

on some behavioural, neurochemical, endocrine and immune parameters in the rat.

Neuroscience 84: 923-933.

ammlinolenic acid, an unsaturated fatty acid with anti-inflammatory properties, modulates

39. Ling, P. R., Boyee, P., and B. R. Bistrain. 1998. Role of arachidonic acid in the regulation of
the inflammatory response in the TNF-alpha-treated rats. *JPEN. J. Patenter Enteral Nutr.* **22**:
268-275.

Release of arachidonic acid and the effects of corticosteroids on steriodogenesis in rat testies

Effects of dietary gamma-linolenic acid on blood pressure and adrenal angiotensin receptors

42. Rousseau, D., Moreau, D., Reaserstorff, D., Sergiel, J. P., Rupp, H., Muggli, R., and A.
Grynberg. 1998. Is a dietary N-3 fatty acid supplement able to in-fluence the cardiac effect of

levels in the diet and in red blood cell membranes of depressed patients. *J. Affect Disord.* **48**:
149-155.

acid composition in major depression: decreased omega 3 fractions in cholesteryl esters and
increased C20: 4 omega 6/C20:5 omega 3 ratio in cholesteryl esters and phospholipids. *J
Affect Disord* **38**: 35-46.

TABLE 1. The Nutrition Composition in Basal Mix Diet

<table>
<thead>
<tr>
<th>Names</th>
<th>g/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein, “Vitamin-Free” Test</td>
<td>202.11</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>3.16</td>
</tr>
<tr>
<td>Sucrose</td>
<td>688.39</td>
</tr>
<tr>
<td>Cellulose</td>
<td>52.63</td>
</tr>
<tr>
<td>Mineral Mix, AIN-93-MX (TD 94046)</td>
<td>36.85</td>
</tr>
<tr>
<td>Calcium Phosphate, dibasic CaHPO4</td>
<td>3.69</td>
</tr>
<tr>
<td>Vitamin Mix, AIN-93-VX (TD 94047)</td>
<td>10.53</td>
</tr>
<tr>
<td>Choline Bitartrate</td>
<td>2.64</td>
</tr>
</tbody>
</table>
TABLE 2. Effects of n-3 and n-6 fatty acids on animal behavioral in “open field” following i.c.v. administration of IL-1β

<table>
<thead>
<tr>
<th></th>
<th>Locomotor</th>
<th>Rearings</th>
<th>Central entries</th>
</tr>
</thead>
<tbody>
<tr>
<td>5%Palm oil</td>
<td>132.0 ± 12.95</td>
<td>17.12 ± 1.3</td>
<td>1.6 ± 0.21</td>
</tr>
<tr>
<td>5%Palm oil + IL-1</td>
<td>76.37 ± 11.96 **</td>
<td>8.0 ± 2.33 *</td>
<td>0.1 ± 0.1 *</td>
</tr>
<tr>
<td>0.5%EPA</td>
<td>106.8 ± 6.36</td>
<td>15.88 ± 1.37</td>
<td>1.5 ± 0.42</td>
</tr>
<tr>
<td>0.5%EPA+IL-1</td>
<td>112.33 ± 12.17 #</td>
<td>15.13 ± 1.34 #</td>
<td>1.44 ± 0.50 #</td>
</tr>
<tr>
<td>0.5%GLA</td>
<td>121.4 ± 11.67</td>
<td>15.0 ± 2.76</td>
<td>1.2 ± 0.46</td>
</tr>
<tr>
<td>0.5%GLA+IL-1</td>
<td>108.7 ± 13.28</td>
<td>13.8 ± 1.95</td>
<td>0.4 ± 0.16</td>
</tr>
<tr>
<td>0.5%AA</td>
<td>149.88 ± 14.85</td>
<td>16.78 ± 1.49</td>
<td>1.6 ± 0.54</td>
</tr>
<tr>
<td>0.5%AA+IL-1</td>
<td>95.37 ± 16.82 *</td>
<td>8.0 ± 1.98</td>
<td>0.78 ± 0.36</td>
</tr>
<tr>
<td>EPA+GLA</td>
<td>124.62 ± 4.58</td>
<td>14.25 ± 1.71</td>
<td>2.45 ± 0.35 ^</td>
</tr>
<tr>
<td>EPA+GLA+IL-1</td>
<td>99.0 ± 7.86</td>
<td>10.0 ± 1.68</td>
<td>0.5 ± 0.26 *</td>
</tr>
<tr>
<td>EPA+AA</td>
<td>113.1 ± 6.68</td>
<td>14.6 ± 2.2</td>
<td>1.5 ± 0.34</td>
</tr>
<tr>
<td>EPA+AA+IL-1</td>
<td>93.5 ± 11.43</td>
<td>8.1 ± 2.19</td>
<td>0.8 ± 0.32</td>
</tr>
</tbody>
</table>

*p<0.05, **P<0.01 versus the group with the same food + saline. # p<0.05 versus palm oil + IL-1 group; ^p<0.05 versus GLA+saline. N= 8-11.
Legends

Fig. 1. The effect of diets enriched with n-3 and n-6 fatty acids on the gain of body weights 3 day after surgery or 3 days after IL-1β or saline administration. * p<0.05 versus the palm oil with saline injection. # p<0.05, ##p<0.01 versus palm oil with IL-1β administration, n = 9-11.

Fig. 2. The effect of diets enriched with n-3 and n-6 fatty acids on behavior in the elevated plus maze after i.c.v. IL-1β or saline administration. *p<0.05 versus the group fed with same diet and with saline injection; #p<0.05 versus Palm+IL-1β group, ^p<0.05 versus palm oil with saline n = 9-11.

Fig. 3. The effect of diets enriched with n-3 and n-6 fatty acids on corticosterone secretion after i.c.v. IL-1β or saline administration. *p<0.05, **p<0.01 versus the group fed with same diet treated with saline; #p<0.05 versus the group fed with palm oil + IL-1β; ^p<0.05 versus palm oil with saline, n = 9-11.

Fig. 4. The effect of diets enriched with n-3 and n-6 fatty acids on PGE2 release after i.c.v. IL-1β or saline administration. * p<0.05 versus the group fed with palm oil and treated with saline; #p<0.5, ##p<0.01 versus palm oil with IL-1β administration, n = 9-11.

Fig. 5. The effect of diets enriched with n-3 and n-6 fatty acids on IL-10 release after i.c.v. IL-1β or saline administration. * p<0.05 versus the palm with saline injection. # p<0.05 versus palm oil with IL-1β administration, n = 9-11.