Placental triglyceride accumulation in maternal type 1-diabetes is associated with increased endothelial and hormone sensitive lipase gene expression.

Marie L. S. Lindegaard¹, Peter Damm², Elisabeth R. Mathiesen³, Lars B. Nielsen¹

¹Departments of Clinical Biochemistry, ²Obstetrics and ³Endocrinology, Rigshospitalet, University of Copenhagen, Denmark.

Running title: Placental lipase expression in diabetes.

Correspondence and reprint requests to:
Lars B. Nielsen, Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark. Tel.: +45-35453011, fax: +45-35452524
Email: Larsbo@rh.dk

Abbreviations: EL, endothelial lipase; FFA, free fatty acid; HDL, high/density lipoprotein; HSL, hormone sensitive lipase; LAL, lysosomal acid lipase; LPL, lipoprotein lipase; TG, triglyceride; VLDL, very low density lipoprotein.
ABSTRACT

Maternal diabetes can cause fetal macrosomia and increased risk of obesity, diabetes and cardiovascular disease in adulthood of the offspring. Although increased transplacental lipid transport could be involved, the impact of maternal type 1-diabetes on molecular mechanisms for lipid transport in placenta is largely unknown. To examine whether maternal type 1-diabetes affects placental lipid metabolism, we measured lipids and mRNA expression of lipase encoding genes in placentas from women with type 1-diabetes (n=27) and a control group (n=21). The placental triglyceride concentration and mRNA expression of endothelial lipase (EL) and hormone sensitive lipase were increased in placentas from women with diabetes. The differences were more pronounced in women with diabetes and sub-optimal metabolic control than in women with diabetes and good metabolic control. Placental mRNA expression of lipoprotein lipase and lysosomal lipase were similar in women with diabetes and the control group. Immunohistochemistry showed EL protein in syncytiotrophoblasts facing the maternal blood and endothelial cells facing the fetal blood both in placentas from normal women and women with diabetes. The results suggest that maternal type 1-diabetes is associated with triglyceride accumulation and increased endothelial and hormone sensitive lipase gene expression in placenta and that optimal metabolic control reduces these effects.

Key words: diabetes, free fatty acids, placenta, triglyceride.
INTRODUCTION

Patients with diabetes mellitus display increased levels of blood glucose and abnormal lipid metabolism (1). Moreover, maternal diabetes affects lipid metabolism in the offspring (2), and infants of mothers with diabetes often display dyslipidemia and macrosomia (3;4). The Pedersen hypothesis suggests that fetal hyperinsulinemia (secondary to maternal hyperglycemia) causes fetal growth and result in macrosomia (5). However, infants of mothers with diabetes also have increased fat deposition and several papers have supported the theory that increased lipid transport from the mother contributes to fetal macrosomia (6;7). It has become increasingly clear that the intrauterine milieu in pregnancies of women with diabetes can have profound effects on the offspring later in life with increased susceptibility to obesity, diabetes, and cardiovascular disease; all associated with dyslipidemia. This phenomenon is referred to as “fetal programming” (8;9).

Lipid transport to the fetus across placenta involves active transport of free fatty acids (FFA). FFAs can be derived from FFAs bound to albumin or from lipoprotein-associated triglycerides (TGs) and phospholipids. Albumin-bound FFAs in the maternal blood are probably transferred directly to the placental membrane-fatty acid binding protein (FABP). FFA release from lipoprotein-TGs and phospholipids requires lipase activity. Both lipoprotein lipase (LPL) and endothelial lipase (EL) are highly expressed in placenta and have the capacity to hydrolyze lipoprotein TGs and phospholipids (10-12). In the cytosol of the syncytiotrophoblast, FFAs may be re-esterified and deposited as TGs or phospholipids and hydrolyzed for later release into the fetal circulation (13). Lysosomal acid lipase (LAL) and hormone sensitive lipase (HSL) are intracellular lipases that are capable of hydrolyzing triglycerides and cholesteryl esters; both are expressed in human placental tissue (14;15).

Previous studies detected lipase activities in human placenta and some have addressed the impact of maternal diabetes (16-18). However, the results have been divergent and the interpretation
complicated by uncertainties about the identity of the lipase activities measured. Also, in these studies the numbers of patients with diabetes included have been fairly small (n<10) and no or very little information were given about the metabolic control of the mothers with diabetes during pregnancy.

Earlier, other groups have presented studies suggesting that diabetes might increase the expression of lipase genes (e.g. HSL and LPL) in various tissues (19-23). Thus, we hypothesized that maternal diabetes affect the expression of lipase genes in placenta. To test this idea and to examine whether variation in expression of lipase genes might be associated with placental lipid accumulation, fetal plasma lipid concentration or perhaps fetal weight, we examined placentas and fetal plasma lipids in a well-defined group of diabetes and healthy controls.
METHODS AND MATERIALS

Collection of blood and tissue samples

Thirty-six women with type 1-diabetes and 24 healthy women (controls) were included in a prospective manner from the outpatient clinic at Department of Obstetrics, Rigshospitalet, Copenhagen after having received verbal and written information on the study. All participating mothers gave informed written consent. All women visited the obstetric outpatient clinic at Rigshospitalet, Copenhagen for prenatal care on a regular basis during their pregnancy. The women with diabetes were recruited during one of these visits at 34 gestational weeks. The women in the control group were either contacted and informed by phone, while at home, or recruited when attending an information meeting prior to having an elective cesarean section.

All healthy pregnant women in our department are screened for gestational diabetes by a risk factor based procedure (24). Exclusion criteria for this study were delivery before 34 weeks of gestation, diabetic nephropathy, preeclampsia, and other medically treated illnesses than diabetes. The study protocol was approved by the local ethics committee (Ref.# KF 01-048/01). All baseline data of mother and child were obtained from the medical records.

Maternal venous blood for lipid and hemoglobin A1c (HbA1c) measurements was drawn before elective delivery by induction of labour, elective cesarean section or when entering the obstetric ward in spontaneous labour. The reason for collecting the blood samples at this time point was to keep the discomfort for the women included in the study to a minimum. This way, in the majority of women with diabetes, the blood was drawn from an intravenous line established routinely, and therefore, they did not have to suffer the discomfort of an additional venous puncture. All measurements were carried out after delivery. The umbilical cord was doubly clamped immediately after delivery and venous blood was drawn into ethylenediaminetraacetic acid (EDTA)-containing tubes (1.5 mg/ml). The tubes
were immediately placed on ice, centrifuged, and stored at -20 °C for 1-3 days and then at -80 °C until analysis. Transplacental biopsies (0.2-0.6 g) from the center (close to insertion of the umbilical cord), the periphery, and the part in between were snap frozen in liquid nitrogen and stored at -80 °C. From 6 patients we only obtained placental biopsies from the middle part. Only samples that were frozen within 40 minutes after delivery were included. Placental biopsies from 2 women with type 1- diabetes and 2 normal women were fixed in 4 % paraformaldehyde, pH 7.0, (Bie & Berntsen, Rodovre, Denmark) for immunohistochemistry. Twelve women were excluded from the study on the following grounds: from 6 women (5 from the diabetes group and 1 from the control group) only fetal venous blood samples and no placenta samples were collected, 4 placentas (3 from the diabetes group and 1 from the control group) were collected after 40 minutes after delivery, in one woman with diabetes glycosylated hemoglobin (HbA1c) was not measured, and one woman from the control group had a HbA1c-value = 6.8 %, which is well above the normal range for pregnant women (25). We did not find any correlation between lipase gene expression and time from placental birth to snap freezing of samples.

Plasma and tissue biochemistry

Plasma total cholesterol and TGs, high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterol were measured with a Modular Analytics module P, Roche, (Hvidovre, Denmark) using enzymatic assays (Cholesterol, cat. no. 11491458; HDL, cat. no. 03045935; LDL, cat. no. 03038777; TGs, cat. no.11730711). HbA1c was measured by high performance liquid chromatography (26). With this assay the reference interval of a general population sample is 4.1-6.4 %.
Placental lipids were extracted from biopsies taken from the part between the center and the periphery with chloroform/methanol (27). After washing and drying (28), lipids were redissolved in isopropanol with 1% Triton-X (vol/vol) before quantification of cholesterol, TGs, and phospholipids in duplicate with enzymatic assays (cholesterol: CHOD-PAP, ROCHE; TGs: GPO-Trinder, Sigma, Vallensbæk Strand, Denmark; # 337-40A and -10B; phospholipids: Phospholipids B, Wako Chemicals GmbH, Neuss, Germany). The coefficients of variation of duplicate measurements were \( \leq 3\% \).

**mRNA quantification**

Total RNA was isolated with TriZol (Invitrogen, Taastrup, Denmark). Each of three biopsies (from the center, the middle, and the periphery of placenta) from one placenta was homogenized in 1 ml Trizol/100 mg frozen tissue. Equal amounts of the 3 homogenates were then pooled and RNA isolation was carried out following the manufacturers protocol. The RNA integrity was assured with a RNA Name LabChip® (Agilent Technologies Denmark A/S, Naerum, Denmark) and the RNA concentration was assessed from the absorbance at 260 nm. First strand cDNA was synthesized from 1 µg of total RNA with Moloney murine leukemia virus reverse transcriptase (40 units, Roche A/S, Avedore, Denmark) and random hexamer primers in 1-µl reactions. The primers for EL (hEL-51: 5’-GTATGCAGGCAACTCTCGTGA-3’ and hEL-31: 5’-TGATCCCAAGACATCGTTGA-3’), LPL (hLPL-53: 5’-GAGATTTCTCTGTATGGCAC-3’, hLPL-33: 5’-CTGCAAATGAGACACTTTCT-3’), HSL (hHSL-51: 5’-GGAAGGCACTTTCTGAGTGGG-3’ and hHSL-31: 5’-GTGATTCCGAGCACTGGTTT-3’), LAL (hLAL-51: 5’-CTGGTTTTGACGTGTGGATG-3’ and hLAL-31: 5’-GCCTTGAGAATGACCCACAT-3’), HL (hepatic lipase) (hHL-51: 5’-TCCCCTGTGTTTCTCCATTC-3’) and (hHL-31: 5’-TAACGTGTCCGGATGATTG-3’) and \( \beta \)-actin (29) were obtained from Sigma-Genosys 7.
(Pampisford, United Kingdom). hEL-51 and hEL-31 span intron 4 in the human EL gene (*LIPG*),
hLPL-53 and hLPL-33 span intron 7 and 8 in the human LPL gene (*LPL*), hLAL-51 and hLAL-31 span
intron 4 in the human LAL gene (*LIPA*), hHL-53 and hHL-31 span intron 1 in the human HL gene
(*LIPC*), while hHSL-51 and hHSL-31 are located in exon 1 of the human HSL gene (*LIPE*).

The specificity of each PCR was confirmed by DNA sequencing of upper and lower
strands of RT-PCR transcripts. Real-time PCR analyses were done with a LightCycler and a FAST
START DNA MASTER SYBR Green kit (Roche A/S, Hvidovre, Denmark). The PCR reactions (20 µl)
contained 2 µl of SYBR Green I mixture, 2-3 mM MgCl2, 10 pmol of each primer, cDNA synthesized
from 2 ng of total RNA, and PCR grade H2O. The relationship between the time point of the log-linear
increase in fluorescence and the concentration of a mRNA transcript was determined in each run by
analyzing the dilution series of cDNA made from 20, 2, 0.2 and 0.02 ng of total RNA from a pool of
human placentas. For genes that appeared to be differentially expressed in placentas from normal
women and women with diabetes, the results were reassessed by analyzing all samples in separate runs.
Coefficients of variation for the real time PCR assays were assessed from variation between duplicate
analyses or by measuring the same sample 4-12 times on each of 3 different days and were 4% - 11%.
The mRNA copy numbers of EL, LPL, HSL, and LAL in human placenta were estimated by parallel
real-time PCR-analysis of placental cDNA and dilution series of purified PCR transcripts (30).

*Immunohistochemistry*

To raise an EL antiserum a 21 amino acid-peptide corresponding to the loop-shaped lid
region of EL was used for immunization of randomly bred white Danish rabbits as described
previously (10). Blood was collected from an ear vein, and the serum was stored at -20 °C. For LPL
immunohistochemistry, serum-IgG from a rabbit that had been immunized with LPL purified from
bovine milk (31) was isolated on a Protein-A column (IgG from rabbit 4, $A_{280} = 0.79$, a kind gift from Gunilla Olivecrona, Department of Medical Biosciences, Physiological Chemistry, Umeå University, Sweden).

Placental biopsies were fixed 12-16 hours in 4 % paraformaldehyde, pH 7.0, (Bie & Berntsen, Rodovre, Denmark), embedded in paraffin, cut in 2-3-µm thick sections, mounted on SuperFrost® Plus slides, and baked at 60 °C for 30 minutes. Paraffin was removed with xylene for 10 minutes, and the sections were rehydrated through a series of alcohol solutions before treated with 1 mM citric acid, pH 6.0 at 100 °C for 15 minutes and with 1 % $H_2O_2$ for 10 minutes. After washing with distilled water, sections were incubated at room temperature with 5 % porcine serum (DAKO # P0399) in TBS (Tris 0.05 M, NaCl 0.15 M, and Triton X-100 0.01 %, pH 7.6) for 20 minutes and EL antiserum (1:500) or anti-LPL IgG (1:1000) was diluted with 5 % porcine serum in TBS for 1 hour before washed thrice for 5 minutes in TBS. Bound antibodies were visualized with the EnVision™+ System/HRP, Rabbit (DAB+) (DAKO, Cytomation, #K4011, Glostrup, Denmark). Finally, after washing in distilled water, sections were dehydrated through a series of alcohol solutions, and mounted in Pertex (# 00801, HistoLab Products Ab, Göteborg, Sweden).

Statistics

Data are presented as mean with standard deviations (SD). Comparisons between groups were performed with analysis of variance or Kruskal-Wallis test. ANOVAs were, followed by Dunnet´s multiple comparison tests and/or test for linear trend between mean and column number when appropriate.
RESULTS

Basic characteristics of study groups

To study a homogenous group of women with diabetes only women with type 1-diabetes and not with gestational or type 2- diabetes were included. The women with type 1-diabetes were divided into two groups according to their haemoglobin A1c (HbA1c) before delivery. Arbitrarily, women with a HbA1c below the median (6.2 %) were considered in good metabolic control (5.2 - 6.1 %), while women with HbA1c at or above the median were considered in sub-optimal metabolic control (6.2 - 7.0 %). In the control group, the HbA1c ranged from 5.0 % to 5.9 %. All pregnant women in our department are screened for gestational diabetes by a risk factor based procedure (24). The gestational age was slightly lower, whereas weight and length of the infants were larger in the groups with diabetes than in the controls (Table 1).

Maternal, fetal and placental lipids

Maternal plasma total cholesterol, total TGs, and lipoprotein cholesterol concentrations were similar in the groups with diabetes and the control group (Table 2). Also, fetal total cholesterol and total TGs did not differ significantly when comparing the control group with each of the 2 groups with diabetes. Nevertheless, the ratio of fetal to maternal plasma TG concentrations was significantly higher in pregnancies of women with diabetes (Table 2).

Maternal diabetes had a significant effect on the placental TG content, which increased with increasing HbA1c (Fig.1A), but did not affect the placental cholesterol or phospholipid concentrations (Fig.1B and C).

Impact of maternal diabetes on expression of lipase genes in placenta
Initially we assessed the placental expression of the 5 major TG lipase genes by comparing their mRNA copy numbers in transplacental biopsies (one from the center of placenta close to insertion of the umbilical cord, 4 from the periphery and 4 from the region in between) from each of 3 normal placentas. There were no differences in the expression of any of the lipases between the sites from where the biopsies were collected (data not shown). LAL had the highest mRNA copy number followed by LPL, EL and HSL. HL mRNA was not detectable in placenta (Fig. 2).

Maternal diabetes conferred an increased placental EL mRNA expression as well as HSL mRNA expression (Fig. 3A and C). EL mRNA expression was 26 % higher (p<0.03) and HSL mRNA expression was 41 % higher (p<0.04) in placentas from women with type 1-diabetes and sub-optimal metabolic control compared with the controls. There was no effect of maternal diabetes on the placental expression of mRNA encoding either LPL (Fig. 3B) or LAL (Fig. 3 D). However, we found a positive association between fetal triglyceride level and the expression of LPL mRNA in placenta when combining placentas from healthy women and women with diabetes ($r = 0.33, p < 0.03$) (Fig. 4). We did not find any correlations between lipase gene expression and infant birthweight, or gestational age (data not shown).

Protein localization of placental extracellular lipases

The cellular pattern of EL expression in placenta was examined with immunohistochemistry and compared with that of LPL. Both proteins were associated with syncytiotrophoblasts facing the maternal blood and endothelial cells facing the fetal blood. LPL was also seen in macrophage-like cells. The staining patterns of EL and LPL were similar in placentas from 2 normal women and 2 women with diabetes (Fig. 5).
DISCUSSION

Previous studies suggest that pregnancies of women with diabetes are associated with dyslipidemia not only in the mother but also in the fetus, at least when the maternal diabetes is poorly controlled (2). Thus, it has previously been suggested that fetal lipid accumulation is caused by an increased maternal to fetal lipid concentration gradient (32). During the last decade it has become known that strict glycemic control before and during pregnancy is important to minimize the risk of fetal complications including macrosomia (3). In the present study we examined mothers with type 1-diabetes that were fairly well controlled as reflected by the relatively low HbA1c concentrations (5.2-7.0 %) at time of birth. Interestingly, although the mothers with diabetes had plasma lipid concentrations and placental weights that did not differ from those in the control group, the placental TG concentration and fetal to maternal ratio of plasma TGs were elevated in pregnancies of women with diabetes. These results may reflect increased lipid uptake by the placenta and perhaps delivery to the fetus in mothers with diabetes even though they are good glycemic control and have plasma lipid levels that are similar to those in the controls. Of note, relatively high plasma LDL and triglyceride concentrations, similarly to those in the present study, have previously been discovered in pregnant women during late gestation (33). The finding of increased expression of EL and HSL mRNAs in placentas from the women with diabetes further supports the idea that maternal diabetes has direct effects on placental lipid metabolism.

EL is a member of the TG lipase family. Like the other members of this family it works extracellular and is associated with heparan sulphate proteoglycans in the lumen of the vessel where it exerts phospho- and TG lipase activities on plasma lipoproteins (34;35). Its lipase activity results in the release of free fatty acids, which subsequently can be transported into cells and stored as TGs. EL may also “bridge” lipoproteins to the cell surface and mediate the uptake of lipoprotein lipids in a lipase
independent fashion (34;36). Thus, we speculate that increased placental EL expression in pregnancies of women with diabetes might enhance the supply of free fatty acids and/or TGs to the syncytiotrophoblasts and subsequently be responsible for the increased deposits of the TGs as was detected in the placentas from women with diabetes. It should be noted that EL was present both on the maternal and fetal side of the placenta in women with diabetes. There was no association on linear regression analysis between placental EL mRNA expression and fetal plasma HDL concentration. As such, our results cannot definitively establish whether increased EL expression will increase the uptake of fatty acids from the maternal or fetal circulation or both.

Hormone-sensitive lipase (HSL) is an intracellular lipase that hydrolyzes triacylglycerols, diacylglycerols, monoacylglycerols, and cholesteryl esters. Thus, if increased HSL mRNA expression results in increased HSL activity, the present finding of increased HSL expression in placentas from women with diabetes implies that maternal diabetes may result in increased release of free fatty acids from intracellular TGs and subsequent increased supply to the fetal circulation. Hence, increased HSL expression could be at least partly accountable for the increased ratio of fetal to maternal plasma TG concentrations we find in pregnancies of women with diabetes. We must emphasize, however, that our conclusions based on mRNA expression levels must be subjects to reservations since we do not have matching protein levels to support the data.

Although previous studies have found that the HSL mRNA level in adipose tissue is increased in response to streptozotocin-induced diabetes in rats (23), we are not aware of reports on regulation of EL gene expression due to metabolic disturbances. Since diabetes has been associated with increased LPL expression in various tissues (19-22), we would not have been surprised to see an up-regulation of the placental LPL mRNA expression, but this was not the case. Also, we did not find any difference between the groups in the expression of LAL mRNA or in secretory phospholipase A2.
group IIa mRNA (data not shown). We cannot rule out an up-regulation of placental LPL gene expression in a scenario of more severe diabetes. Indeed a recent study reported increased LPL activity in placentas from women with type 1-diabetes (17). We have recently found that the major part (~95%) of LPL protein in placenta is inactive, and only a small fraction appears to be active (10). In rats, feeding results in conversion of inactive monomeric LPL to active dimeric LPL (37). Therefore, it is possible that maternal diabetes could result in conversion of inactive to active LPL. Human post-heparin plasma LPL activity and LPL activity in rat adipose tissue decrease late in gestation (38-40). Thus, LPL mRNA expression at parturition might not reflect LPL mRNA expression earlier in pregnancy. Of note, however, there was no correlation between placental LPL mRNA expression and gestational age in the present study. Interestingly, there was a positive association between placental LPL mRNA expression and fetal triglyceride concentration, which may imply interactions between placental and fetal triglyceride metabolism. Thus, it is conceivable that dissociation of FFAs from TGs by placental LPL is important for delivering fat from the maternal to the fetal circulation.

Previous studies on placental lipases have mainly focused on placental lipase activities rather than expression of specific individual lipase genes or their products, and the relative contribution of the individual lipase gene products to total placental lipase activity is unknown. In this study we compared gene copy numbers of 5 major TG lipases of which 4 were expressed in placenta, albeit at different levels. Because the activities of the different lipases are difficult to separate and because the lipases work at different cellular localization in placenta, it will be a challenge in the future to dissect the functional roles of the lipases in normal and pathological conditions. For this purpose genetically modified animals may be helpful. For instance, we recently found an up-regulation in EL expression in placentas of LPL deficient mice, suggesting that the function of LPL and EL may be at least partly redundant (10).
In conclusion, this study suggests that despite efforts to normalize blood glucose homeostasis during pregnancy maternal type 1-diabetes changes the gene expression of placental TG lipases that work both extra- and intra cellular and increases the placental accumulation of TGs. These results indicate that maternal diabetes affects placental lipid metabolism and thus the transport of lipids from mother to fetus.

Acknowledgements:
The technical assistance of Lis Nielsen, Annemette Borch, Karen Rasmussen, and Bo Lindberg is gratefully acknowledged. Thanks to the staff at Department of Obstetrics for help in collecting samples. This study was supported by The Danish Medical Research Council (52-00-0699), The Novo Nordic Endocrinology Foundation, The Danish Heart Foundation (00-2-2-30-22843), The Eli Lilly Research Fund and The Medical Research Foundation - region of Copenhagen, Faroe Islands and Greenland
Reference List


5. PEDERSEN J 1977 The Pregnant Diabetic and Her Newborn. 2nd ed. Copenhagen: Munksgaard


Figure legends:

Figure 1:

*Impact of maternal type 1-diabetes on placental lipid accumulation.* Lipids were extracted from placental biopsies collected from normal women (controls, n=21) and women with type 1-diabetes with good (n=13) or sub-optimal metabolic control (n=14). Quantifications of TGs (A), cholesterol (B), and phospholipids (C) were made in all extracts. Each point represents the data from an individual placenta. Maternal diabetes had a significant effect on the placental TG content (p<0.05), which increased with increasing HbA1c (P-trend <0.02). Comparisons between groups were performed after ANOVA with Dunnet’s multiple comparisons test, *p<0.05.

Figure 2:

*mRNA copy numbers of lipases with triglyceride lipase activity in human term placentas.* mRNA copy numbers of lipases with TG lipase activity were determined in transplacental biopsies (one from the center of placenta close to insertion of the umbilical cord, 4 from the periphery and 4 from the region in between) from 3 normal placentas. Hepatic lipase (HL) mRNA was not detectable in placenta.

Figure 3:

*Impact of maternal type 1-diabetes on mRNA expression of lipase genes in placenta.* Gene expression of endothelial lipase (EL) (A), lipoprotein lipase (LPL) (B), hormone sensitive lipase (HSL) (C), and lysosomal acid lipase (LAL) (D) in placentas from normal women (n=21), and women with type 1-diabetes with good (n=13) or sub-optimal metabolic control (n=14). mRNA was measured with real-time PCR in samples with equal amounts of tissue from the center of the placenta, the periphery, and the region in between. In each sample, the mRNA expression was normalized with the β-actin mRNA
content. The gene expression for an individual sample is expressed as the fraction of the average gene expression in all samples. Each point represents the data from an individual placenta. Maternal diabetes had a significant effect on expression of EL (ANOVA p<0.03) and HSL (ANOVA p<0.04). Both EL and HSL mRNA expression increased with increasing HbA1c (P-trend ≤ 0.01 for both EL and HSL). Comparisons between groups were performed after ANOVA with Dunnet’s multiple comparisons test *p<0.05. For the LAL results the exclusion of the outlier in the control group did not change the overall results of the statistical test.

**Figure 4:**

Correlation of fetal triglycerides and LPL mRNA expression in placentas of normal and diabetic mothers, n = 48. r = correlation coefficient of Spearman Rank test, p = 0.03. Clear dots: controls, grey dots: good metabolic control, black dots: sub-optimal metabolic control.

**Figure 5:**

*Immunohistochemistry of EL and LPL protein in human normal placentas and placentas from women with diabetes.* Sections from normal placentas (A and B) and placentas from women with diabetes (C, D and E) were incubated with an anti-endothelial lipase (EL) antiserum (A and D) ×63 (original magnification), anti-lipoprotein lipase (LPL) antibodies (B and E) ×40, or porcine serum as a control (C) ×20. Filled arrows point at syncytiotrophoblasts, open arrows at endothelial cells, and hatched arrows at macrophage-like cells. A and D both show EL staining in endothelial cells and in syncytiotrophoblasts. B and E show LPL staining in syncytiotrophoblasts, endothelial cells, and macrophage-like cells.
Table 1: Baseline data of mothers with or without diabetes and their newborn infants.

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>Diabetes</th>
<th>Good metabolic control</th>
<th>Sub-optimal control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n</td>
<td>21</td>
<td>13</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>5.4 ± 0.2</td>
<td>5.7 ± 0.3*</td>
<td>6.5 ± 0.3**</td>
<td></td>
</tr>
<tr>
<td>Prepregnancy BMI (kg/m²)</td>
<td>23.4 ± 4</td>
<td>24.0 ± 4</td>
<td>24.5 ± 3</td>
<td></td>
</tr>
<tr>
<td>Gestational age at delivery (days)</td>
<td>272 ± 7</td>
<td>264 ± 7*</td>
<td>267 ± 8</td>
<td></td>
</tr>
<tr>
<td>Birth weight (g)</td>
<td>3522 ± 389</td>
<td>3530 ± 510</td>
<td>3890 ± 321**</td>
<td></td>
</tr>
<tr>
<td>Length at birth (cm)</td>
<td>51.1 ± 2</td>
<td>51.4 ± 3</td>
<td>53.1 ± 2**</td>
<td></td>
</tr>
<tr>
<td>Placental weight (g)</td>
<td>732 ± 168</td>
<td>696 ± 190 (11)</td>
<td>750 ± 178 (13)</td>
<td></td>
</tr>
<tr>
<td>Delivery mode</td>
<td>5/1/15/0</td>
<td>5/1/2/5</td>
<td>5/2/3/4</td>
<td></td>
</tr>
</tbody>
</table>

Values are means ± standard deviations. V= vaginal delivery, VC= vacuum extraction, CSP= planned cesarean section, CSE= emergency cesarean section. Results were analyzed with ANOVA followed by Dunnet’s multiple comparisons test, * p < 0.01 and **p<0.05 when compared to the control group. Values in parenthesis are n if different from the values indicated in the first line.
Table 2: Plasma lipids in mothers with or without diabetes and their newborn infants

<table>
<thead>
<tr>
<th></th>
<th>Controls</th>
<th>Diabetes</th>
<th>Diabetes</th>
<th>Sub-optimal metabolic control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n=</td>
<td></td>
<td>Good metabolic control</td>
<td>Sub-optimal metabolic control</td>
</tr>
<tr>
<td>Maternal blood:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>7.2 ± 1.3</td>
<td>6.6 ± 1.6 (11)</td>
<td>6.6 ± 1.1 (11)</td>
<td></td>
</tr>
<tr>
<td>Total triglycerides (mmol/L)</td>
<td>2.8 ± 0.8</td>
<td>2.5 ± 0.7 (11)</td>
<td>2.6 ± 0.8 (11)</td>
<td></td>
</tr>
<tr>
<td>LDL cholesterol (mmol/L)</td>
<td>4.4 ± 1.2</td>
<td>4.2 ± 1.7 (11)</td>
<td>3.8 ± 0.8 (11)</td>
<td></td>
</tr>
<tr>
<td>Fetal cord blood:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total cholesterol (mmol/L)</td>
<td>1.49 ± 0.4 (20)</td>
<td>1.83 ± 0.5 (11)</td>
<td>1.74 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>Total triglycerides (mmol/L)</td>
<td>0.33 ± 0.1 (20)</td>
<td>0.49 ± 0.3 (11)</td>
<td>0.43 ± 0.4</td>
<td></td>
</tr>
<tr>
<td>Fetal triglycerides/maternal triglycerides:</td>
<td>0.13 ±0.06 (20)*</td>
<td>0.21 ± 0.07 (9)</td>
<td>0.19 ± 0.17 (11)</td>
<td></td>
</tr>
</tbody>
</table>

Values in parenthesis are numbers in the group when different from the total number in the study. Values are means ± standard deviations. Results were analyzed with Kruskal-Wallis test, *p< 0.05.
Figure 2

mRNA copy number / β-actin mRNA copy number

LAL

LPL

EL

HL

N.D.
Figure 3

**A**

EL mRNA/β-actin mRNA

- Control group
- Good control
- Sub-optimal control
- Diabetes groups

**B**

LPL mRNA/β-actin mRNA

- Control group
- Good control
- Sub-optimal control
- Diabetes groups

**C**

HSL mRNA/β-actin mRNA

- Control group
- Good control
- Sub-optimal control
- Diabetes groups

**D**

LAL mRNA/β-actin mRNA

- Control group
- Good control
- Sub-optimal control
- Diabetes groups

* indicates a significant difference.
Figure 4

$r = 0.33, p = 0.03$

- Fetal triglycerides (mmol/L)
- LPL mRNA/β-actin mRNA
Figure 5