Peroxisome Proliferator-Activated Receptors (PPAR) and Liver X Receptors (LXR) in Epidermal Biology

Matthias Schmuth*, Yan J. Jiang†‡, Sandrine Dubrac#, Peter M. Elias*”, Kenneth R. Feingold*†‡

Departments of Dermatology* and Medicine†, University of California, San Francisco
Dermatology* and Metabolism‡ Section, Department of Veterans Affairs Medical Center, San Francisco
Department of Dermatology#, Innsbruck Medical University

Running title: PPAR and LXR in the epidermis

Keywords: Cancer, Cutaneous, Differentiation, Inflammation, Permeability barrier, Proliferation, Transcription Factor, Skin, Stratum Corneum

Abbreviations: Adipocyte Differentiation Protein (ADRP), Fasting Adipocyte Factor (FIAF), Liver X Receptor (LXR), Peroxisome Proliferator-Activated Receptors (PPAR), Sulfotransferase Type 2B Isoform 1b (SULT2B1b), 12-O-tetradecanoylphrobol-13-acetate (TPA)

Correspondence address:
Matthias Schmuth, M.D.
Department of Dermatology
University of California, San Francisco
4150 Clement St.
San Francisco, CA 94121
Tel: 415-750-2005
Fax: 415-751-6927
Abstract

The epidermis is a very active site of lipid metabolism and all PPAR and LXR isoforms are expressed in the epidermis. Activation of PPAR alpha, beta/delta, or gamma or LXRs stimulates keratinocyte differentiation. Additionally, activation of these receptors also improves permeability barrier homeostasis by a number of mechanisms including stimulating epidermal lipid synthesis, increasing lamellar body formation and secretion, and increasing the activity of enzymes required for the extracellular processing of lipids in the stratum corneum leading to the formation of lamellar membranes that mediate permeability barrier function. The stimulation of keratinocyte differentiation and permeability barrier formation also occurs during fetal development resulting in accelerated epidermal development. PPAR and LXR activation regulate keratinocyte proliferation and apoptosis and studies have shown that these receptors play a role in cutaneous carcinogenesis. Lastly, PPAR and LXR activation is anti-inflammatory reducing inflammation in animal models of allergic and irritant contact dermatitis. Because of their broad profile of beneficial effects on skin homeostasis, PPAR and LXR have great potential to serve as drug targets for common skin disease such as psoriasis, atopic dermatitis and skin cancer.
Skin Disorders

Several of the most common skin diseases, including psoriasis and atopic dermatitis, are characterized by a spectrum of abnormalities, including inflammation, epidermal hyperplasia, abnormal keratinocyte differentiation, and defects in permeability barrier function. Psoriasis is a chronic skin disorder affecting 2 to 3% of the population (1-3), while atopic dermatitis affects approximately 5% of the general population and up to 20% of children (4). Atopic dermatitis also frequently progresses to mucosal atopy, including asthma and allergic rhinitis (“atopic march”). While it was long thought that these disorders were solely due to immunological defects, increasing evidence is accumulating that primary keratinocyte abnormalities may underlie the pathogenesis of these disorders in many patients. A pertinent example that demonstrates the potential importance of abnormalities in keratinocytes is the recent discovery that many cases of atopic dermatitis are due to mutations in the filaggrin gene, which is thought to then allow sustained ingress of antigens through a defective barrier eliciting a characteristic Th2 immune response (5-7).

In considering possible strategies to treat these skin disorders therapies would ideally target as large a spectrum as possible of the abnormalities that commonly occur in these disorders. Drugs that activate peroxisome proliferator-activated receptors (PPAR, isoforms: PPAR-alpha, PPAR-beta/delta, and PPAR-gamma) and Liver X Receptors (LXR, isoforms: LXR-alpha, LXR-beta) are potential agents that could have benefits in the treatment of these skin disorders (8-13). In addition we will also discuss the role of these nuclear hormone receptors in epidermal carcinogenesis, which comprises non-melanoma skin cancer and malignant melanoma. Cutaneous squamous cell carcinoma and basal cell carcinoma are the two types of non-melanoma skin cancer that arise from malignant proliferation of keratinocytes and together account for >1 million cases per year in the US of which roughly one quarter is squamous cell carcinoma and three quarters are basal cell carcinoma; these are the most common cancers in humans (14). While squamous cell carcinoma and basal cell carcinoma mostly take a locally invasive course, and rarely metastasize, malignant melanoma is a highly aggressive cancer that arises from neural crest derived melanocytes residing in
the epidermis. Malignant melanoma commonly metastasizes which accounts for its high mortality rate (>20%). Incidence rates of all three of these skin cancers, squamous cell carcinoma, basal cell carcinoma and melanoma are on the rise (15).

Excellent reviews by others have addressed in detail the potential role of PPAR in wound healing (16, 17), and therefore this will not be discussed in the present review. Additionally, the role of PPAR and LXR in sebaceous gland function has been discussed in detail in another review in this series and therefore will also not be discussed (18). Instead, in this review we will focus on the effects of PPAR and LXR in common inflammatory skin disorders and skin cancer.

PPAR and LXR Expression in the Skin

PPAR and LXR are expressed in the skin (19) with these receptors localizing to a number of different cutaneous sites. Although there is little expression in the dermis *in vivo*, constitutive expression has been reported for PPAR-gamma, and LXR-alpha, and -beta in cultured fibroblasts (20, 21). Furthermore, strong expression of PPAR-alpha, PPAR-beta/delta, PPAR-gamma 1, LXR-alpha, and LXR-beta is present in sebaceous glands (22-26). LXR-alpha and –beta are also expressed in sweat gland epithelia. In hair follicles, all PPAR and LXR isoforms have been shown to not only be expressed in the outer root sheath, but also in the dermal papilla, connective tissue sheath, and the hair bulb (26-28). Notably, an inverse relationship has been reported between expression of PPAR-alpha and –gamma and the epidermal progenitor cell marker Tcf3, suggesting an important role in mediating hair follicle differentiation programs. The promoters of PPAR-alpha and –gamma contain Tcf/Lef1 regulatory elements and Tcf/Lef1 binding represses the expression of their respective target genes (28).

In the interfollicular epidermis of rodents, the PPAR isoforms were initially reported to be transiently expressed during development and not to be expressed in adult epidermis based on *in situ* hybridization and immunohistochemistry (23, 29, 30). However, in human adult keratinocytes all three PPAR isoforms are constitutively
expressed (31-33). PPAR-alpha and -gamma are primarily expressed in the suprabasal compartments (i.e. differentiated keratinocytes) whereas PPAR-beta/delta is present throughout all epidermal layers (32). Furthermore, while both LXR alpha and LXR beta are expressed in cultured human keratinocytes and throughout all layers of the human epidermis (26, 34), LXR beta is the predominant isoform transcribed in mouse epidermis (35). Finally, all three PPAR isoforms are expressed in cultured human melanocytes and epidermal Langerhans cells \textit{in vivo} (36-38).

Effect of PPAR and LXR Activation on Cutaneous Inflammation

It is well recognized that PPAR and LXR expression is modulated by inflammation both in the epidermis and in other organs such as the liver, heart, and adipose tissue (39-41). In cultured human keratinocytes, cytokines and UV light reduced the expression of PPAR alpha, -gamma, and LXR-alpha while the expression of LXR-beta was unchanged and PPAR-beta/delta increased (42, 43). Moreover, in lesional skin of patients with psoriasis and atopic dermatitis, the expression of PPAR-beta/delta was also increased while the expression of PPAR-alpha and gamma was decreased (44, 45) (M. Schmuth, unpublished observation).

To determine the effect of PPAR and LXR activators on cutaneous inflammation several models have been employed. A mouse model measures ear swelling in mice after topically applying TPA (21-O-tetradecanoylphrobol-13-acetate) to the ears, a model of irritant contact dermatitis, and the second model measures ear swelling after topical application of an allergen (e.g. oxazolone) first to the abdomen then several days later to the ears, a model of allergic contact dermatitis. In these models, simultaneous topical treatment with PPAR alpha agonists reduced ear swelling, the magnitude of the inflammatory infiltrate, and the expression of TNF-alpha and IL-1alpha (46, 47). Moreover, PPAR-alpha activation inhibited cytokine secretion, maturation, migration, and the T-cell stimulatory activity of the epidermal antigen-presenting cell, the Langerhans cell. This was associated with decreased levels of phosphorylated NF-kappaB (37). The effects of PPAR-alpha agonists were abolished in keratinocytes and
Langerhans cells in PPAR alpha deficient mice indicating that they are receptor mediated (37, 46, 47). However, MK886, a non-competitive inhibitor of PPAR alpha that prevents the conformational changes that allow binding of PPAR-alpha to DNA, only partially restored the effects in Langerhans cells indicating that DNA-binding is only partially responsible for the immune-regulatory effects of PPAR-alpha activation on Langerhans cell function (37). Thus, these effects may occur via direct protein-protein interaction with NF-kappaB. Finally, it has also been reported that topical application of the PPAR-alpha activator, WY-14643, reduced the UV-induced erythema in human skin, which could be secondary to the anti-inflammatory effects (48).

In contrast to PPAR-alpha, the effects of PPAR-beta/delta activators on cutaneous inflammation are less certain. In the mouse model of irritant contact dermatitis (TPA treatment of ears), topical GW1514 decreased the degree of inflammation as determined by ear thickness, ear weight, histology, and myeloperoxidase quantification (43, 49). However, the anti-inflammatory effect did not require PPAR-beta/delta since pharmacologic PPAR-beta/delta activation also reduced myeloperoxidase in the ears of PPAR-beta/delta deficient mice, raising the possibility that the observed effects on inflammation are not due to PPAR beta/delta activation. Additionally, the anti-inflammatory effects required doses much higher than those necessary to induce keratinocyte differentiation (49). On the other hand, PPAR-beta/delta deficient mice display an increased inflammatory response to TPA treatment (50-52), suggesting that PPAR-beta/delta in fact plays a role in down regulating inflammation. Clearly, further studies are required to determine if activators of PPAR-beta/delta are anti-inflammatory in the skin.

Studies of PPAR-gamma activators have also failed to definitively demonstrate an anti-inflammatory effect in mouse skin. While the PPAR-gamma agonists, ciglitazone and troglitazone, have anti-inflammatory properties in both irritant and allergic contact dermatitis mouse models reducing the production of pro-inflammatory cytokines, such as TNF-alpha and IL-1 alpha (53), similar anti-inflammatory properties are seen in PPAR-gamma deficient mice. These results indicate that the inhibition of cutaneous inflammation by ciglitazone and troglitazone is not necessarily mediated by epidermal PPAR-gamma. This observation is similar to reports in macrophages where glitazones
also had anti-inflammatory effects independent of PPAR-gamma (54). As with PPAR-beta/delta further studies are required to determine if activation of PPAR gamma is anti-inflammatory in the skin.

In contrast, studies have clearly demonstrated that LXR activators have potent anti-inflammatory activity in both the irritant and allergic contact models of cutaneous inflammation (55, 56). Immunohistochemistry demonstrated an inhibition in the production of the pro-inflammatory cytokines IL-1alpha and TNF-alpha, in oxysterol-treated sites from both TPA- and oxazolone-treated animals (55). Moreover, LXR activators did not reduce inflammation in LXR-beta deficient or LXR-alpha/beta deficient mice, indicating that LXR-beta was required for this anti-inflammatory effect (55). Oxysterols also caused a partial reduction in ear thickness in LXR-alpha deficient mice (approximately 50% of that observed in wild-type mice), suggesting that this receptor also plays a role in mediating the anti-inflammatory effects (55). Thus, similar to PPAR-alpha, activation of LXR inhibits cutaneous inflammation.

PPAR and LXR Activation Induce Epidermal Differentiation

Keratinocyte differentiation is a complex, sequential process (57, 58), which ultimately results in the formation of the stratum corneum, an epidermal layer consisting of keratinocytes that have lost their nucleus (corneocytes) surrounded by a lipid-enriched extracellular matrix. Corneocytes provide strength and rigidity due to the extensive cross-linking of proteins such as loricrin, involucrin, filaggrin, small-proline rich proteins and others, on the inner plasma membrane by the enzyme transglutaminase-1, to form the cornified envelope. In addition, the corneocytes provide a scaffold that is required for the organization of extracellular lipids into lamellar membranes (59, 60).

Treatment of cultured keratinocytes and topical treatment of normal mouse skin with activators of PPAR-alpha, PPAR-beta/delta, and PPAR-gamma increase the mRNA and protein levels of markers of keratinocyte differentiation; i. e., involucrin, filaggrin, loricrin, and transglutaminase-1 (33, 43, 49, 53, 61-67). Experiments using
PPAR-alpha and gamma deficient mice showed that these pro-differentiating effects were specifically mediated via these receptors, because topical treatment with either PPAR-alpha or PPAR-gamma agonists did not stimulate increased expression of these markers of differentiation in these receptor deficient mice (53, 62, 64). Similarly, the induction of the markers of keratinocyte differentiation by PPAR-beta/delta ligand was abolished in RXR-alpha deficient mice in vivo and in PPAR-beta/delta deficient cells in vitro (43, 50). One exception was involucrin, which was inducible by PPAR-beta/delta ligands even in the absence of PPAR-beta/delta (50).

Likewise, treatment of cultured keratinocytes and normal mouse skin with LXR agonists also stimulated an increase in involucrin, loricrin, filaggrin, and transglutaminase-1 mRNA and protein levels (35, 68). In LXR-beta deficient mice (note: LXR-beta is the predominant LXR isoform expressed in murine epidermis); oxysterol treatment did not increase the expression of these differentiation markers, again indicating that these effects are receptor mediated (35). Either deletion or mutation of one distal AP-1 binding site (2117 to –2111 bp) in the involucrin promoter abolished the oxysterol responsiveness in vitro (68). Treatment of cultured human keratinocytes transfected with an AP-1 response element-luciferase construct with LXR activators demonstrated an increase in luciferase activity, indicating that LXR activators increase AP-1 binding (68). Moreover, increased AP-1 DNA binding was observed in nuclear extracts isolated from 22(R) hydroxy-cholesterol -treated cultured human keratinocytes i.e. increased gel shift (68). Supershift analysis in oxysterol treated cultured human keratinocytes further revealed that Fra-1 and jun-D were the predominant proteins in the AP-1 complex in these cells (with a marked Fra-1 increase) (69). While the supershift experiment showed that Fra-1 and jun-D were increased, other AP-1 factors may not be detected by this technique. Therefore, we also assessed alterations in the individual components of the keratinocyte AP-1 complex by Western and Northern blot analysis. Treatment with oxysterols increased protein and mRNA levels of Fra-1 and jun-D and also moderately increased c-Fos (69). In contrast, the protein and mRNA levels of Fra-2, Fos B, jun-B and c-Jun did not change. These results show that treatment of primary cultured human keratinocytes with 22(R) hydroxy-cholesterol increased the protein levels of Fra-1, jun-D, and c-fos. We therefore
hypothesize that the LXR activator-mediated increase in involucrin gene expression is due to an increase in binding of AP-1 factors (69). It should be noted that similar to the involucrin promoter, the promoter region of many of the other genes that increase during keratinocyte differentiation (e.g. loricrin and transglutaminase 1) also have AP-1 binding sites and their expression is known to be stimulated by increased AP-1 binding (70-72). Thus, an increase in AP-1 binding could be a general mechanism by which LXR activation concurrently increases the expression of many genes required for keratinocyte differentiation.

The mechanism by which PPAR activation increases the expression of the keratinocyte genes important in differentiation is unknown but is also likely to be mediated by increases in AP-1 activity. Studies have shown that deletions or mutations in the distal AP-1 site of the involucrin promoter also abolished the ability of PPAR alpha agonists to increase involucrin expression (62, 64). Additionally, studies have implicated Notch and STAT5a signalling upstream of PPAR-gamma induced keratinocyte differentiation (73, 74). Together these data demonstrate that activation of all three PPAR isoforms and LXR results in increased keratinocyte differentiation, and that these effects are receptor mediated in the epidermis.

PPAR and LXR Activation Improves Permeability Barrier Function

Topical treatment of normal mouse skin with PPAR and LXR activators does not affect basal transepidermal water loss (i.e. permeability barrier function is not altered). However, following acute disruption of the permeability barrier by either tape stripping or extraction of barrier lipids with repeated acetone treatment, recovery of permeability barrier function was accelerated in animals treated topically with PPAR or LXR agonists (35, 43, 53, 64). There were minor differences in the effects of these agonists on permeability barrier homeostasis; e.g., while treatment with PPAR-alpha, PPAR-beta/delta, and LXR activators accelerated barrier recovery at both 3 and 6 hours, PPAR-gamma activation only accelerated barrier recovery at 6 hours after either acetone treatment or tape stripping (53).
As discussed in detail in an earlier review in this series (75), the extracellular lipid-enriched lamellar membranes in the stratum corneum mediate the barrier to water movement. These lipid-enriched membranes are derived from the secretion of lamellar bodies by stratum granulosum cells and the formation of the lamellar bodies by stratum granulosum cells requires three families of lipids; cholesterol, phospholipids, and glucosylceramides. Following lamellar body secretion phospholipids are converted to free fatty acids by phospholipases and the glucosylceramide is catabolized to ceramides by beta-glucocerebrosidase in the stratum corneum extracellular space. Thus, the extracellular lipid bilayers are generated and maintained by a complex pathway with four key steps 1. epidermal lipid synthesis, 2. lamellar body formation, 3. lamellar body secretion and 4. extracellular processing of precursor lipids to the lipids that form the extracellular lipid membranes. Studies have shown that PPAR and LXR agonists activate all of these key steps.

1) Lipid synthesis- In mice topical treatment with PPAR-alpha, PPAR-beta/delta, PPAR-gamma and LXR activators increased cholesterol, fatty acid, and sphingolipid synthesis in the epidermis (76). This increase can most likely be attributed to increased mRNA expression of the corresponding enzymes of cholesterol, fatty acid and ceramide biosynthesis that were shown to be induced in mouse skin and in human organotypic skin cultures (77, 78). Specifically, increased expression was observed for serine-palmitoyl transferase, long chain acyl-CoA synthase, acyl-CoA oxidase, ceramide glucose synthase, and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) synthase in human organotypic skin cultures treated with a PPAR-alpha activator (78). In mouse skin treated with a PPAR-beta/delta activator HMG-CoA synthase 2 was reported to be induced (77). Very strong induction in sphingolipid synthesis was observed after PPAR-beta/delta activation and topical PPAR-beta/delta activation dramatically increased barrier-specific ceramide species (76). In contrast, PPAR-gamma activation did not exert significant effects on sphingolipid synthesis. Overall, PPAR-gamma activation appeared to have the least effect on epidermal lipid synthesis among the PPAR and LXR activators tested (53).
2) Lamellar Body Formation- ABCA12 is a member of the ABC superfamily that facilitates the delivery of sphingolipids to lamellar bodies in keratinocytes (79). This is a key step in the formation of lamellar bodies and the absence of ABCA12 results in a diminished number of lamellar bodies and lamellar bodies with an abnormal structure (79). Recently, gene mutations in ABCA12 were found to underlie Harlequin ichthyosis and lamellar ichthyosis, two devastating skin disorders (80, 81). Both PPAR-gamma and -beta/delta activators markedly stimulate ABCA12 mRNA expression in human keratinocyte in a dose- and time-dependent manner (82). Increased ABCA12 mRNA levels were accompanied by an increase in ABCA12 protein. LXR activators also increased ABCA12 mRNA levels in keratinocytes, but to a lesser extent. In contrast, activators of PPAR-alpha did not alter ABCA12 expression (82). These results demonstrate that PPAR and LXR activators increase ABCA12 expression, which would facilitate the formation of lamellar bodies.

3) Lamellar Body Secretion- In mice topically treated with activators of PPAR-alpha, beta/delta, and LXR, but not PPAR-gamma, there was accelerated lamellar body secretion both in the basal state and following barrier disruption (76). Interestingly, while in control animals almost all lamellar bodies are secreted from the apical surface of cells at the stratum granulosum – stratum corneum interface, in PPAR-alpha, PPAR-beta/delta, and LXR activator treated animals, secretion of lamellar bodies occurs between nucleated cells several layers beneath the interface (“premature” secretion)(76). Notably, a requirement of PPAR-beta/delta, but not of PPAR-alpha and PPAR gamma for lamellar body formation and secretion has been shown in receptor deficient mouse models (51, 77). Moreover, mice with genetic ablation of RXR-alpha or RXR-alpha/beta show a lamellar body defect identical to PPAR-beta/delta knock out mice, and strikingly, topical PPAR-beta/delta activation corrected the lamellar body defect in the epidermis of RXR deficient mice (77). Taken together, these results suggest that PPAR-beta/delta is the key PPAR isoform involved in lamellar body formation and secretion.

4) Extracellular processing of precursor lipids- Lamellar bodies deliver lipids to the extracellular space (see above). In addition, they also secrete a family of lipid-
processing enzymes, including beta-glucocerebrosidase, required for the extracellular processing of glucosylceramides to ceramides in the stratum corneum, an essential step in the formation of mature, functional lamellar membranes (75, 83). Topical treatment of mouse epidermis with PPAR and LXR activators increased the activity of beta-glucocerebrosidase (76). The increase in activity was shown both by fluorescence assay using epidermal extracts in vitro as well as in vivo by in situ zymography. Increased enzyme activity was localized to the outer epidermis where processing of the extracellular lipid into mature membrane structures occurs. Similarly, treatment of human organotypic skin cultures with a PPAR-alpha activator resulted in increased beta-glucocerebrosidase, but not steroid sulfatase and sphingomyelinase mRNA expression (78).

Thus, PPAR and LXR activators could improve permeability barrier homeostasis by affecting a number of the key steps required for the formation of the extracellular lamellar membranes that mediate the permeability barrier.

Other Effects of PPAR and LXR on Lipid Metabolism in the Epidermis

1) Lipid storage- PPAR-beta/delta activation has been shown in keratinocytes to induce proteins that are important for lipid storage including fasting adipocyte factor (FIAF) and adipocyte differentiation protein (ADRP) (43). This induction by PPAR-beta/delta activation correlated with the intracellular accumulation of lipid droplets in treated keratinocytes that predominantly contained triglycerides (43). This increase in ADRP was specific for PPAR beta/delta, since the increase did not occur in PPAR beta/delta deficient keratinocytes (49). Whether activators of other PPAR isoforms or LXR have similar effects on lipid storage in keratinocytes has not yet been determined.

2) Cholesterol sulfate synthesis- Cholesterol sulfotransferase type 2B isoform 1b (SULT2B1b) is a key enzyme in the synthesis of cholesterol sulfate, a critical regulator of keratinocyte differentiation and desquamation, as well as a mediator of barrier homeostasis (84, 85). PPAR and LXR activators increased SULT2B1b mRNA levels in
keratinocytes independently of their differentiation stage, with the most dramatic effect (a 26-fold increase) induced by the PPAR-gamma activator, ciglitazone (86). Additionally, cholesterol sulfotransferase activity was also increased. Ciglitazone increased SULT2B1b mRNA in a dose- and time-dependent manner. The increase in SULT2B1b mRNA levels by ciglitazone appears to occur at a transcriptional level, because the degradation of SULT2B1b is not accelerated by ciglitazone (86). In addition, cycloheximide almost completely blocks the ciglitazone-induced increase in SULT2B1b mRNA levels, suggesting that the transcription of SULTB1b mRNA is dependent on new protein synthesis (86). Thus, LXR and PPAR activators regulate the expression of SULT2B1b, the key enzyme in the synthesis of CS, which is a potent regulator of epidermal differentiation and corneocyte desquamation.

3) ABCA1- ABCA1 is a membrane transporter that mediates cholesterol efflux from cells and thus plays an important role in regulating cellular cholesterol levels. ABCA1 is expressed in human keratinocytes and murine epidermis and LXR activation markedly increases ABCA1 mRNA and protein levels in keratinocytes and mouse epidermis (87). In addition, activators of PPAR-alpha and PPAR-beta/delta, but not PPAR-gamma also increase ABCA1 expression in human keratinocytes (87).

PPARs and LXR activation could coordinately regulate stratum corneum formation

The formation of a normal stratum corneum requires both corneocytes and the extracellular lipid matrix. Traditionally, the formation of these two components was viewed as concurrent but independent processes. However, as lipids accumulate within the keratinocyte for the formation of lamellar bodies, it is possible that these lipids or metabolites of these lipids will activate PPAR and LXR, which could then stimulate the expression of the proteins required for keratinocyte differentiation. In addition as described above, activation of PPAR and LXR would also increase epidermal lipid synthesis, lamellar body formation by increasing ABCA12 expression, lamellar body secretion, and the enzymes required for the metabolism of precursor lipids to those present in the lamellar membranes. Hence the increase in lipids that occurs during
keratinocyte differentiation to facilitate lamellar body formation could activate PPAR and LXR and thereby serve as a signal that could coordinately regulate the formation of the stratum corneum by stimulating both the formation of corneocytes and the extracellular lipid matrix (Figure 1).

Role of PAPR and LXR in Epidermal Ontogenesis

Using both an in vitro skin explant model and in vivo experiments (administration into the amniotic fluid), we have shown that compounds that activate PPAR alpha and LXR accelerate fetal epidermal development (34, 62, 88). The formation of the extracellular lipid membranes that mediate barrier function and the development of the permeability barrier are accelerated by activators of PPAR alpha and LXR (34, 88). In parallel, the activities of two key enzymes, β-glucocerebrosidase and steroid sulfatase, that are required for lipid processing in the stratum corneum, are stimulated by PPAR alpha and LXR activators (34, 88). In addition, PPAR alpha and LXR activators accelerate the formation of mature corneocytes (34, 88). The expression of involucrin, loricrin, and filaggrin increase and this increase occurs earlier in gestation than in controls (34, 88). Moreover, PPAR-alpha knock-out mice display a delay in epidermal differentiation and stratum corneum formation (89). Together, the stimulation of both the cellular (bricks) and extracellular (mortar) components of the stratum corneum by PPAR alpha and LXR activators results in the generation of a mature, functionally competent stratum corneum earlier in fetal development. In contrast to studies with PPAR alpha and LXR activators, PPAR gamma activators, troglitazone and prostaglandin J2 as well as other nuclear hormone receptors, such as the vitamin D receptor (VDR) and retinoic acid receptor (RAR), did not accelerate fetal epidermal development (88). Studies are currently in progress examining the effect of PPAR beta/delta activators on fetal epidermal development.

Effects of PPAR and LXR Activation on Epidermal Proliferation and Cell Death
The differential effects of PPAR and LXR activation on various cellular functions are summarized in tables 1 and 2. Results from experiments assessing the effects of PPAR and LXR activation on cellular proliferation and cell death have been variable depending on the experimental context. First, pharmacologic PPAR-alpha activation decreases keratinocyte proliferation both in vitro and in vivo (61, 64). Moreover, in a mouse model of epidermal hyperproliferation induced by repeated barrier disruption to the flank skin of hairless mice (90), topical PPAR-alpha activation inhibited proliferation and increased keratinocyte apoptosis (number of TUNEL-positive cells) (91). Additionally, transgenic mice that overexpress PPAR-alpha in the epidermis demonstrate a decrease in epidermal hyperplasia in response to TPA and keratinocytes from these animals proliferate more slowly in culture (92). In contrast to the above results demonstrating a role for PPAR-alpha in regulating keratinocyte proliferation, mice deficient in PPAR-alpha display only thinning of the stratum granulosum, but not altered epidermal thickness or proliferation (64, 89, 93, 94). These results indicate that activation of PPAR-alpha in the epidermis decreases keratinocyte proliferation but the absence of PPAR-alpha does not have major effects on keratinocyte proliferation, presumably because of the redundant effects of other PPAR isoforms or other factors that regulate keratinocyte proliferation and thereby compensate for the absence of PPAR alpha (tables 1 & 2).

PPAR-beta/delta activators have antiproliferative effects on keratinocytes in vitro (33, 95-98), but topical application of PPAR-beta/delta activators to normal mouse skin in vivo did not affect proliferation (43). Additionally, the frequency and distribution of TUNEL positive keratinocytes was not changed by topical treatment of mice with PPAR beta/delta activators. In contrast, mice deficient in PPAR-beta/delta have a thickened epidermis with both increased keratinocyte proliferation and increased cell death (51, 99), indicating that the PPAR-beta/delta effects on proliferation outweigh those on cell death. In addition, PPAR-beta/delta deficient mice displayed an exaggerated hyperproliferative response to TPA, suggesting that this receptor is critical for attenuating epidermal proliferation (30, 52). It was suggested that in the hyperproliferative epidermis of psoriatic skin PPAR-beta/delta overexpression mediates
keratinocyte proliferation via NF-kappaB (44). Taken together these results suggest that the absence of PPAR-beta/delta leads to increased keratinocyte proliferation, and that under some experimental conditions PPAR-beta/delta activators inhibit keratinocyte proliferation. Finally, downstream signaling of PPAR-beta/delta via the PKBalpha/Akt1 kinase pathway was shown to protect keratinocytes from cell death (99), which is reviewed in detail elsewhere (16, 17).

PPAR-gamma activators exert antiproliferative effects on cultured keratinocytes in vitro (9, 100, 101). After topical application of PPAR-gamma activators to normal mouse skin, there is an increase in both keratinocyte proliferation and keratinocyte cell death with the net result being no change in epidermal thickness (53). However, in mice with epidermal hyperproliferation secondary to repeated barrier disruption, PPAR-gamma activators have marked antiproliferative effects (102). Thus the proliferative state of the keratinocytes may determine the effect of PPAR-gamma activation on keratinocyte proliferation. In situations where there is rapid keratinocyte proliferation PPAR-gamma activators maybe anti-proliferative.

Topical treatment of normal mice with oxysterol ligands of LXR resulted in a decrease in epidermal thickness and keratinocyte proliferation (PCNA staining) and increased cell death (TUNEL staining) (35). Furthermore, treatment of hyperproliferative epidermis with oxysterols restored epidermal homeostasis (i.e. decreased hyperproliferation and stimulated differentiation) resulting in a return of epidermal thickness towards normal (35). Because mouse skin predominantly expresses LXR-beta, these studies demonstrated that oxysterols, acting via LXR-beta, can inhibit proliferation. Finally, in LXR-beta, and LXR alpha, beta double deficient mice thinning of the epidermis was observed (35). The latter was an unexpected finding given the decrease in epidermal thickness and keratinocyte proliferation with oxysterol treatment. The mechanism underlying this observation remains to be elucidated.

The effects of PPAR and LXR activation on keratinocyte proliferation could have implications regarding epithelial carcinogenesis and this issue is discussed below.

Role of PPAR in Skin Cancer
As discussed above, studies have shown that PPAR activation modulates keratinocyte proliferation. Moreover, several studies have suggested that PPAR activation could interfere with carcinogenesis in the skin. Initially, it was reported that mice whose skin was chronically exposed to chemical carcinogens were less susceptible to cancerogenesis when fed a PPAR-alpha activator (103). Subsequently, pharmacologic activation of PPAR-gamma was reported to inhibit carcinogenesis in mouse epidermis (104-106). Next, PPAR-beta/delta and -gamma deficient mice were shown to be more susceptible to chemically-induced carcinogenesis (chronic application of phorbol esters to the epidermis) (97). PKC-alpha phosphorylation and PKC-alpha ubiquitination were increased in TPA-treated cells from these animals indicating a role of the PKC-alpha/MAPK/ERK pathway in attenuating cell proliferation in response to PPAR-beta/delta (97). The effects of pharmacological PPAR-beta/delta activation on skin carcinogenesis has not yet been determined, but it should be noted that in pre-malignant actinic keratoses as well as in overt SCC increased PPAR-beta/delta expression has been observed (107, 108).

In addition to non-melanoma skin cancer, there have been reports about a possible role of PPARs in malignant melanoma; i.e., PPAR gamma activation was reported to inhibit proliferation of human melanoma and melanocyte cell lines (38, 109). A recent report, however, evaluating the putative risk of genetic polymorphisms in the PPAR-gamma gene for the development of malignant melanoma has yielded inconsistent results in two independent case-control studies (110). The lack of replication in independent patient cohorts makes a causal relationship between polymorphisms in PPAR-gamma as a major risk factor for malignant melanoma unlikely, but it remains to be seen whether these polymorphisms instead contribute to disease progression or influence response to treatment. A mouse model assessing tumor growth of inoculated melanoma cells showed retarded growth retardation in PPAR-beta/delta deficient mice, which was attributed to abnormally hyperplastic vascularisation (111). Finally, PPAR-gamma activation has been shown to induce apoptosis in (non-epidermal) cutaneous lymphoma cell lines (112).
To the best of our knowledge, the role of LXR in skin cancer has not yet been studied.

Clinical trials in humans

Alterations in PPAR expression in psoriasis (32, 44), and the anti-inflammatory and pro-differentiating effects of PPAR and LXR activation on the epidermis described above prompted clinical trials exploring the efficacy and safety of PPAR targeted therapy. A striking improvement of skin lesions had initially been documented in patients with psoriasis treated with the oral PPAR gamma activator troglitazone (9, 113). Although subsequent clinical trials using the oral PPAR gamma activator rosiglitazone did not substantiate the initial troglitazone observation (114), favorable effects of oral pioglitazone not only on psoriatic skin lesions (10, 115), but also on psoriatic arthritis have been reported (8). An ongoing phase II trial is currently evaluating the efficacy and safety of a combination of pioglitazone with acitretin in psoriasis (NCT00395941: clinicaltrials.gov). In contrast, topical treatment of psoriatic skin with the PPAR activators etradecylthioacetic acid (TTA) and rosiglitazone were not efficacious (116-118). With regards to atopic dermatitis, there is a recent abstract indicating that topical treatment with a PPAR-alpha activator has beneficial effects (119). Despite the animal data described above implicating PPAR-activation as a promising approach for inhibiting or treating skin cancer, no reports from studies in humans have been published. Similarly, studies of the effect of LXR activators on skin disease in humans have also not been reported.

Conclusions

The epidermis is an active site of lipid metabolism and PPAR and LXR provide a platform to sense these lipids to coordinate downstream events, and to regulate a variety of cellular functions. Our knowledge about PPAR and LXR in skin physiology and pathology has rapidly evolved in recent years. Not only do they have robust anti-inflammatory activity in skin, but they also modulate epidermal proliferation,
carcinogenesis, differentiation, and permeability barrier function, which identifies them as promising drug targets for the treatment of skin disease.

Acknowledgments

These studies were supported by National Institutes of Health (NIH) Grants AR-39448, AR-050629, AR-049932, HD-29706, the Medical Research Service, Department of Veterans Affairs, the University of Innsbruck Grant M55, and Austrian Science Fund (FWF) Grants J1901-MED, J2112-MED, P16990-B05.
References

gamma activation stimulates keratinocyte differentiation. J Invest Dermatol 123: 305-
312.
PPAR-gamma dependent and independent effects on macrophage-gene expression in
receptor activators display anti-inflammatory activity in irritant and allergic contact
dermatitis models: liver-X-receptor-specific inhibition of inflammation and primary
2003. Reciprocal regulation of inflammation and lipid metabolism by liver X receptors.
Physiological reviews 69: 1316-1346.
Biol 111: 2807-2814.
59. Elias, P. M., M. Schmuth, Y. Uchida, R. H. Rice, M. Behne, D. Crumrine, K. R.
Feingold, W. M. Holleran, and D. Pharm. 2002. Basis for the permeability barrier
60. Schmuth, M., J. W. Fluhr, D. C. Crumrine, Y. Uchida, J. P. Hachem, M. Behne,
D. G. Moskowitz, A. M. Christiano, K. R. Feingold, and P. M. Elias. 2004. Structural and
functional consequences of loricrin mutations in human loricrin keratoderma (Vohwinkel
Williams, and K. R. Feingold. 1998. Keratinocyte differentiation is stimulated by
62. Hanley, K., L. G. Komuves, D. C. Ng, K. Schoonjans, S. S. He, P. Lau, D. D.
stimulates differentiation in epidermal keratinocytes via PPARalpha. J Biol Chem 275:
11484-11491.
Lee, M. O. Lee, and J. S. Hwang. 2006. Phytosphingosine stimulates the differentiation of
human keratinocytes and inhibits TPA-induced inflammatory epidermal hyperplasia in
64. Komuves, L. G., K. Hanley, A. M. Lefebvre, M. Q. Man, D. C. Ng, D. D. Bikle,
M. L. Williams, P. M. Elias, J. Auwerx, and K. R. Feingold. 2000. Stimulation of
PPARalpha promotes epidermal keratinocyte differentiation in vivo. J Invest Dermatol
115: 353-360.
triterpenoids, oleanolic acid and ursolic acid, regulated differently the processing of
66. Lim, S. W., S. P. Hong, S. W. Jeong, B. Kim, H. Bak, H. C. Ryoo, S. H. Lee, and
S. K. Ahn. 2007. Simultaneous effect of ursolic acid and oleanolic acid on epidermal
permeability barrier function and epidermal keratinocyte differentiation via peroxisome proliferator-activated receptor-alpha. The Journal of dermatology 34: 625-634.

Table 1: Effects of PPAR/LXR Activation

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Inflammation</th>
<th>Epidermal Differentiation</th>
<th>Barrier-Function</th>
<th>Skin Ontogenesis</th>
<th>Epidermal Proliferation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPARα</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
</tr>
<tr>
<td>PPARγ</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>No effect</td>
</tr>
<tr>
<td>PPARβ/δ</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td></td>
<td>Not determined</td>
</tr>
<tr>
<td>LXR</td>
<td>↓</td>
<td>↑</td>
<td>↑</td>
<td>↑</td>
<td>↓</td>
</tr>
</tbody>
</table>
Table 2: Consequences of Genetic PPAR/LXR Ablation

<table>
<thead>
<tr>
<th>Receptor</th>
<th>Inflammation</th>
<th>Epidermal Differentiation</th>
<th>Barrier-Function</th>
<th>Skin Ontogenesis</th>
<th>Epidermal Proliferation</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPARα</td>
<td>↑</td>
<td>Slight ↓</td>
<td>No effect</td>
<td>↓</td>
<td>No effect</td>
</tr>
<tr>
<td>PPARγ</td>
<td>No effect</td>
<td>No effect</td>
<td>No effect</td>
<td>Not determined</td>
<td>↑</td>
</tr>
<tr>
<td>PPARβ/δ</td>
<td>↑</td>
<td>?</td>
<td>↓</td>
<td>Not determined</td>
<td>↑</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Our data show increase</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LXR</td>
<td>Not determined</td>
<td>Slight ↓</td>
<td>No effect</td>
<td>Not determined</td>
<td>↓</td>
</tr>
</tbody>
</table>
Epidermal Lipid Synthesis

Lipids

Lamellar Body Formation/Secretion

Extracellular Lamellar Maturation

Permeability Barrier (Mortar)

Differentiation - Specific Proteins (Bricks)

PPAR/LXR Activation

Stratum Corneum Barrier