Protein kinase C beta mediates hepatic induction of sterol regulatory element-binding protein-1c by insulin.

Takashi Yamamoto, Kazuhisa Watanabe, Noriyuki Inoue, Yoshimi Nakagawa, Naomi Ishigaki, Takashi Matsuzaka, Yoshinori Takeuchi, Kazuto Kobayashi, Shigeru Yatoh, Akimitsu Takahashi, Hiroaki Suzuki, Naoya Yahagi, Takanari Gotoda#, Nobuhiro Yamada, and Hitoshi Shimano*

Department of Internal Medicine (Endocrinology and Metabolism)
Graduate School of Comprehensive Human Sciences
University of Tsukuba

#Department of Nephrology and Endocrinology, University of Tokyo

Graduate School of Medicine

Running head: Activation of SREBP-1c by PKC beta

*Address correspondence to: Hitoshi Shimano, MD, PhD

1-1-1 Tennodai, Tsukuba Ibaraki, Japan 305-8575.

Tel:+81-29-853-3053 Fax:+81-29-863-3174

E-mail: shimano- tky@umin.ac.jp, hshimano@md.tsukuba.ac.jp
Abstract

Sterol regulatory element-binding protein-1c is a transcription factor that controls lipogenesis in the liver. Hepatic SREBP-1c is nutritionally regulated and its sustained activation causes hepatic steatosis and insulin resistance. Although regulation of SREBP-1c is known to occur at transcriptional level, the precise mechanism by which insulin-signaling activates SREBP-1c promoter remains to be elucidated. Here, we show that protein kinase Cbeta is a key mediator of insulin-mediated activation of hepatic SREBP-1c and its target lipogenic genes. Activation of SREBP-1c in livers of refed mice was suppressed by either adenoviral RNAi-mediated knockdown or dietary administration of a specific inhibitor of PKCbeta. The effect of PKCbeta inhibition was cancelled in insulin depletion by streptozotocin treatment of mice. Promoter analysis indicated that PKCbeta activates SREBP-1c promoter through replacement of Sp3 by Sp1 for binding to the GC box in SRE complex, a key cis-element of SREBP-1c promoter. Knockdown of Sp proteins demonstrated that Sp3 and Sp1 play reciprocally negative and positive roles in nutritional regulation of SREBP-1c, respectively. This new understanding of PKCbeta involvement in nutritional regulation of SREBP-1c activation provides a new aspect of PKCbeta inhibition as a potential therapeutic target for diabetic complications.

Key Words: SREBP, lipogenesis, fatty acids, triglycerides, glucose
Introduction

Mammals have evolved a system for lipid synthesis to maintain nutritional homeostasis. SREBP (Sterol Regulatory Element Binding Protein) is a transcription factor belonging to bHLH family (1) that controls genes involved in lipid synthesis. SREBP consists of three isoforms (SREBP-1a, -1c and SREBP-2). SREBPs bind to specific elements (SRE) in the promoter of their target genes. The physiological role of each of the isoforms has been studied in transgenic mice overexpressing their nuclear forms (2-4).

In liver, SREBP-1c is predominantly expressed and is the master regulator of fatty acid and triglyceride synthesis due to its enhancement of the transcription of fatty acid synthase (FAS), acetyl-CoA carboxylase (ACC), and stearoyl-CoA desaturase (SCD-1), which results in the conversion of excessive carbohydrates to lipid (5)(6, 7)(8).

The processing and regulation of SREBP-1c gene has been extensively studied. SREBPs are initially translated as ER membrane-bound protein that remain in the ER until they are released by SREBP cleavage-activating protein (SCAP)-mediated proteolytic cleavage allowing the active form to enter the nucleus and activate transcription. The cleavage of SREBP-2 is strictly regulated by cellular cholesterol
concentrations and is a key process for sterol regulation (9) (10). In contrast, transcriptional regulation of SREBP-1c depends upon nutritional status and controls lipogenic genes in the liver. In physiological conditions, SREBP-1c transcription is repressed in the fasted state and is drastically activated in the fed state, leading to storage of carbohydrates (11). Factors related to nutrition such as insulin (12), insulin signal-related kinases (13)(14), glucose (15)(16), PKA (Protein Kinase A) (17), PUFA (Poly unsaturated fatty acid) (18)(19) and nuclear receptor LXR (Liver X receptor) (20) have been reported to regulate SREBP-1c expression. However, the precise molecular mechanism of SREBP-1c transcription is not fully understood.

Accumulating evidence suggests that protein kinase C (PKC) is involved in signals of insulin, glucose and nutrients relating to a variety of signals systems such as diacyl-glycerol (DAG) and phosphatidylserine (PS). Thus we postulated that PKC may regulate SREBP-1c cleavage and activation. PKC is a serine/threonine kinase and is categorized into three subfamilies (classical, novel and atypical) based on their distinct N-terminal regulatory domains. As a nutrient sensor, it has been reported that several PKCs are activated by insulin and glucose. The atypical PKC isoforms
(zeta/lambda) have been also implicated to participate in insulin signaling, and PKC
lambda liver-specific knockout attenuates expression of SREBP-1c in mRNA level (14).
Recent reports suggested that other isoforms also modulate insulin signal-related
proteins through phosphorylation or direct interaction (21). PKCbta belongs to
classical PKC family and is activated by both glucose and insulin. Chronic exposure
to hyperglycemia is believed to activate PKCbta in a variety of vascular tissues leading
to the diabetic microangiopathy (22).
In current study, we examined whether classical and/or novel PKCs are involved in
nutritional induction of SREBP-1c. Using in vivo and in vitro techniques, we
demonstrate that PKCbta is a regulator for induction of SREBP-1c in a fed state.
Experimental Procedures

Animals

Male C57BL/6J mice and male SD rat were purchased from CLEA (Tokyo, Japan) and maintained on a 14-h light/10-h dark cycle. Mice were sacrificed between 9:00-12:00. Before being killed, mice were weighed and blood samples were taken. STZ mice were produced as follows: C57BL/6J mice (7 week old) were administered streptozotocin (100 mg/kg) via intraperitoneal injection two times every other day. One week following the last injection, blood glucose level was checked and mice with high glucose (350 mg/dl above) were used in the experiments. Animals were treated according the guidelines for ethical use of animals established at the University of Tsukuba.

Materials

Control chow diet containing a PKCbeta selective inhibitor (LY333531, 10mg / Kg) was provided from Elli Lilly & Company. Anti HA (12CA5) antibody and anti c-myc antibody were purchased from Roche. Anti SREBP-1 (H-160) antibody (sc-8984),
anti LXRalpha (H-144) antibody (sc-13068), anti RXR (D-20) antibody (sc-553), anti PKCbeta1 (C-16) antibody (sc-209), anti PKCbeta2 (C-18) antibody (sc-210), anti PKCepsilon (C-15) antibody (sc-214), anti Sp1 (1C6) antibody (sc-420), anti Sp2 (K-20) antibody (sc-643), anti Sp3 (D-20) antibody (sc-644), anti USF-1 (C-20) antibody (sc-229), anti USF-2 (C-20) antibody (sc-862) and anti CBF-C (N-19) (NF-Y) antibody (sc-7715) were purchased from Santa Cruz Biotechnology Inc, anti-alpha-tubulin antibody from Calbiochem, streptozotocin, mithramycin A and insulin from Sigma, PMA (Phorbol-12-Myristate-13-Acetate), BisindolylmaleimideI (GF 109203X), U0126 and U0124 from Calbiochem, LY333531 from AG-scientific, Inc (SanDiego, CA), and oligo DNA primers from Operon Biotechnology.

Culture of cell line cells

HepG2 cells, HEK293T cells and human mesangial-derived MES cells were purchased from ATCC, culture medium (MEM, DMEM and F-12) from Sigma. HepG2 cells were maintained in MEM medium (10% Fetal Bovine Serum, 1% Penicillin-Streptomycin solution stabilized, 1 mM sodium pyruvate), HEK293T cells in
DMEM medium (5 % Fetal Bovine Serum and 1 % Penicillin-Streptomycin solution stabilized), and MES13 cells in DMEM:F-12 = 3:1 medium (5 % Fetal Bovine Serum, 1 % Penicillin-Streptomycin solution stabilized, 14 mM HEPES) in monolayer culture at 37 °C in a 5 %-CO₂ incubator.

Isolation and culture of rat primary hepatocytes

Hepatocytes were isolated from rat liver by collagenase methods as previously described (23). Cell viability was assessed by the Trypan Blue exclusion test and was always higher than 80 %.

PKC assay

The measurement of liver PKC activity was measured by using SignaTECT Protein Kinase C (PKC) Assay System (Promega) according to manufacturer’s instruction. Briefly, whole liver samples were homogenized and passed over DEAE column (HiTrap DEAE FF from GE Healthcare) by using HPLC (ÄKTAexplorer 10S (GE Healthcare)). The collected fractions were assayed for PKC activity using gamma-³²PdATP and the
radioactivity was determined by using a liquid scintillation counter.

Northern blot analysis

Northern blot analysis was performed as previously described (24). mRNA was isolated by using PolyATtract (R) mRNA Isolation System (Promega). All cDNA probes were radiolabeled with alpha32P-CTP by using RediprimeII Random Prime Labelling System. cDNA probe for 36B4 was used as a loading control.

Real Time PCR

Total RNA was prepared from mouse liver using TRIzol Reagent. First strand cDNA was synthesized from total RNA (2 μg) with mixture of random hexamer and oligo dT by using ThermoScript RT-PCR System (Invitrogen). Real Time PCR using the SYBR green reagents was performed with the ABI PRISM 7000 Sequence Detector (Applied Biosystems). The relative amount of all mRNA was calculated and 36B4 mRNA was used as the loading control. Primer sequences of genes used are as follows; SREBP-1a: (5’-agccgctctgaacaga-3’) (5’-tcaaaaccgctgtgtccagtt-3’)

9
SREBP-1c(5′-cggeggeggaagctgt-3′)(5′-tgcaatccatgctccgt-3′)

36B4(5′-cctgaagtgctcgacatcaca-3′)(5′-gcgcttgtacccattgatga-3′)

Plasmid construction and generation of recombinant adenoviruses

SREBP-1c-Luc vectors (pBP-1c-2600, pBP-1c-550, pBP-1c-90) were previously described (20). SREBP-1c (TATA)-Luc (pBP-1c-TATA-Luc) and SREBP-1c (-550(ΔSRE complex))-Luc (pBP-1c-550(ΔSRE complex)-Luc) were constructed by cloning these sequence to pGL2basic (Promega). Expression vector for SREBP-1a was previously described (24). Expression vector for HA-tagged Sp3 was generated by PCR amplification and cloned into pcDNA3 (Invitrogen). Expression vectors for PKCbetaCA (pCO2) and PKCepsilonCA (pMT2) were kindly provided by Dr Peter Parker.

Recombinant adenoviruses were produced by ViraPower Adenoviral Expression System (Invitrogen) according to manufacturer’s protocol. PKCbeta wild type sequence was cloned into pENTR (Invitrogen) carrying CAG promoter. Adenoviruses targeting lacZ, PKCbeta, PKCepsilon, Sp1 and Sp3 were generated by using BLOCK-iT
U6 RNAi Entry Vector Kit (Invitrogen). Briefly, targeting sequences for knockdown of lacZ, PKCbeta (NM_008855), PKCepsilon (NM_011104), Sp1 (NM_013672) and Sp3 (NM_001018042) were synthesized and ligated into pENTR/U6 (Invitrogen). By homologous recombination procedure, these fragment were integrated in Ad/PL-DEST (Invitrogen) followed by transfection into 293A cell for adenovirus production.

Transient transfection and luciferase assay

Transfection and luciferase assay was performed as previously described (24) using OPTI-MEM I (GIBCO) and FuGENE 6 Transfection Reagent (Roche). As control of transfection efficiency, Renilla luciferase (pRL-SV40, Promega) was used except described in legend. Total DNA for transfection was adjusted to 0.5 µg/well by using empty vector. All experiments were performed in triplicate. Similar experiments were repeated at least two times.

ChIP assay

Preparation of nuclear fraction from mouse liver as previously described (7). Each
group of nuclear fraction was pooled and washed by ice-cold PBS. After adding of formaldehyde to samples, cross-linking was performed by incubation at 37 °C for 10 min and stopped by glycine. After washing of hepatic nuclear samples by PBS, pellet was dissolved in SDS lysis buffer (50 mM Tris-HCl (pH 8.0), 10 mM EDTA (pH 8.0), 1% SDS and protease inhibitor cocktail (Roche)). DNA fragmentation was performed by sonicator (Sonifer 250) for 30 sec 5 times (power 1, duty cycle 20 %). After centrifugation for 10 min at room temperature 15000 rpm, supernatant was diluted by 9 volume of dilution buffer (50 mM Tris-HCl (pH 8.0), 167 mM NaCl, 1.1% Triton X-100, 0.11% sodium deoxycholate and protease inhibitor cocktail (Roche)). To remove unspecific binding, protein G beads was added and rotated for 30 min at 4 °C. Supernatant was mix with antibodies overnight and 50% protein G beads (Protein G sepharose 4 Fast Flow; GE healthcare) was added and rotated for 3 h at 4 °C. After washing by low salt wash buffer (50 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM EDTA (pH 8.0), 1% Triton X-100, 0.1 % SDS, 0.1% sodium deoxycholate), high salt wash buffer (50 mM Tris-HCl (pH 8.0), 500 mM NaCl, 1 mM EDTA (pH 8.0), 1% Triton X-100, 0.1 % SDS, 0.1% sodium deoxycholate), LiCl wash buffer (10 mM
Tris-HCl (pH8.0), 0.25 M LiCl, 1 mM EDTA (pH 8.0), 0.5 % NP40 and 0.5 % sodium deoxycholate) and TE buffer. DNA-protein complex was eluted by incubation with elution buffer (1 % SDS, 0.1 M NaHCO$_3$) for 30 min at room temperature. After incubation overnight at 65 C, DNA samples was purified as previously described (23) and subjected to PCR experiment. Antibodies for ChIP assay were anti Sp1 antibody (07-645, upstate), anti Sp3 antibody (sc-644X, Santa Cruz Biotechnology) and normal rabbit IgG (sc-2027, Santa Cruz Biotechnology). PCR condition was as follow; denature of one cycle (95 C for 3 min), amplification of 30 cycles (94 C 1 min, 55.5 C 30 sec, 72 C 30 sec) PCR primer sequences as follow: sense (gaaccageggggaacagagc), antisense (aggttaaagccccgcaag)

Other assays

Preparation of nuclear protein from mouse liver and cultured cells was as previously described (7). EMSA and Western blot analysis were performed as previously described (24). Sequences for EMSA probe are as follows; (antisense strand omitted)

SREBP-1c SRE complex (-92 - -35):

Downloaded from www.jlr.org by guest on October 22, 2017
(5’-gccggctgctgattggccatgtgcgctcacccgaggggcggggcacggaggcgatcgg-3’) SREBP-1c SRE complex mut: (5’-gccggctgctgattggccatgtgcgctcacccgaggtttaaaagcgcggaggcgatcgg-3’)

-90bp region (-46 - +8):

(5’-ggcggggcacggaggcgatcgggctttaaagcctcgcggggcctgacaggtgaaatcggcgc-3’)

90bp region (-6 - +43): (5’-ggtgaatcggcgcggaagctgtcggggtagcgtctgcacgccctagg-3’)

NFkB consensus site: (5’-gagttgaggggactttccagg-3’)

Plasma glucose, triglycerides, NEFA and cholesterol were determined with kit purchased from WAKO. Plasma insulin level was determined with insulin kit (mouse-T) (Shibayagi).

Statistics

All animal experiments were performed at least two times. Luciferase assay, PKC activity, plasma parameters, body weight, tissue weight and mRNA expression level are presented as means ± standard deviation. The significance was tested by Dunnett test or student t test.
Results

Activation of PKCs induced SREBP-1c promoter activity.

A mouse SREBP-1c promoter construct spanning a 2.6 kb 5’ flanking region containing LXR and SREBP binding sites (schematized in Fig. 1A) was used in reporter assays in the hepatic cell line, HepG2. PMA, a general activator of all PKC isoforms, dose-dependently and saturably elevated SREBP-1c promoter activity, suggesting that PKC activates the SREBP-1c promoter (Fig.1B). Deletion studies indicated that the region of SREBP-1c promoter responsible for PMA activation was located within the proximal 90 bp region, which contains the SRE complex (Fig. 1C and D). Deletion constructs was confirmed by LXR synthetic ligand T0901317 (indicated as T1317 in Figure 1D). T1317 activates robustly SREBP-1c promoter in pBP-1c550 and pBP-1c550 (ΔSRE complex) constructs containing LXRE but not in pBP-1c90 and pBP-1cTATA-Luc constructs. Activation of this minimal promoter by PMA was dose-dependently inhibited by GFX, an inhibitor of PKC, confirming that PMA activation of SREBP-1c promoter was mediated by PKC (Fig. 2A). It is well established that MAP kinases are downstream of PKC (25)(26)(27). PMA activation.
of the 90 bp-Luc promoter was also abolished by U0126, an inhibitor of MEK, but not by U0124, its inactive analogue, indicating that MEK activation mediates the process in PMA activation of SREBP-1c promoter.

PKCbeta and PKCepsilon dose-dependently activate the SREBP-1c promoter.

Because of the potential involvement of several different PKC isoforms, we tested the effect of LY333531, a specific inhibitor of PKCbeta. This PKCbeta inhibitor dose-dependently abolished PMA-induced activation of the SREBP-1c promoter, although its effect on the basal activity was minimal (Fig. 2B). Conversely, expression of PKCbeta, as well as PKCepsilon, dose-dependently activated the SREBP-1c promoter (Fig. 2C).

PKC activation of SREBP-1c promoter requires the SRE and Sp proteins.

Gel-shift assay focusing on the responsible 90 bp region demonstrated that nuclear extract from HepG2 cells treated with PMA exhibited a robust and consistent binding to the SRE complex probe (−92bp and −35bp) (Fig. 3A), whereas no signal was obtained
from other probes to other sections of the SREBP-1c promoter (data not shown).

These data suggest that the SRE complex could be the site for PMA activation. The signal was slightly diminished by addition of antibodies against transcription factors that bind to the SRE complex such as SREBP-1, USFs, Sp proteins, and NF-Y (28). Antibody to Sp3 strongly attenuated the signal (Fig. 3A). Furthermore, dose-dependent and specific binding of Sp3 to this probe was demonstrated using in vitro translated protein, whereas Sp3 did not bind to mutant probe having changed sequence of GC box (Fig. 3B and C). Thus, this result indicated that GC box (-59 - -50) of SRE complex is the one and only binding site of Sp family in -90bp region of SREPB-1c promoter. PKC activation and inactivation by PMA and GFX, respectively, did not cause changes in the binding of Sp3 to the SRE complex, unlike their effects on NFkB, which is known to be regulated by PKC and change binding to its cis-element (Fig. 3D and E). In a similar manner to PKC inhibitors, the Sp protein inhibitor, mithramycin, also abolished activation of the SREBP-1c promoter by PMA, supporting the concept that Sp protein is involved in the action of PKC (Fig. 4A). However, in luciferase-reporter assays, co-transfection of Sp1 activated significantly SREBP-1c
promoter activity compared to Sp3. Sp1 and PKCbetaCA activated synergistically SREBP-1c promoter activity, whereas Sp3 attenuated this effect (Fig. 4B). Inhibitory effect of Sp3 on SREBP-1c promoter was also observed in activation by PKCepsilonCA (Fig. 4C). These results were consistent with the recent report that Sp1 and Sp3 transcription factors differentially regulate the rat SREBP-1c promoter (29).

These data demonstrated that binding of Sp proteins to the SRE complex are involved in PKC activation of the SREBP-1c promoter with distinctive effects between Sp1 and 3 in HepG2 cells.

SREBP-1c is activated by PKC in vivo and in vitro.

PKC activation of SREBP-1c was also tested in vivo. PMA administration to C57BL/6J mice dose-dependently increased hepatic expression of SREBP-1c, but not SREBP-1a, as determined by Northern blot analysis and real time RT-PCR (Fig. 5A and B). PMA treatment caused a dose-dependent decrease in plasma insulin levels, indicating that plasma insulin levels per se did not account for PMA activation of SREBP-1c (Table 1). PKC activation in the liver was validated by upregulation of
LDL-R (30) and SOCS3 (31)(32) (Fig. 5A). Dose-dependent activation of SREBP-1c expression was also observed in rat primary hepatocytes at lower concentration of PMA in the medium than required for SOCS3 activation, indicating that SOCS3/STAT3/SREBP-1c pathway previously reported (33, 34) is unlikely to be the primary cause of PMA activation of SREBP-1c (Fig. 6A).

Physiological relevance of PKCbeta-mediated activation of SREBP-1c.

Next, the physiological relevance of PKCbeta-mediated activation of SREBP-1c to the nutritional regulation of hepatic SREBP-1c was estimated. Insulin is a strong activator of expression of SREBP-1c and its targets such as FAS in rat primary hepatocytes (Fig. 6B). This insulin activation of SREBP-1c was completely attenuated by LY333531 to the medium (Fig. 6B). In vivo, hepatic SREBP-1c expression is markedly elevated by re-feeding mice after fasting. Dietary supplementation with LY333531 essentially abolished this induction with a concomitant repression of FAS, consistent with our observation in rat primary hepatocytes (Fig. 7). We previously reported the effect of STZ treatment on hepatic SREBP-1c expression to show that even
in insulin depletion, hyperglycemia can fully activate hepatic SREBP-1c expression in the mice (16). To dissociate the roles of plasma insulin and glucose in refeeding induction of hepatic SREBP-1c, mice were treated with STZ prior to administration of the PKC inhibitor. STZ treatment completely abolished the inhibitory effect of LY333531 on hepatic SREBP-1c. These data demonstrated that PKCbeta controls insulin-mediated activation of hepatic SREBP-1c independent of changes in plasma glucose levels. Lack of insulin by STZ treatment decreased total PKC activity by 30%, which was abolished by LY333531 treatment. Inhibition of PKCbeta by LY333531 was associated with a ~70% inhibition of total PKC activity in the liver in a fed condition (Table 2). STZ treatment decreased approximately 30% reduction of total PKC activity but caused no decrease in LY333531 treated group. On the assumption of PKCbeta-specific inhibition by LY333531, these data indicated that insulin-mediated PKC activity in a refed condition is primarily mediated by PKCbeta. PKCbeta inhibition did not affect food intake or body weight irrespective STZ-treatment (Table 2). Plasma insulin and free fatty acid levels were decreased and PEPCK expression was increased (Table 2 and Fig. 7).
Suppression of PKCbeta blunts SREBP-1c activation in the refed state.

Knockdown of PKCbeta in the liver by adenoviral shRNA caused complete suppression of PKCbeta protein and a marked inhibition of hepatic SREBP-1c expression in a refed state (Fig. 8A, B and C). SREBP-1c inhibition by PKCbeta knockdown was accompanied by a reduction in FAS expression with a reciprocal elevation in IRS-2 and PEPCK expression (23)(24) (Fig. 8A). Conversely, overexpression of PKCbeta enhanced SREBP-1c mRNA (Fig. 8D). Suppression of PKCepsilon by adenoviral shRNA did not induce inhibition of SREBP-1c nor resultant changes in SREBP-1-regulated genes as observed in PKCbeta knockdown (Fig. 8A).

PKCbeta knockdown and hepatic SREBP-1c suppression resulted in changes in plasma parameters (Table 3). Although food intake was not changed, plasma glucose was reduced without changes in plasma insulin levels. Plasma triglycerides and free fatty acids were also reduced. PKCepsilon knockdown also decreased plasma glucose, but no other changes as observed. These data support the contention that PKCbeta mediates the physiological regulation of hepatic SREBP-1c by insulin, and its inhibition
impacts glucose and lipid metabolism in the body.

Sp1 and 3 are reciprocally involved in PKCbeta activation of SREBP-1c promoter

Finally, we assessed whether Sp1 and Sp3 are involved in the transcriptional regulation of SREBP-1c in vivo. Suppression of Sp1 and Sp3 proteins was validated by immunoblot analysis. Knockdown of Sp1 in the liver caused a partial inhibition of hepatic SREBP-1c expression in the refed state (Fig. 9A). As a result, the expression of FAS, a target gene of SREBP-1c was also suppressed. In contrast, knockdown of Sp3 in the liver caused a slight upregulation of SREBP-1c and FAS expression. Meanwhile, in a feeding cycle, amounts of Sp1 and Sp3 proteins in the nucleus were not altered by fasting or refeeding in wild type mice, while induction of nuclear SREBP-1 protein in a refed state was marked (Fig. 9B). Chromatin immunoprecipitation assay demonstrated that Sp3 could bind GC box-containing region in the SREBP-1c promoter in nuclei of fasted mice. Refeeding diminished this binding. Reciprocally, Sp1 did not show binding during fasting, but replaced Sp3 on the region upon refeeding (Fig. 9C). Finally, to whether PKCbeta influence on Sp1 action under refeeding state,
LY333531 was administrated to fasted mice. Hepatic SREBP-1c expression induced by refeeding was attenuated by LY333531. Sp1 binding to GC box-containing region in SREBP-1c promoter during refeeding was suppressed by LY333531 (Fig. 9D). Food intake confirmed by weighing stomach weight of each mouse was same level (data not shown). These results implicate that Sp1 and Sp3 could serve as positive and negative regulators, respectively, controlling SREBP-1c expression in response to nutritional conditions, and these transcription factors might have opposing effects on the SREBP-1c promoter. Therefore, at least in part PKCbeta-Sp family pathway participates in control of lipid metabolism via transcriptional regulation of SREPB-1c gene.
Discussion

Our current study clearly demonstrates that PKC\(\beta\) plays a crucial role in hepatic nutritional expression of SREBP-1c. Although PKC\(\epsilon\) can also activate the SREBP-1c promoter, adenoviral over-expression, knockdown, and inhibitor experiments indicate that PKC\(\beta\) is the primary mediator of physiological activation of hepatic SREBP-1c expression in a fed condition. PKC\(\beta\) is also responsible for insulin-mediated activation of SREBP-1c based upon the data from insulin treatment of primary hepatocytes, and STZ-treated mice. PKC\(\beta\)-mediated regulation of SREBP-1c was accompanied by changes in expression of downstream lipogenic genes, validating the PKC\(\beta\)/SREBP-1c pathway as an important lipogenic signal.

PKC\(\beta\) has been recognized as a pathogenic pathway for diabetic microangiopathic complications that are caused by chronic hyperglycemia. Unexpectedly, our current studies establish PKC\(\beta\)-induced hepatic SREBP-1c expression as a mediator of insulin signaling but not hyperglycemia. As reported previously, insulin depletion by STZ sustained high levels of expression of SREBP-1c in a refed condition (16). Our current data further demonstrated that STZ treatment actually increased SREBP-1c
expression while in the presence of the PKCbeta inhibitor, LY333531, implicating an
both insulin- and –PKCbeta-independent mechanism for activation of SREBP-1c
expression. The factor or pathway responsible for this hyperglycemia-mediated
activation of SREBP-1c is currently unknown.

Recently, it has been reported that TG accumulation was decreased in liver and
muscle with reduced adiposity in PKCbeta knockout mice (40). Interestigly, adipocyte
SREPB-1c expression was attenuated in PKCbeta knockout mouse. Thus,
PKCbeta-SREBP-1c pathway might regulate adipocyte differentiation and lipid
metabolism in addition to a role in hepatocyte.

High fat feeding and obesity derived from genetic deletions (such as ob/ob mice) also
sustains activation of hepatic SREBP-1c despite of hepatosteatosis (41)(35). In this
lipotoxic state, PKCepsilon could be involved. In our current data on fasting/refeeding
and STZ experiments, direct involvement of endogenous PKC involvement in
regulation of SREBP-1c was not detected. However, we observed that SREBP-1c
expression can be induced by overexpression of PKCepsilon in a more efficient manner
than PKCbeta. Thus, it is conceivable that activation of PKCepsilon by high fat
feeding is responsible for SREBP-1c activation in hepatosteatosis and may also contribute to insulin resistance.

A series of promoter analyses indicated that PKCbeta activation of the SREBP-1c promoter is mediated through modifying the action of Sp1/Sp3 on the Sp1 site in the SRE complex of the promoter. This SRE complex was originally found during our previous analysis of the SREBP-1c promoter and it was anticipated that this autoloop activation system could be a part of mechanism of the overshooting phenomenon of hepatic SREBP-1c expression in the refed state (28). Direct interaction and synergistic transactivation by SREBP and Sp1 are known to occur in various SREBP target promoters. A very recent report on involvement of Sp1 in insulin induction of rat SREBP-1c promoter also support our hypothesis (42). Our current data suggest that PKC mediates this process in the SREBP-1c promoter. At fasting, in the absence of insulin and PKCbeta action, Sp3 dominates the site and is likely to have a negative impact on SREBP-1c transcription. It has been reported that Sp3 works as a repressor of transcription because it contains an inhibitory domain. In a fed state, PKCbeta leads to a shift to Sp1, which contributes to activation of SREBP-1c transcription. However,
the functions of Sp1 and Sp3 vary among Sp target genes, and the precise molecular mechanism by which PKCbeta enhances Sp protein-mediated regulation of SREBP-1c promoter is currently unknown. Accumulating evidence suggests that Sp1 is an important regulator of expression of genes crucial for biological actions including growth and metabolism. Other types of modification of Sp family such as phosphorylation (43), acetylation (44), glycosylation (45)(46), sumolyation (47) should be investigated in the light of nutritional regulation.

Our current study contributes to understanding of the molecular mechanism by which excess sugars and carbohydrates are converted to triglycerides through insulin action. Further studies are needed to clarify how insulin activates PKCbeta linking to transactivation of Sp1 and 3 (Fig.10). The molecular mechanism for hyperglycemia activation of SREBP-1c is another unsolved issue. Insulin signaling pathways and protein kinases are highly connected linking to transcriptional regulation of energy metabolism. Molecular dissection of this system should help understanding pathophysiological states such as hyperlipidemia, insulin resistance, and diabetes.
References

Footnotes

We are grateful to Dr. Peter Parker for generously providing expression plasmids for PKCbetaCA and PKCepsilonCA. We also thank Dr. Alyssa H Hasty for careful reading of this manuscript. This research was partially supported by the Ministry of Education, Science, Sports and Culture, Grant-in-Aid for Scientific Research.

Figure Legends

Figure 1. Activation of SREBP-1c promoter by PMA via −90bp region in the promoter.

A. Schematic illustration of mouse SREBP-1c promoter. LXRE complex including two LXRE (LXR responsive element) exists between −250 and −150bp. SRE complex including NF-Y, E-box, SRE and GCbox exists downstream of −90bp. B. Effect of PMA on SREBP-1c promoter activity. HepG2 cells were cotransfected with pBP-1c2600-Luc (containing −2.6kbp region of SREBP-1c promoter). After transfection, PMA (0, 3, 10, 100, 300 nM) or vehicle was added for 20 h. RLU (firefly luciferase activity)
luciferase activity/renilla luciferase activity ratio) is shown. * p<0.01 vs vehicle.

Effect of PMA on several deletion constructs of SREBP-1c Luc. HepG2 cells were
cotransfected with pBP-1c2600-Luc, pBP-1c550-Luc, pBP-1c90-Luc or pGL2basic.
After transfection, PMA (100 nM) or vehicle was added for 20 h. Fold activation by
PMA is shown with values from vehicle treated cells set at 1. Relative promoter
activity of each construct without PMA is 12.7-fold in pBP-1c2600-Luc, 14.4-fold in
pBP-1c550-Luc and 4.6-fold in pBP-1c90-Luc compared to prompter activity in empty
vector. * p<0.005 vs each promoter construct with no treatment.

Effect of PMA on –90bp region deleted promoter construct. HepG2 cells were cotransfected
with pBP-1c550, pBP-1c90, pBP-1c550 (ΔSRE complex) or pBP-1cTATA-Luc
followed by adding PMA (100 nM), T0901317 indicated as T1317 (1 μM) or vehicle for
20 h. RLU (firefly luciferase activity /renilla luciferase activity ratio) is shown.

*p<0.01 vs each promoter construct with no treatment.

Figure 2. Activation of SREBP-1c promoter by PKCbeta and PKCepsilon.

A. Effect of PKC inhibitor on SREBP-1c promoter activity. HepG2 cells were
cotransfected with pBP-1c2600-Luc. After transfection, PMA, GFX, U0126, U0124 or vehicle were added for 20 h as indicated in figure. RLU (firefly luciferase activity/renilla luciferase activity ratio) is shown. *p<0.01 vs PMA treatment. B. Effect of PKCbeta inhibition by LY333531 on SREBP-1c promoter. HepG2 cells were cotransfected with pBP-1c2600-Luc. After transfection, PMA (0.1 μM) and LY333531 (0, 10, 30, 100, 300, 1000 nM) were added for 20 h. RLU (firefly activity/renilla luciferase activity ratio) is shown. *p<0.01 vs PMA treatment. C. Effect of PKCbeta and PKCepsilon on SREBP-1c promoter. HepG2 cells were cotransfected with pBP-1c2600-Luc and PKCbetaCA (constitutive active form) vector, PKCepsilonCA or empty vector. RLU (firefly luciferase activity/renilla luciferase activity ratio) is shown. *p<0.01 vs empty vector.

Figure 3. Identification of Sp3 as a factor binding to –90bp region on SREBP-1c promoter. Nuclear proteins were prepared from HepG2 cells and subjected to EMSA. A probe containing SRE complex (referred to Fig. 1A) was labeled and incubated with nuclear extract (A, B, C and E). A. Identification of binding factor interacting with
SREBP-1c promoter. To identify unknown binding protein, antibodies for supershift assay were added. B. Sp3 binding to –90bp region in SREBP-1c promoter. SRE complex and its mutational probe were labeled and incubated with HA-tagged Sp3 (HA-Sp3) produced with in vitro translation kit. C. Identification of Sp3 binding site in -90bp region of SREBP-1c promoter. SRE complex and two different probe corresponding to -90bp region were labeled and incubated with HA-tagged Sp3 (HA-Sp3) produced with in vitro translation kit. E. Confirmation of PMA effect on PKC. PKC activation in the nuclear extracts was confirmed by measuring NFkB binding activity. Probe containing a NFkB consensus sequence was labeled and incubated with the same set of HepG2 nuclear extracts. F. No effect of PMA on Sp3 binding. HepG2 cells were pretreated with PMA and GFX as indicated.

Figure 4. Sp family inhibition or knockdown abolishing activation of SREBP-1c promoter by PMA. A. Effect of Sp family inhibitor on SREBP-1c promoter activity. HepG2 cells were cotransfected with pBP-1c-90-Luc. Four h after adding GFX, LY333531, mithramycin or vehicle, PMA were treated for 16 h as indicated in the figure.
RLU (firefly luciferase activity/renilla luciferase activity ratio) is shown. *p<0.05 and §p<0.01 vs PMA treatment

B. Effect of Sp1 and Sp3 on SREBP-1c promoter activity induced by PKCbeta. HepG2 cells were cotransfected with pBP-1c-90-Luc (100 ng/well), expression vector for PKCepsilon CA (200 ng/well), Sp1 (100 ng/well) and HA-Sp3 (100 ng/well). RLU (firefly luciferase activity/renilla luciferase activity ratio) is shown. §p<0.001 vs empty vector or Sp1+PKCbCA as indicated in figure.

C. Effect of Sp3 on SREBP-1c promoter activity. HepG2 cells were cotransfected with pBP-1c-90-Luc, expression vector for PKCepsilon CA and HA-Sp3 as indicated. RLU (firefly luciferase activity/renilla luciferase activity ratio) is shown. *p<0.01 vs PKCe CA.

Figure 5. Induction of SREBP-1c expression by PKC activation in vivo.

Overnight-fasted C57BL/6J mice were administrated PMA (0, 1.2, 4 μg/mouse), followed by sacrifice 2 h later.

A. SREBP-1 mRNA amounts measured by Northern blot analysis. Extracted liver RNA were pooled (N=3) and RNA aliquots (10 μg/lane) were subjected to northern blot analysis measured with indicated cDNA probes. A
cDNA probe for 36B4 was used as a loading control. B. mRNA amounts of SREBP-1a and SREBP-1c assessed by Real Time RT-PCR. cDNAs were synthesized from mRNA, and measured by ABI7000. Loading amount is normalized by copy number of 36B4. Relative expression level (SREBP-1a or SREBP-1c/36B4) was shown as means ± SD. *p<0.05 vs vehicle-treated mice.

Figure 6. PKC activation and inhibition altering SREBP-1c expression in rat primary hepatocytes. A. Effect of PKC activation by PMA on SREBP-1c expression in hepatocytes. Rat primary hepatocytes were treated with PMA (0, 0.01, 0.03, 0.1 μM) for 6 h. Total RNA was extracted and RNA aliquots (10 μg/lane) were subjected to northern blot analysis using labeled cDNA probes as indicated in figure. B. Effect of PKC selective inhibitor on SREBP-1c expression induced by insulin in rat primary hepatocytes. After overnight serum starvation, rat primary hepatocytes were treated with LY333531 (150 nM) and/or insulin (100 nM) for 24 h under high glucose (540 mg/dl) medium. Extracted RNA aliquots (10 μg/lane) were subjected to northern blot analysis using labeled cDNA probes as indicated in figure.
Figure 7. Hepatic SREBP-1c expression induced by refeeding abolished PKCbeta selective inhibitor on hepatic SREBP-1 expression.

24 h-fasted mice (control and STZ-treated mice) were followed by 12 h-refeeding. Food was prepared as normal diet (Cont) and LY333531-contained normal diet (LY). mRNA level of hepatic SREBP-1 in Cont or LY administrated control and STZ mice. Extracted liver total RNA was pooled and RNA aliquots (10 μg/lane) were subjected to northern blot analysis using labeled cDNA probes as indicated in figure (n=4-6).

Figure 8. Effect of PKCbeta knockdown or overexpression on mRNA level of hepatic SREBP-1c in C57BL/6J mice. A. C57BL/6J mice were administrated recombinant adenoviruses for knockdown (targeting lacZ, PKCbeta and PKCepsilon). After 8 days, these mice were sacrificed in the refed state. Liver total RNA was extracted, pooled and RNA aliquots (10 μg/lane) were subjected to northern blot analysis using labeled cDNA probes as indicated in figure (n=5). B. Confirmation of knockdown efficiency and specificity of RNAi. Mouse Kidney-derived MES13 cells were infected with
adenovirus expressing shRNA for 24 h. Whole cell proteins were extracted and subjected to western blot analysis (40 μg protein/lane) using indicated antibodies. Loading control was confirmed by α-Tubulin. C. Confirmation of knockdown of liver PKCβ and PKCe. Whole liver proteins and mRNA were extracted and subjected to western blot analysis (100 μg/lane) or northern blot analysis (1 μg/lane) Loading control was confirmed by α-Tubulin. D. C57BL/6J mice were administrated recombinant adenovirus for overexpression (GFP and PKCβ wild type). After 12 days, these mice were sacrificed in the ad libitum state. Liver total RNA was extracted, pooled and RNA aliquots (10 μg/lane) were subjected to northern blot analysis using labeled cDNA probes as indicated in figure (n=3).

Figure 9. Effect of Sp1 and Sp3 knockdown on expression of SREBP-1c in vivo.

A. C57BL/6J mice were administrated recombinant adenovirus for knockdown (targeting lacZ, Sp1 and Sp3). After eight days, these mice were subjected to fasting/refeeding procedure and sacrificed. Liver total RNA was extracted, pooled and RNA aliquots (10 μg/lane) were subjected to northern blot analysis using labeled cDNA
probes as indicated in figure. Knockdown efficiency and specificity of adenoviruses expressing shRNA were confirmed by western blot analysis using whole liver proteins (50 μg protein/lane) and indicated antibodies. Loading control was confirmed by α-Tubulin. B. Nuclear protein level of Sp1 and Sp3. Liver nuclear extracts (20 μg/lane) from fasting and refeeding mice were subjected to western blot analysis using indicated antibodies. C. DNA binding of Sp1 and Sp3 to GC box-containing region in SREBP-1c promoter. ChIP analysis was performed using liver nuclear samples extracted from liver of fasting and refeeding mice. After coimmunoprecipitation using indicated antibodies, DNA was extracted. PCR primers were set in upstream and downstream of GC box in SREBP-1c promoter. D. Effect of PKCβ inhibition on Sp1 binding to GC box-containing region under refeeding condition. After 24 h fasting, LY333531 (10 mg/kg) or vehicle were intraperitoneally administrated to C57BL/6J mice. After 12 h refeeding of high sucrose low fat diet, liver samples were subjected to ChIP assay and Northern blotting. Relative expression level (SREBP-1c/36B4) was shown as means ± SD. *p<0.001 vs vehicle-treated refed mice. N=3-5 of each group.
Figure 10. Schematic illustration of SREBP-1c transcription in fed state.
Table 1. Plasma glucose and insulin levels of PMA-administrated mice

<table>
<thead>
<tr>
<th>PMA (µg/mouse)</th>
<th>0</th>
<th>1.2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg/dl)</td>
<td>119 ± 9</td>
<td>158 ± 3</td>
<td>143 ± 44</td>
</tr>
<tr>
<td>Insulin (ng/ml)</td>
<td>0.52 ± 0.43</td>
<td>0.19 ± 0.24</td>
<td>0.08 ± 0.03</td>
</tr>
</tbody>
</table>

Values are means ± SD (n = 3). All mice were sacrificed in overnight fasted state followed by PMA-administration.

Table 2. Metabolic parameters of LY333531-administrated mice

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>STZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cont</td>
<td>LY</td>
</tr>
<tr>
<td>N</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Body Weight (g)</td>
<td>26.0±1.9</td>
<td>25.1±0.72</td>
</tr>
<tr>
<td>Liver Weight (g)</td>
<td>1.69±0.17</td>
<td>1.51±0.01</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>198±27</td>
<td>200±18</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>166.0±30</td>
<td>159.3±17</td>
</tr>
<tr>
<td>NEFA (mEq/l)</td>
<td>0.442±0.06</td>
<td>0.661±0.09*</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>116.0±8.6</td>
<td>117.6±8.0</td>
</tr>
<tr>
<td>Insulin (ng/dl)</td>
<td>4.61±0.48</td>
<td>2.70±0.72*</td>
</tr>
<tr>
<td>Food intake (g/mouse)</td>
<td>3.43</td>
<td>3.48</td>
</tr>
<tr>
<td>PKC activity (pmol/min/µg)</td>
<td>2.00±1.1</td>
<td>0.715±0.42*</td>
</tr>
</tbody>
</table>

Food was prepared as normal diet (Cont) and LY333531-contained MF diet (LY).

STZ or vehicle was administrated 100 mg/kg two times. After one week, glucose level was measured. Insulin-depleted mice were subjected to perform experiment. All mice were sacrificed in 12 h refeeding state (indicated diet) following 24 h fasting.

Values are means±SD (n =5); * p<0.05 vs. STZ-untreated control mice on control diet. § p<0.05 vs. STZ-treated mice on control diet.
Table 3. Metabolic parameters of PKCbeta or epsilon knockdown mice

<table>
<thead>
<tr>
<th>Knockdown</th>
<th>LacZ</th>
<th>PKCbeta</th>
<th>PKCepsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body Weight (g)</td>
<td>20.9±0.9</td>
<td>20.5±0.9</td>
<td>20.5±0.6</td>
</tr>
<tr>
<td>Liver Weight (g)</td>
<td>1.92±0.24</td>
<td>1.51±0.17*</td>
<td>1.73±0.10</td>
</tr>
<tr>
<td>Stomach Weight (g)</td>
<td>1.31±0.13</td>
<td>1.32±0.24</td>
<td>1.18±0.32</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>250±68</td>
<td>165.3±26*</td>
<td>175.8±32*</td>
</tr>
<tr>
<td>Triglyceride (mg/dl)</td>
<td>382.1±44</td>
<td>94.30±34**</td>
<td>192.8±23**</td>
</tr>
<tr>
<td>NEFA (mEq/l)</td>
<td>0.51±0.08</td>
<td>0.35±0.13</td>
<td>0.41±0.02</td>
</tr>
<tr>
<td>Cholesterol (mg/dl)</td>
<td>84.36±12</td>
<td>87.49±12</td>
<td>79.45±9.3</td>
</tr>
<tr>
<td>Insulin (ng/dl)</td>
<td>12.25±10</td>
<td>12.25±3.4</td>
<td>10.68±3.5</td>
</tr>
</tbody>
</table>

Values are means±SD (n = 5) * p<0.05 and ** P<0.01, vs. AdLacZ treated control mice
All mice were sacrificed after refeeding for 12h (high sucrose low fat diet) following fasting for 24 h.
Figure 1

A

-2.6kbp
-550
-250
-150
-90

SREBP-1c promoter
LXRE complex
SRE complex
LXREa
LXREb
NF-Y
E-box
SRE
GCbox

B

RLU

PMA(nM)

0 100 200 300

0 0.05 0.10 0.15 0.20 0.25 0.30 0.35

C

Fold activation/control

empty
-2.6kbp
-550bp
-90bp

PMA
0 1 2 3 4 5 6

LUC
+-
+-
+-
+-
+-
+-

D

TATA

-550bp
-90bp
-550bp
(ΔSRE complex)

TATA

RLU

T1317
0 2 4 6 8 10 12 14

+ - +
+ + +
+ - +

* * * * *
Figure 2

A

RLU

PMA (0.1 µM)
GFX (µM)
U0126 (µM)
U0124 (µM)

B

RLU

LY333531 (nM)
mock
PMA (0.1 µM)

C

RLU

empty vector
PKCb CA (µg/well)
PKCe CA (µg/well)

0 0.03 0.1 0.3
0 0.3 1 3
0 0.3 1 3

* * * * * * *
Figure 3
Figure 4
Figure 6

A

<table>
<thead>
<tr>
<th></th>
<th>PMA(µM)</th>
<th>0</th>
<th>0.01</th>
<th>0.03</th>
<th>0.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SREBP-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCS3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36B4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>Insulin</th>
<th>-</th>
<th>-</th>
<th>+</th>
<th>+</th>
</tr>
</thead>
<tbody>
<tr>
<td>LY333531</td>
<td>SREBP-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NB</td>
<td>FAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36B4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table showing the expression levels of SREBP-1, SOCS3, and 36B4 under different conditions of PMA and Insulin with LY333531.
<table>
<thead>
<tr>
<th>Gene</th>
<th>Control</th>
<th>STZ</th>
<th>ContLY</th>
<th>LY ContLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEPCK</td>
<td>100</td>
<td>0.46</td>
<td>2.22</td>
<td>2.05</td>
</tr>
<tr>
<td>FAS</td>
<td>100</td>
<td>0.46</td>
<td>0.61</td>
<td>0.70</td>
</tr>
<tr>
<td>SREBP-1</td>
<td>100</td>
<td>0.43</td>
<td>0.87</td>
<td>0.67</td>
</tr>
<tr>
<td>NB</td>
<td>100</td>
<td>1.46</td>
<td>2.22</td>
<td>2.05</td>
</tr>
</tbody>
</table>

Figure 7
Figure 8

A. siRNA target gene

<table>
<thead>
<tr>
<th>Gene</th>
<th>lacZ</th>
<th>PKCbeta</th>
<th>PKCepsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>SREBP-1</td>
<td>1.00</td>
<td>0.39</td>
<td>1.04</td>
</tr>
<tr>
<td>FAS</td>
<td>1.00</td>
<td>0.27</td>
<td>1.25</td>
</tr>
<tr>
<td>36B4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Refed

B. siRNA target gene

<table>
<thead>
<tr>
<th>Gene</th>
<th>lacZ</th>
<th>PKCbeta</th>
<th>PKCepsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCb1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKCe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-Tubulin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

no infection

C. siRNA target gene

<table>
<thead>
<tr>
<th>Gene</th>
<th>lacZ</th>
<th>PKCbeta</th>
<th>PKCepsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>PKCb1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PKCe</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a-Tubulin</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WB

D. siRNA target gene

<table>
<thead>
<tr>
<th>Gene</th>
<th>lacZ</th>
<th>PKCbeta</th>
<th>PKCepsilon</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAG-GFP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CAG-PKCb</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ad libitum

<table>
<thead>
<tr>
<th>Gene</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SREBP-1</td>
<td>1.00</td>
<td>1.34</td>
<td></td>
</tr>
<tr>
<td>PKCb1</td>
<td>(transgene)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36B4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 9

A

<table>
<thead>
<tr>
<th>siRNA target gene</th>
<th>lacZ</th>
<th>Sp1</th>
<th>Sp3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fasted</td>
<td>Refed</td>
<td>Fasted</td>
</tr>
<tr>
<td>SREBP-1</td>
<td>1.00</td>
<td>1.00</td>
<td>7.53</td>
</tr>
<tr>
<td>FAS</td>
<td>1.00</td>
<td>1.00</td>
<td>7.53</td>
</tr>
<tr>
<td>NB</td>
<td>1.00</td>
<td>1.00</td>
<td>7.53</td>
</tr>
<tr>
<td>PEPCK</td>
<td>1.00</td>
<td>1.00</td>
<td>7.53</td>
</tr>
<tr>
<td>36B4</td>
<td>1.00</td>
<td>1.00</td>
<td>7.53</td>
</tr>
<tr>
<td>WB</td>
<td>1.00</td>
<td>1.00</td>
<td>7.53</td>
</tr>
</tbody>
</table>

B

C

D

Relative expression (normalized by 36B4)
Figure 10

Fasted Fed

Insulin Signal

PKCbeta (but not PKCepsilon)

? ?
Sp3 Sp1 SOCS3

STAT-3

SREBP-1c promoter

Lipogenic Enzymes