GPI-anchored protein organization and dynamics at the cell surface

Suvrajit Saha1,*, Anupama Ambika Anilkumar 1,2,* and Satyajit Mayor 1,3

1National Centre for Biological Sciences (TIFR), Bangalore 560065, India
2Shanmugha Arts, Science, Technology & Research Academy, Thanjavur 613401, India
3Institute for Stem Cell Biology and Regenerative Medicine (inStem), Bangalore 560065, India

*equal contributions

To whom correspondence should be addressed, e-mail: mayor@ncbs.res.in

Running title: GPI-anchored protein cell surface dynamics

Abbreviation: FCS; Fluorescence correlation spectroscopy, FRAP; Fluorescence recovery after photobleaching, GPI; Glycosylphosphatidylinositol; SPT; Single-Particle Tracking; FRET; Fluorescent Resonant Energy Transfer; DRM; Detergent-Resistant Membrane; TCZ; transient confinement zones; MSK; Membrane Skeleton; CA; Cortical Actin; TM; Transmembrane; APF; Anchored Picket Fence; NSOM; Near-field Scanning Optical Microscopy; PALM; Photo-activation Localization Microscopy; STED; Stimulated Emission Depletion;

Keywords: lipid rafts; GPI-anchored protein; organization; nanoscale; diffusion; dynamics; homo-FRET; super-resolution; signal transduction; microdomains; actomyosin; activity
Abstract

The surface of eukaryotic cells is a multi-component fluid bilayer in which GPI-anchored proteins are an abundant constituent. In this review, we discuss the complex nature of the organization and dynamics of GPI-anchored proteins at multiple spatial and temporal scales. Different biophysical techniques have been utilized for understanding this organization, including Fluorescence Correlation Spectroscopy (FCS), Fluorescence Recovery after Photobleaching (FRAP), Single-Particle Tracking (SPT) and a number of super resolution methods. Major insights into this organization and dynamics have also come from exploring the short-range interactions of GPI-anchored proteins by Försters Resonance Energy Transfer (FRET) microscopy. Based on the nanometer to micron scale organization, at the microsecond to the second time scale dynamics, a picture of the membrane bilayer emerges where the lipid bilayer appears inextricably intertwined with the underlying dynamic cytoskeleton. These observations have prompted a revision of the current models of plasma membrane organization, and suggest an active actin-membrane composite.

Introduction

The plasma membrane of the cell comprises of a diverse set of proteins many of which are transmembrane proteins spanning the entire bilayer but a significant proportion of proteins are also lipid tethered containing a complex glycan core attached to the C-terminus of the protein called Glycosylphosphatidylinositol (GPI) anchored proteins. The basic structure of a GPI-anchored protein consists of phosphatidylinositol linked to an unusual non-N-acetyl glucosamine, which in turn is linked to three mannose residues followed by an ethanolamine covalently linked to the protein via an amide linkage (EtNP-6Manα1-2Manα1-6Manα1-4GlcNα1-6myoInositol-phospholipid, Fig. 1A). Depending on the species and functional context there may exist variations in the side chain associated with the glycan core. These have been summarized in this series (1). The lipid moiety is necessary for the incorporation of GPI-anchored proteins into so called lipid rafts/ microdomains (2, 3) which can serve as a sorting station for a number of cell signaling molecules thereby functioning as a reaction centre. GPI-anchored proteins can exist in different forms depending on the context and the tissue in which it is expressed. Alternate splicing can cause the same protein to exhibit transmembrane, soluble or GPI anchored forms; for example N-CAM (neural cell adhesion molecule) can exist in its GPI-anchored and soluble form when expressed in muscles where as it takes up a transmembrane form instead of the soluble form in brain. GPI anchoring of proteins occur at the luminal face of endoplasmic reticulum (ER), following which, these proteins also undergo a number of post translational modifications at the lipid and glycan parts which play a crucial role in sorting them
at the secretory level (4). Use of synthetic GPI analogues have greatly improved our understanding on the structural contribution of the anchor towards the protein's membrane behavior (5, 6) because perturbing the biosynthetic enzymes that are key to glycan modifications might result in complete disorganization of the structure.

GPI-anchored proteins are known to play crucial roles in various cellular processes such as cell signaling and cell adhesion. This has implications in health and disease, since GPI-anchored proteins carry out diverse functions in different organisms by acting as surface hydrolases, coat proteins, protozoan antigens, toxin binders, receptors and so on (7). Moreover, impairment of GPI-anchoring is also implicated in a large number of diseases such as the formation of scrapie form of the prion protein, the causative agent for Creutzfeldt-Jakob disease. PNH (paroxysmal nocturnal hemoglobinuria) is caused by the absence of glycosphatidylinositol (GPI) on the membrane. The role of GPI-anchoring is necessary for embryonic development (8) and its perturbation a cause of several neurological disorders (9), abnormal cell growth in yeast (10), and for the survival of many protozoan parasites (11). A study of the cell surface dynamics and the organization is crucial to provide an understanding of their many roles.

Delivery of GPI-anchored proteins to the plasma membrane

The GPI anchor plays an important role in delivering the attached membrane protein to the plasma membrane, and this has been addressed in a recent review from Muniz and Reizman (in the same thematic review series in *J Lipid Res*.). The plasma membrane domain to which the GPI-anchored protein localizes also depends on the cell type, for e.g. in Madin-Darby Canine Kidney (MDCK) cells GPI-anchored proteins are present mainly on the apical surface. On the contrary, in Fisher Rat Thyroid (FRT) cells they are sorted to the basolateral domain; the information for targeting the proteins to these distinct locations lies in the GPI anchor sequence (12, 13). The mechanism by which sorting takes place from Golgi to the appropriate membrane domain also depends on the cell type (13).

Post-translational modification of the GPI anchor also affects its sorting at the level of ER. Unlike transmembrane proteins, GPI-anchored proteins do not have a cytoplasmic domain that can directly interact with coat proteins. Hence the modified GPI anchor efficiently interacts with protein complexes like p24 family of proteins, which selectively sorts them into COP II containing vesicles for anterograde transport thereby establishing quality control at the site of protein attachment itself (14). Knocking down Sec24, an interactor of p24-p23 complex was shown to impede the trafficking of GPI-anchored proteins from ER to Golgi while the other cargo molecules remain unaffected (15). In yeast, the p24 protein complex acts as an adaptor between GPI-anchored protein and the COP II coat by recognizing the remodeled GPI-anchored
proteins. On the contrary, in mammalian cells they mediate the concentration of GPI-anchored proteins to ER-exit sites, since the lipid remodeling occurs much later at the Golgi (14). Post translational modifications of GPI-anchored proteins, which involve remodeling enzymes like post GPI attachment to protein 1 (PGAP1) and post GPI attachment to protein 5 (PGAP5) are also known to tightly regulate ER-Golgi transport (Fig. 1B) of several GPI anchored protein in mammalian cells (14, 16, 17).

The ability of GPI anchor to incorporate proteins into membrane domains helps in sorting these proteins all along the secretory pathway (18). There exists different mechanisms by which sorting can take place in the secretory pathway (Fig. 1C). The sorting takes place at the ER exit site in case of yeast in a sphingolipid dependent manner whereas in mammalian cells this event primarily occurs at the Golgi (14, 19, 20). The sorting process is preceded by post-translational modification of the lipid tail so that they are incorporated into specific membrane domains and can be transported efficiently to the cell surface. Depending on the cell type, for example in Madin-Darby Canine Kidney Epithelial line (MDCK) or Fisher Rat Thyroid (FRT) cells GPI-anchored proteins are sorted and routed to apical or basal membrane respectively. For the apical sorting of GPI-anchored proteins oligomerisation, N-glycosylation and raft association have been shown to be important (13) although the underlying mechanism for basolateral sorting of GPI-anchor protein is not fully understood (21). Synthetic chemistry approaches have led to the development of modified GPI analogues and hence allowed studying the trafficking of analogs with modified glycan cores, which showed that despite exhibiting a minor difference in the efficiency of membrane incorporation, the trafficking and endocytic fates of these analogues with differing glycan core does not show an appreciable change (22). But there is compelling evidence that these analogues differ hugely in their diffusion properties possibly due to their differential engagement with membrane molecules (6). Further studies utilizing this powerful synthetic tool would provide answers to several questions prevailing in the field.

The behavior of GPI-anchored proteins at the cell surface

Once at the cell surface, GPI-anchored proteins exhibit a rich diversity of dynamic behaviors in terms of its diffusion, organization and interactions with other membrane resident proteins. This has indeed been an active area of research for past 3 decades. Studying these behaviors has been instrumental in shaping the modern understanding of how specialized domains in the cell membrane could be organized, maintained and utilized for signal transduction. In this section, we provide a chronological perspective of how the study of GPI-anchored proteins has led to a complex understanding of cell membrane organization and structure.

GPI-anchored proteins and lateral heterogeneities in the cell membrane
The plasma membrane has been thought of as a fluid-mosaic as proposed by Singer & Nicholson in 1972 (23). The Fluid-Mosaic Model was a simple yet elegant model, rooted in the principles of equilibrium thermodynamics of lipid-protein interactions. Here the cell membrane essentially behaves like a ‘fluid’, where membrane lipids act as ‘solvents’ for the transmembrane and peripheral membrane proteins. The proposed fluid-like nature of membrane lipids implied the absence of local lateral heterogeneities in the distribution of lipids. However, studies on the lateral heterogeneity of membrane lipid and protein composition (24–26) and their polarized distribution in epithelia (27) suggested that the cell surface and internal membranes were not a well-mixed membrane, and this led to a re-thinking of the Fluid-Mosaic model.

In 1988, Simons and Meer argued that polarized membrane composition could be achieved by sorting GPI-anchored protein and sphingolipids into lipidic microdomains at the level of Golgi membranes followed by their polarized trafficking (27). However, a biochemical correlate of such membrane domains was lacking. In 1992, Brown and Rose showed that placental alkaline phosphatase (PLAP), a GPI-anchored protein destined for apical transport in MDCK cells were enriched in membrane extracts insoluble in cold non-ionic detergents such as Triton-X (1% at 4°C) (2). These detergent resistant membrane (DRM) fractions had very high lipid content and exhibited an enrichment of sphingolipids and cholesterol along with GPI-anchored proteins. The DRMs hence appeared as a biochemical correlate of the functional membrane domains proposed by Simons and Meer. This laid the foundations of the ‘lipid raft’ hypothesis (28) in cellular and functional context as well as from a biochemical perspective, wherein these ‘rafts’ were envisaged as lateral sorting platforms for specific lipids (sphingolipids), lipid-linked proteins (like GPI-anchored proteins) and other transmembrane proteins (e.g. CD44) which form distinct domains at the cell-surface (schematic in Fig. 2D). Moreover, it was shown that the partitioning of GPI-anchored proteins and other raft markers into DRMs depended on cholesterol levels. For example the depletion of cholesterol led to nearly complete solubilization of GPI-anchored proteins by the same detergents (29). Hence, the ability to partition into DRMs and its sensitivity to cholesterol depletion gained ground as a working definition of lipid rafts in cells. Rafts were envisaged as domains formed by the phase segregation of lipids as observed in artificial membranes of composition resembling the plasma membrane (30, 31).

These initial developments gave an impetus to using GPI-anchored proteins as a marker to study the organization and dynamics of the ‘raft’ domains using both fluorescence and electron microscopy in intact cell membranes. In one such early study (32), fluorescence microscopy of labeled folate receptor (FR-GPI) in CHO cells showed a diffuse and uniform distribution at the cell membranes. Upon detergent extraction, folate receptor clearly redistributed to detergent insoluble patches on the membrane. By this time it was recognized that process of detergent
extraction could induce artifacts by coalescence of micro-domains, differential removal of specific lipid species, and inducing changes in fluidity and phase behavior of the native lipids in the membrane (33, 34). Hence, while the direct visualization of native raft-domains remained elusive, the focus shifted to other non-invasive or minimally perturbing approaches to study GPI-anchored protein organization under native (-like) conditions.

In the next sections, we focus on the biophysical and microscopy studies on cell-surface dynamics of GPI-anchored proteins, which have given pointers regarding the development of a new model of membrane organization that has been driven by these studies.

Diffusional dynamics of GPI-anchored proteins

Fluorescence recovery after photo bleaching (FRAP), Single particle tracking (SPT) and Fluorescence Correlation Spectroscopy (FCS) are three of the widely used tools to study the diffusion of GPI-anchored proteins. Although all the three techniques monitor diffusion, they do so over different spatial-temporal regimes which are in the order of SPT (10-20 nm, ~ ms) < FCS (~40 nm - 1μm, ~ 100 μs-100 ms) < FRAP (> 1μm, ~ sec) (35). This has indeed provided complementary insights on the scale-dependent diffusion behavior of GPI-anchored proteins as well as the local organization of the membrane.

Pioneering FRAP studies (36, 37) on GPI-anchored proteins from Jacobson’s group reported that GPI-anchored proteins such as Thy-1, PLAP and Ly6E exhibit diffusion coefficients comparable to membrane lipids, but about ~ 2-5 fold faster than transmembrane proteins like VSV-G. However, the GPI molecules showed mobile fraction of only ~50% across different cell types (38). The origin of this reduced lateral mobility was not well understood. It was speculated that the size, glycosylation and interactions of the ecto-domain of the GPI-anchored proteins with the extracellular matrix, with other transmembrane receptors or cortical cytoskeletal corrals could be a potential explanation (36, 38). FRAP based studies also showed that apically sorted GPI-s are immobile just after reaching the cell-surface and their mobility increases as they become long-term residents at the cell surface, suggesting that GPI-anchored proteins are delivered to membrane in a clustered form (39). Studying the dynamics of GPI-anchored proteins (40) provided a scale dependence to GPI-anchored protein diffusion which suggested that they diffuse freely as individual molecules over larger length scale, but may dynamically partition into raft domains. However, the poor spatial resolution, the inherent averaging of dynamics of multiple individual molecules and a possible convolution of diffusion, turnover and interactions (like trapping or binding) in a typical FRAP measurement precluded further investigation (41). Hence studying the dynamics at (or near) the scale of single
molecules (or a small group) was necessary to gain a more resolved picture regarding the microscopics of the diffusion process.

The advent of fast (video-rate and higher) and sensitive ‘low’ light detectors in the early 90’s coupled with ability to specifically tag membrane molecules led to the emergence of SPT as a popular method in studying membrane dynamics[41, 42]. A unique feature about SPT is the ability to classify the observed particle trajectory into several categories/modes of diffusive behavior like free diffusion, anomalous diffusion, directed motion, confined diffusion and trapping/stalling. Early SPT studies (43, 44) on GPI-anchored proteins like Thy-1 and NCAM-125 (a GPI linked isoform of NCAM) showed that the individual trajectories of both proteins exhibit all the different modes like stationary, free, anomalous sub-diffusive and transiently confined diffusion. The most striking observation was that ~35% of all tracked molecules showed compartmentalized/confined diffusion in compartments of sizes ~250-300 nm in C3H fibroblasts. These regions/domains were called “transient confinement zones” (TCZ), and GPI-anchored proteins and other glycosphingolipids like GM-1, were found to be trapped for ~ 5-10s in these cholesterol and sphingolipid sensitive domains (43, 45). In parallel, SPT data from the Kusumi group on transmembrane proteins like cadherin, EGF-Receptor and Transferrin Receptor showed similar signatures of diffusional trapping for these proteins into compartments of ~300 nm in NRK cells (42, 46). To explain these findings, Kusumi and coworkers proposed the “Membrane-Skeleton Fence (MSK)” model (47), wherein the diffusion of transmembrane receptors could be corralled into confined zones by the barrier effects of the membrane underlying cortical matrix, which include the actin cytoskeleton and spectrin meshwork (Fig. 2E left). This presented a conundrum about the true nature of TCZs – do they represent “membrane-skeleton fence” bound compartments or cholesterol-sphingolipid rich “raft domains” (48). Moreover, it was unclear how MSKs could affect the diffusion of outer-leaflet lipid-linked proteins like GPI-anchored proteins, which unlike transmembrane receptors cannot directly interact with the underlying cortex, but showed distinctly confined diffusion.

Two new lines of observation attempted to resolve this. The first approach combined particle tracking with optical trapping, wherein an individual (or a small group of) membrane proteins (here GPI-anchor protein probes) could be bound to a bead, held by the laser trap. The fluctuations of the bead position (49) and the resistance felt by the bead in its movement during stage scanning (50) provide a measure of local viscous drag (49) and the nature and abundance of resistive barriers in diffusion (50), respectively. In conjunction, they showed that the viscous drag and the density of these domains were sensitive to cholesterol levels. The local viscous drag measurements yielded a size of ~26 nm for individual domains and the force
measurements from scanning of beads estimated ~50-100 domains every square-microns. However, the inherent noise in these measurements precluded any definitive conclusion.

The second approach, pioneered by the Kusumi group involved enhancing the temporal resolution of SPT measurements to an unprecedented 40000 frames/sec for colloidial gold nanoparticle-labeled species and 10000 frames/sec for fluorescently labeled molecules (51). In 2002, Fujiwara et al. reported that outer-leaflet phospholipids also showed the signature of compartmentalized diffusion (52). The high temporal resolution in the particle trajectories showed that particles tend to diffuse freely for ~1-5 ms in a given compartment before ‘hop’-ping onto a neighboring one. In a series of SPT based studies (53, 54), Kusumi group subsequently showed that GPI-anchored proteins (like GPI-linked MHC II) exhibit this distinct hop-diffusion behavior (Fig 2 A-C) like other phospholipids and TM proteins (55). These SPT studies were also able to estimate the membrane compartment sizes in many cell lines (54), which closely correlate, with the sizes of the juxtamembrane cortical actin meshwork (56). It was suggested that the diffusion of the outer-leaflet components could be corralled due to the presence of TM-protein ‘picket’-s which can directly sense the MSK ‘fence’-s underneath (51). This led to the more generalized form of MSK concept, the “Anchored Picket-Fence” (APF) model. These SPT studies clearly implicated cortical actin (CA) network as a major regulator of membrane structure.

Despite these studies, the link between these compartments and the lipid raft-like (cholesterol-sphingolipid rich liquid ordered) microdomains remained unclear. An explanation for the cholesterol sensitivity of the TCZs (or any microdomains brought about by lipidic interactions) also comes from the fact that the perturbation of cholesterol can lead to the loss of phosphatidylinositol 4,5-bis phosphate (PIP$_2$) pool from the inner leaflet, effectively disrupting both the membrane-cortex coupling and the organization of actin cortex (57). This key observation not only linked the TCZs to APFs but hinted far-reaching implications, that the spatial architecture and topology of the membrane cytoskeleton interactions could dictate the diffusion behavior of transmembrane components, as well as inner and outer leaflet lipids.

FCS is the third major technique to study the dynamics of GPI-anchored proteins on the cell surface. In FCS, a confocal spot is parked on the cell membrane and the emitted fluorescence is recorded at a very high temporal resolution using avalanche photo diodes (APDs) over few seconds (typically 5 to 10s). The fluctuation of fluorescence intensity is then auto-correlated to generate the autocorrelation decay over time. This can then be fitted with suitable models describing dynamics (like single component or multi-component diffusion/mobilities/flow etc) to extract quantitative measures of diffusion timescales (and their amplitudes) and the number
of molecules. Unlike FRAP, FCS monitors equilibrium diffusion and hence the measurement are made at sparse molecular density (~10-100 molecules/\mu m^2) and low illumination intensities. This allows monitoring dynamics without deleterious effects of photobleaching and over-expression, often associated with FRAP studies, on cellular physiology. While FCS can readily measure the local density and the diffusion coefficients of membrane molecules, just the value of the diffusion constant is not sufficient to infer on the local membrane environment, which the diffusing probe encounters. However, measuring the diffusion properties across a range of observation areas provided more resolved understanding. In fact, FRAP studies had already exploited the scale-dependence of mobile fraction and diffusion coefficient to infer on the size of membrane domains (58). Marguet and co-workers implemented this approach in FCS and developed a simulations-based approach to interpret the scale-dependence data. This FCS based technique, also called, spot-variation FCS (sv-FCS) and the scale-dependence of the diffusion timescales (\tau_D) as function of the spot size was analyzed using the 'FCS Diffusion Law' (Fig. 3). According to this framework, linear fits of \tau_D versus confocal spot area plots, which pass through the origin (hence have zero y-intercept), were interpreted as simple free diffusion, a positive y-intercept would reflect transient dynamic association with raft-like microdomains and finally a negative y-intercept would signify meshwork compartmentalized diffusion (59). The authors used this to show that GFP-Thy1, a GPI-anchored protein shows a positive y-intercept suggesting dynamic partitioning into membrane domains of ~120 nm in size (Fig. 3, right panel). The diffusion behavior of GPI-anchored proteins switched to free diffusion upon cholesterol and sphingomyelin depletion while actin perturbations did not show any discernible effect. Subsequently the spatial resolution of FCS measurements was improved using two different approaches. Marguet et al also reported the use of nanometric apertures (60) for FCS measurements on the cell membrane while Stephan Hell’s group used stimulated emission depletion (STED) beam for excitation (61), thereby bringing down the resolution of FCS measurements to ~40 nm. Both approaches confirmed the cholesterol sensitive positive y-intercept for GPI-anchored proteins. Further STED-FCS studies suggested that GPI-anchored proteins and sphingolipids could be trapped into lipid-shell like domains of size ~20 nm, which was likely to be held together by engaging the cortical actin cytoskeleton (62).

In summary, studying diffusion dynamics of membrane molecules such as GPI-anchored proteins have contributed significantly to the evolving picture of cell membrane structure and organization. However, the picture is not complete without understanding the molecular scale organization of GPI-anchored proteins at the cell-surface. In the next section, we summarize the studies focused on the nanoscale organization of GPI-anchored proteins and its functional role in cellular physiology.
Cell-surface organization of GPI-anchored proteins

Different microscopy approaches have been employed to unravel the organization of GPI-anchored proteins in their native environment. Direct visualization of the membrane domains of these proteins also posed unique challenges on multiple fronts since living cells at (or near) physiological temperatures do not show phase-segregated domains, unlike model membranes. Instead, fluorescence imaging of GPI-anchored proteins show a uniform distribution under both native conditions and in DRMs (32). Moreover, it was only upon antibody-mediated crosslinking of GPI-anchored proteins that optically resolvable patches could be generated (63), possibly by bringing together the sub-resolution native domains of GPI-anchored proteins. Early studies of GPI-anchored protein organization using electron microscopy also pointed that GPI-anchored proteins primarily show diffused distribution and show clustering only upon cross-linking (63) and in DRMs (32). Although electron microscopy can provide the ultimate resolution but only in fixed cells and potential artifacts of the fixation and EM preparation process might alter the native organization of the molecule studied. However, the early electron microscopy studies hinted of the possible nanoscale organization of GPI-anchored proteins (32, 63, 64).

Proximity measurements based on FRET (reviewed in 64–66) and more recently, super-resolution imaging (68, 69) have been utilized to explore the nanoscale organization of the GPI-anchored proteins at the cell surface.

FRET imaging of GPI-anchored protein organization

Fluorescence (or Förster) resonance energy transfer (FRET) is a photophysical phenomenon involving the non-radiative energy transfer between a donor fluorophore in excited state and an acceptor fluorophore in ground state (70, 71). The efficiency of energy transfer is inversely proportional to the sixth power of distances between the fluorophores, rendering FRET an ideal 'spectroscopic ruler' (72, 73) to probe distances at the biomolecular scales (1-10 nm). Energy transfer can also occur between like fluorophores (Homo-FRET) with low Stokes shift and hence a significant overlap between their absorption and emission spectra (66, 74). Homo-FRET is estimated by measuring the loss of polarization of emitted fluorescence, which in turn is monitored by determining fluorescence emission anisotropy. Homo-FRET can be estimated from steady-state anisotropy images or from time-resolved anisotropy decays (66). These approaches have been extensively used to study the nanoscale organization of multiple cell surface constituents such as fluorescent lipid analogs, GPI-anchored proteins and EGF receptor (5, 67, 75).
Over the years, homo-FRET (65) has been employed to study the nanoscale clustering of GPI-anchored proteins. Using this technique with steady-state anisotropy as a readout, Varma and Mayor showed that Folate Receptor (FR-GPI) labeled with a fluorescent analog of folate undergoes homo-FRET, suggesting for the first time that these proteins can form small submicron-sized domains at the surface of the living cell (3). Subsequently in collaboration with Madan Rao, a theoretical physicist and his colleagues, the structure and dynamics of these submicron-sized domains was elucidated (76). Perturbation of cholesterol levels lead to a loss of homo-FRET between labeled FR-GPI, suggesting cholesterol plays a key role in their formation and maintenance. Moreover, cells from a wide range of surface density of FR-GPI showed similar levels of homo-FRET, suggesting they could be organized into submicron domains (<70 nm) whose dimensions are not dictated by the overall concentration of proteins. The fact that a transmembrane form of folate receptor does not exhibit concentration-independent homo-FRET, underlines the importance of GPI-anchor in dictating the nature of clustering. Although these measurements were made at lower resolution scale of whole cells, which precluded direct observation of domains, these results complemented the chemical crosslinking studies on GPI-anchored proteins, which demonstrated that these proteins could form oligomeric clusters on the cell surface (77).

Subsequently, GPI-anchored GFP and mYFP were also shown to form cholesterol sensitive sub-resolution clusters (76). Time-resolved anisotropy decays of these probes (74) allowed a more direct estimation of the fraction of molecules undergoing FRET and their intermolecular distances. These measurements clearly showed that at least 10-20% of the cell surface pool of both probes are organized into very high density clusters with intermolecular distances of ~4 nm (76). To estimate cluster size at the nanoscale, a methodology that is based on how fluorescence anisotropy changes when local fluorophore density is reduced via photobleaching, was adopted (76, 78). If indeed robust homo-FRET occurs in specific arrangements, this should predictably increase distances between fluorophores thereby reducing FRET probabilities and lead to a systematic increase in anisotropy (Fig. 4 A, B). Photobleaching and/or chemical quenching can reduce fluorophore densities. The change in the fluorescence anisotropy upon photobleaching was analyzed by Monte-Carlo based simulations of a number of expected models of organizing the fluorophores, wherein the expected FRET changes from different nanoscale configurations of probes are able to distinguish the nature of the cluster. This analysis suggested about 20–40 % of the cell surface FR-GPI form oligomers or nanoclusters of 2–4 molecules each (Fig. 4C) (76).

Steady-state anisotropy based homo-FRET assays also indicated that multiple GPI-anchored proteins when expressed on the same cell could intermix and co-cluster at nanoscale (76). The
small cluster configuration and the low fraction of the GPI-anchored proteins forming nanoscale clusters can explain why earlier hetero-FRET measurements (79) were not sensitive enough to detect the GPI-anchored protein nanoclusters.

More recently, the implementation of homo-FRET measurement on several microscopy modalities/platforms allowed studying GPI-anchored protein clustering at superior spatiotemporal resolution (65, 80). Homo-FRET imaging at a higher spatial resolution (~300 nm) showed that GPI-anchored protein nanoclusters exhibit spatially non-random distributions (Fig. 4E). Interestingly, cell membrane regions with uniform fluorescence intensity (and hence concentration of FR-GPI) mapped to intricate spatial anisotropy patterns of variegated membrane patches which are strongly enriched (or devoid) of GPI clusters. This clearly suggests a hierarchical organization wherein nanoscale FR-GPI clusters (~10 nm) are collected into mesoscale optically resolvable cluster-enriched domains or hotspots (~450 nm) (Fig. 4D). The clustering of GPI-anchored proteins was also found to be sensitive to the perturbations of cortical actomyosin as clustering was completely abrogated on membrane blebs devoid of functional actin cortex (80).

Homo-FRET-based photobleaching recovery assays provide a window into cluster remodeling and report on dynamics of cluster remodeling. Using assays at different length scale (FRAP-based as well as single point-photolysis), GPI-anchored protein clusters were ascertained to be relatively immobile but undergo dynamic remodeling by formation/fragmentation more readily at 37°C than at 20°C. This suggested that the cluster remodeling is an activity-dependent process. Indeed, it was also shown that dynamics of GPI-anchored protein cluster remodeling is also sensitive to acute perturbations of actin polymerization, myosin activity and cholesterol (80).

In a more dynamical cellular context like spontaneously generated membrane blebs which undergoes both detachment (during bleb growth) and reattachment (during bleb retraction) to the cortical actin mesh, the anisotropy of EGFP-GPI was monitored along with the distribution of C-terminal fragment of Ezrin (an F-actin binding protein) to address the interplay between cortical actin activity and local clustering. This assay showed that growing blebs (detached from underlying cortex) are devoid of EGFP-GPI clusters and clustering recovers gradually on the retracting blebs with reformed functional membrane-cortex links (81). Together these observations show that the nanometer scale organization exhibits unusual properties and is dependent on the cortical actin-mesh.
Super-resolution imaging of GPI-anchored protein clustering

The last decade has witnessed significant advances in the field of super resolution microscopy techniques. Technical breakthroughs in super-resolution imaging have been closely followed by their application to diverse biological contexts (82–84). This has opened up new possibilities of directly studying the molecular clustering of membrane molecules at or near scales (10-100 nm) over which membrane domains are most likely to form and operate (68, 69). An elegant near field scanning optical microscopy (NSOM) based study from Garcia-Parajo group directly demonstrated that endogenous GPI-anchored proteins in monocyte apical membrane form cholesterol sensitive nanoclusters (85). The inherent single molecule sensitivity of NSOM (Fig. 35A) allowed the authors to precisely calculate the presence of 3-5 molecules per cluster. The clusters were also found to form cluster-rich ‘hotspots’ (Fig. 5B). These results agreed well the homo-FRET measurements described above and provided an independent confirmation of GPI-anchored protein nanoclustering. Recently, STED imaging by the same group also detected the presence of actin-sensitive FR-GPI cluster on CHO cells (86). Pair-correlation analysis in conjunction with PALM imaging (PC-PALM) also confirmed that GPI-anchored proteins form nanoscale clusters of 3-5 molecules in Cos-7 cells (Fig. 5D) (87). Perturbation of cholesterol, sphingolipids and cortical actin led to a loss of clustering while antibody mediated cross-linking of GPI-anchored proteins redistributed the GPI-clusters to colocalise strongly with cortical actin. Together, the super-resolution data on GPI-anchored protein nanoscale organization not only confirms the presence and configuration of cholesterol and actin sensitive nanoclusters, but also suggest that these clusters can (re)organize to form larger cluster rich hotspots of sizes ~100 nm (Fig. 5E, F). Arguably, this also clarifies our understanding of the mesoscale organization of GPI-anchored proteins and supports the notion of hierarchical organization, proposed earlier (80).

GPI-anchored protein nanoclustering requires transbilayer acyl-chain coupling to phosphatidylserine

Cortical actin dynamics and cholesterol plays critical role in clustering and diffusion of GPI-anchored proteins. If cortical actin dynamics is necessary for the creation and maintenance of the nanoclusters, it is imperative that the outer-leaflet GPI-anchored proteins need to sense and interact with the underlying cortical actin. Two possibilities emerge for this connection; either via transmembrane proteins that (in)directly bind cortical actin or by harnessing lipidic interactions laterally (to cholesterol and sphingolipids) and across the bilayer (to inner leaflet lipids). While transmembrane anchors can certainly corral GPI diffusion, it is unlikely that
protein-protein interaction can account for the extremely small and high-density GPI clustering as seen by homo-FRET and other super-resolution microscopies.

The idea of transbilayer coupling has been proposed previously. Experimental studies on symmetric membranes and phospholipid monolayers supported on immobile hydrocarbon films have hinted towards how lipid composition in the outer leaflet influences the inner leaflet distribution of lipids (88, 89). Recent studies using free standing model membrane vesicles (90) and atomistic molecular dynamic simulations (91) show that transbilayer asymmetry, lateral heterogeneity, acyl chain length and saturation are key prerequisites for transbilayer coupling (Fig. 6E). This makes the GPI anchor's structure viable for establishing transbilayer coupling between the outer leaflet protein and the actin cytoskeleton. We find that the chemistry of the fatty acid chain of the GPI anchor is a prerequisite for nanoclustering to occur. Mutation of enzymes effecting lipid remodeling of the GPI-anchor, inhibiting the replacement of short and unsaturated acyl chains with long saturated ones, leads to disrupted nanoclustering at the plasma membrane (Fig. 6 C). The chemistry of the GPI-anchor, particularly the nature of the lipid moiety, is extremely important for organizing into cholesterol sensitive nanoclusters at the plasma membrane (5) (Fig. 6 A, B). Though the underlying mechanism of nanocluster formation is not fully understood, recent work has shown the significance of acyl chain interactions between GPI-anchored proteins and phosphatidylserine (PS) at the inner leaflet that ultimately leads to the formation of clustered domains at the plasma membrane (5). Cells incapable of producing sufficient amount of PS due to mutations in enzymes in the biosynthetic pathway of PS lack the ability to create GPI nanoclusters at the plasma membrane (Fig. 6D). This ability could be restored only on the addition of PS with long saturated fatty acid chain (18:0). The addition of short (12:0) and unsaturated PS (18:1) into mutant cells failed to rescue nanoclustering of endogenous GPI-anchored proteins.

Results from atomistic molecular dynamics simulations done on asymmetric bilayer have indicated that along with the adequate levels of cholesterol and the appropriate lipid chemistry on either leaflets, it is also necessary that either of these components in the outer or inner leaflets needs to be immobilized. The actin cytoskeleton along with myosin gets reoriented and aids in immobilizing the lipids at the inner-leaflet. We hypothesized that PS can form functional links to the underlying actin cytoskeleton via actin-adaptor proteins capable of binding both the membrane lipids and actin, thus unraveling the basic mechanism that leads to membrane domains.

Unique features of GPI-anchored protein clustering – suggestive of active organization
Here we summarize the key results obtained from the Homo-FRET and super-resolution imaging of GPI-clustering. These quantitative approaches have unraveled unique (and peculiar) features of the clustering behavior of GPI-proteins, which suggest some rethinking of the existing paradigms (lipid-raft, critical fluctuations and picket-fence) for the organization of membrane microdomains.

1. GPI-anchored proteins are organized as monomers and nanoscale clusters, whose fraction is independent of the total protein concentration (Fig. 4A), suggesting an organization maintained away from chemical equilibrium (3, 76, 85, 87).

2. The nanoclusters are enriched in optically resolvable cluster-rich domains at steady state – the statistical distribution of nanoclusters and the statistics and spatial distribution of the optically resolvable domains, are affected by acute perturbations of cholesterol levels and CA activity (80).

3. The single-point distribution of the local density of GPI-anchored proteins shows prominent exponential tails at both high and low density. This suggests a non-random patterning, where the GPI-proteins are held at concentrations well beyond equilibrium mixing and segregation (80).

4. The monomers and nanoclusters are highly dynamic and the rates of aggregation-fragmentation (~0.1s) are strongly non-Arrhenius (hence disobeys thermal equilibrium). The ratio of the rates is insensitive to temperature in the range 24-37°C (Fig. 4F), and shows a sharp fall below this range coinciding with a sharp reduction in cortical actin (CA) activity (80).

5. The rates of fragmentation and reformation of nanoclusters show a wide spatial variation, consistent with the spatial heterogeneity of CA activity. The remodeling of the GPI-clustering is also sensitive to CA activity and cholesterol levels (80).

6. The nanoclusters are immobile, whereas the monomers exhibit diffusive motion on the cell surface (55, 80, 92).

7. The nanoclusters fragment into monomers as soon as blebs are spontaneously created on the cell surface, where the cell membrane detaches from the cortical actin (93). The dynamic nanoclusters re-form when the bleb retracts due to re-polymerization of actin on the cell membrane, recruitment of myosin and subsequent actomyosin contractility (80).

8. Transbilayer acyl chain coupling with inner-leaflet PS is critical for the clustering of GPI-anchored proteins. This presumably allows the exoplasmic GPI-anchored proteins to link with the actin-cortex (5).
Local activation and re-organization of actin machinery by Integrin activation triggered enhanced clustering of GPI-anchored proteins (85). Conversely, cross-linking of GPI-anchored proteins presumably recruits and hence colocalise strongly with cortical actin (87).

These features suggest that GPI-anchored protein clustering is an active ‘non-equilibrium’ process, which requires functional links (via PS) between GPI-s to cortical actomyosin activity. Recently, an *Active Composite Membrane Model* (94, 95) of the cell surface as a general framework has been proposed to explain the active organization of cell surface molecules (Schematic in Fig. 7).

Active Composite Membrane Model – A conceptual framework

The active composite membrane model (94, 95) regards the cell surface as a composite of the multi-component plasma membrane and the membrane juxtaposed cortical actin configuration that it rests on. The cortical actin has a wide distribution of filament length and is expected to be composed of at-least two species of actin filaments. The longer filaments form a static cross-linked meshwork (56) along with a pool of short and polar active filaments (94). Active energy consuming processes like filament treadmiling and myosin contractility can drive these filaments. These dynamic short filaments can also couple with the membrane transiently via membrane-actin linkers. This coupling in turn can dictate the local organization, dynamics and environment of the membrane molecules, which can interact with this dynamic cortical actin. Hence, in an active composite membrane, cell surface molecules, based on their coupling to this active cortical actin, are classified into three types – inert, passive and active. Inert molecules (like short chain lipids) do not interact with cortical actin, while passive (GPI-anchored proteins) and active molecules interact with the dynamic cortical actin. While passive molecules cannot regulate local actin architecture, active molecules (like signaling receptors – Integrin, T (or B)-cell receptor) can do so via triggering nucleation, (de)polymerisation, cross-linking locally. The model also proposes that passive molecules like GPI-anchored proteins are driven into nanoclusters by localized and dynamically remodeling platforms of short actin filaments (Fig. 7). These dynamic platforms called asters are emergent structures resulting from the active hydrodynamics of the short filaments driven by filament treadmiling and motor activity (Fig. 7). The active composite model has provided a consistent explanation for the different peculiar features of GPI-anchored protein nanoclustering mentioned earlier (94).

The active composite model offers a paradigm shift in the way we understand membrane organization, since it gives equal importance to inter-molecular interactions as it does to the interaction of cell membrane molecules with the cortical actin.
Active Composite Membrane – Expectations and Experiments

The active composite model is a framework to understand membrane organization and has faithfully accounted for the clustering behavior of GPI-anchored proteins. However, the framework also assumes a two-component cortical actin architecture and makes general predictions regarding the organization, cell surface dynamics and distribution of passive molecules. A systematic experimental verification of these predictions, in turn, can reveal newer qualitative and quantitative properties of the membrane and its resident molecules. Indeed, recent experiments have now verified a number of these predictions.

There now exists considerable evidence for the existence of short dynamic actin filaments from FCS measurements and single particle tracking measurements (94). These data are in agreement with earlier biochemical (96) and electron microscopy (97, 98) based studies on short actin filaments. Furthermore, the active composite model predicts that a model passive transmembrane probe with an actin-filament binding domain (TM-ABD) will couple to actin asters and hence can be nanoclustered. Homo-FRET (94) and STED imaging (86) have confirmed that a model TM-ABD probe can exhibit actin dependent clustering.

The dynamic cortical actin activity can also impart active fluctuations to drive the diffusion of these molecules. This leads to temperature independence of membrane diffusion of GPI-anchored proteins at lengthscales similar to those of ‘actin asters’ ~ 200 nm. The active fluctuations can be quelled by perturbations of actin polymerisation, myosin activity and cholesterol, resulting in a reversal of temperature dependent diffusion akin to inert particles (99). Similarly, active anomalous density fluctuations were also detected in the density (or intensity) distribution of GPI-anchored proteins on the cell surface (94).

Physiological relevance of GPI-anchored protein structure and membrane dynamics

Functional roles of GPI-anchored proteins in cellular physiology

GPI-anchored proteins are known to critically regulate a wide range of physiological functions from nutrient uptake to cell migration to immune recognition. Therefore, it is obvious that perturbation resulting in altered GPI-anchored protein trafficking as well as plasma membrane organization can lead to several diseases. Recent data has shown the importance of genes involved in the biosynthesis of GPI-anchored proteins are linked with various diseases because the fully processed GPI anchor is essential for the proper functioning as well as targeting of the protein (9, 100–103). Mutations in GPI remodeling enzymes like PGAP3 is known to generate intellectual disorders like hyperphosphatasia (9) and deletion of this gene results in impaired T cell receptor signaling (104). Interestingly GPI-anchored proteins are also known to function as
cargo transporters where GPIHBP1, a lipoprotein lipase transporter, carries LPL from sub endothelial spaces to the capillary lumen in endothelial cells thereby initiating lipolysis. The absence of GPIHBP1 leads to diseases such as chylomicronemia due to elevated triglyceride levels in the plasma (105).

Ras signaling which is usually associated with plasma membrane plays a crucial role in the biosynthesis of GPI-anchored proteins in yeast. Experiments done in yeast show that down regulating GPI-anchored protein expression at the plasma membrane leads to hyperactive Ras phenotypes (106). This is an interesting aspect, which connects cell signaling to expression and organization of GPI-anchored proteins at the membrane. Recent studies show that subunits of GPI transamidase can acts as oncogenes. For example over expression of PIG U leads to increased cell division rate and a good correlation between the overexpression of these genes and several cancers like bladder, colon and ovarian cancers was also observed (107). Though the direct functional relevance of GPI anchor is not known, it is essential for localizing the proteins into membrane domains which might have implications in processes like endocytosis (108, 109) or ER-Golgi cargo sorting (110). Formation of domains at the plasma membrane or at endosomal level might help concentrate the cargo thereby increasing endocytic and cargo sorting efficiency respectively. This can even help in determining the fate of the cargo by preferentially sorting them into different domains. A clear example which links GPI-anchored protein clustering at the plasma membrane and endocytosis is in the context of MA104 cells where clustering of folate receptor which is a GPI-anchored protein is found necessary for ligand uptake (111). Synthetic GPI analogues which has minimal structural similarity to endogenous GPI anchor have been used in studies to dissect out the contribution of the glycan core in protein trafficking (22). Similar studies would prove to be useful for understanding the structural and functional relationship of GPI-anchored proteins.

GPI-hotspots and signal transduction

While many cell-surface GPI-anchored proteins are implicated in diverse signaling roles, it was unclear how an outer-leaflet signaling protein can stimulate intracellular downstream effectors. Studying the membrane organization, interactions and diffusion of these proteins have also contributed to our understanding of GPI-anchored protein signaling. GPI-hotspots are regions on the cell surface, which have a high local concentration of clusters (80, 85) or show transiently confined and compartmentalized diffusion (43, 55). Such regions in turn can act as signaling platforms for either GPI-anchored signaling proteins or transmembrane signaling receptors, which associate with GPI-microdomains. Early biochemical studies (112) showed that antibody mediated cross-linking of several GPI-anchored proteins like DAF, CD59, Thy-1, CD14 and Ly-6...
led to the association and activation of Src-family kinases (SFK). This classical assay has been revisited using high-resolution SPT and imaging tools on live cells to uncover the dynamics of the signaling process. Recent studies have showed that antibody-conjugated gold bead mediated crosslinking of CD 59 lead to the formation of stabilized clusters, which exhibit stimulation-induced temporary arrest of lateral diffusion (STALL, also transient anchorage) and recruit signaling effectors like Goα2, Lyn kinase, and PLCγ to elicit a transient IP3-Calcium signal(113, 114). The transient anchorage of Thy-1 clusters requires SFK activity and cholesterol (115). The same group identified Csk-binding protein (CBP) as a transmembrane anchor which connects the Thy-1 clusters to cortical actin via ezrin (116).

GPI-hotspots also exhibit proximity to nanoclusters of LFA1, an integrin, possibly creating a membrane niche poised for the initiation of cell adhesion (85). Ligand mediated integrin activation resulted in a dramatic increase in nanoclustering of GPI-anchored proteins locally driving the formation of nascent adhesion sites (85) which can eventually stabilize into lipid ordered domains in stable focal adhesions(117). In the same context, ECM components can also modulate the dimerization and diffusion of uPAR, the GPI-linked receptor for urokinase (118). Interestingly uPAR also interacts with integrin and use integrin as co-receptor for its signaling (119), pointing towards yet another functional link between GPI-clusters and integrin signaling.

Future Directions and Perspective

GPI-anchored proteins are a diverse set of cell surface molecules with unique structural features that modulate the transport and function of the proteins. Here, we have provided an overview of the contemporary understanding of membrane diffusion and organizational features of the GPI-anchored proteins. We have focused primarily on the biophysical measurements of these properties of GPI-anchored proteins. We have also highlighted the bearing of the structure and membrane dynamics of GPI-anchored proteins in a functional context. It is clear that studying GPI-anchored proteins organization and dynamics has greatly contributed to the evolving picture of membrane structure. This has now led to the “Active Composite Model” of the plasma membrane (94, 95), which incorporates the contribution from the association of the dynamic actin filaments to the membrane along with the structuring influence of the static meshwork on membrane organization (from Picket –Fence model). Arguably, studying GPI-anchored proteins has been fundamental to the evolving landscape of conceptual models describing membrane structure and organization.

However, there remain many unresolved issues in GPI-anchored protein cell surface dynamics, organization and function. GPI-anchored proteins are unique molecules since they require both lipidic interaction and actin activity for its membrane organization and dynamics (80). This very
fact makes it an ideal candidate probe for mechanistic studies on membrane-cortical actin interaction and how the cell might leverage such interactions to create membrane domains or regulate mobilities. To strengthen the role of dynamic actin in organizing GPIs, it will be crucial to study the clustering or diffusion of GPI-anchored proteins in conjunction with the monitoring of the local actin dynamics. This will entail the coupling of proximity or super-resolution microscopy of native GPI-anchored proteins or synthetic analogs to the particle tracing approaches for the actin markers. Imaging assays based on dual-color single particle tracking-PALM (120) or spatiotemporal image correlation spectroscopy (STICS) (121) might provide crucial clues.

Moreover, genetic and biochemical approaches would be necessary to unravel the nature of the molecular linker(s) (and their regulation) between the GPI-anchored proteins and actin machinery (122). Understanding functional links and its bearing on the membrane dynamics will naturally allow us to probe the properties of the membrane domains GPI-anchored proteins form at the cell surface and how such domains can be endocytosed (123). Addressing this will necessitate better assays to relate the local composition of the membrane milieu to the clustering of GPI-anchored proteins. Multimodal approaches combining the measure of local lipid order (124–126) and clustering or imaging-mass spectroscopy tools like NanoSIMS (127, 128) could be key.

Finally, many GPI-anchored proteins have well defined functional roles in cellular signaling (7, 129); hence allow studying the dynamics of membrane proximal signaling events in physiological contexts (130). This also extends the possibility of making progress in our fundamental understanding of the biology of GPI-related diseases (131).

Acknowledgement

SM is a JC Bose Fellow (DST, Govt of India) and acknowledges support from an HFSP grant (RGP0027/2012). We thank Prof. Madan Rao for stimulating interactions and other members of Mayor Lab for their support and discussions. We thank Central Imaging Facility at NCBS for microscopy infrastructure. SS and AAA acknowledge fellowship support from the NCBS-TIFR Graduate program and CSIR respectively.
References:

Fig. Legends:

Fig. 1. GPI-anchored protein structure, biosynthesis and trafficking. (A) Schematic depicts chemical structure of full length GPI-ethanolamine linked to terminal mannose of a trimannose oligosaccharide via phosphodiester linkage, in turn coupled to glucosamine PI, adapted from (Reproduced with permission from Raghpupathy et al., 2015) B) Schematic represents biosynthesis and trafficking of remodeled GPI-anchored protein, their association to membrane rafts and diseases caused by defective GPI synthesis, adapted from Taroh Kinoshita (personal communication from Taroh Kinoshita). C) Schematic shows the sorting mechanism of GPI-anchored proteins at the trans-Golgi network in polarized epithelial cells. The primary level of sorting involves the segregation of remodeled GPI-anchored proteins into cholesterol and sphingolipid enriched domains and other transmembrane proteins. The next level of sorting occurs mainly due to oligomerisation effected by the interaction of different receptors with GPI-anchored proteins which in turn might help in vesicle formation and budding, adapted from Ref. (132).

Fig. 2. Single particle tracking of GPI-anchored protein. (A) Probes for single fluorescent-molecule tracking (SFMT, left) and single-particle tracking (SPT, right) as used in (55). Single fluorescent-molecule tracking (SFMT), provides the effective diffusion coefficient on the timescale of 100 ms. GPI-anchored MHC-II (GPI-I-E\(^k\)) were labeled with either Alexa594-conjugated anti-I-E\(^k\) Fab fragments or the Cy3-tagged peptide at its N-terminus (A, left). Single-particle tracking (SPT), provides the compartment size sensed by the diffusant. GPI-I-E\(^k\) were labeled with anti-I-E\(^k\) Fab fragments and then labeled with 40 nm colloidal gold nanoparticle probes coated with anti-mouse IgG antibodies’ Fab fragments (A, right). (B) Representative trajectories for GPI-I-E\(^k\) observed at a 33-ms resolution. Representative trajectories in the CHO cell plasma membrane for 3s (total number of frames, N, is 90). The colors (purple, cyan, green, orange, and red) represent the passage of time (every 600 ms or 18 video frames). (C) GPI-I-E\(^k\) tagged with gold probe and observed at a 20-\(\mu\)s resolution, exhibited hop diffusion. Representative 40-ms trajectories (containing 2000 determined coordinates) of GPI-I-E\(^k\). The residency time within each compartment is shown and is color-coordinated with respective compartment. The numbers in the square brackets indicate the order of the compartments the molecules entered. When repeated passages across the same compartment took place in these trajectories, the compartment is numbered by two numbers (A,B and C have been reproduced with permissions from 54). (D) Schematic showing ‘lipid rafts’ in cell membrane (adapted from 131) which are envisaged as cholesterol and sphingolipid rich liquid-ordered domains enriching GPI-anchored proteins and raft-partitioning transmembrane receptors. (E) A contrasting picture of the membrane structure arose from the SPT studies of
Kusumi and co-workers. Schematic of the bottom view (E, left) of the plasma membrane depicting the membrane-skeleton “fence” model and the top view (E, right) of the membrane representing the anchored TM protein “picket” model. This model shows that the membrane constituents can undergo short-term confined diffusion within the domains and long-term hop diffusion between neighboring compartments. The actin meshwork based membrane skeleton (fence) and the transmembrane proteins anchored and aligned across the actin fences (pickets) create the compartmental boundaries (Reproduced with permission from Ref. (130)).

Fig 3. Diffusion behavior of GPI-anchored protein. Spot-variation FCS (svFCS) is another approach to categorize the diffusion behavior of membrane molecules (top panel) based on the y-intercept of the linear fit to the diffusion time v/s confocal spot area data (bottom panel). Schematic represents membrane organization arising from free diffusion, meshwork barriers, and trap/domain confluences with the trajectory drawn for a single molecule (red). Blue circles depict the membrane intersection of the laser beam of waist ω. (bottom panel). FCS diffusion laws represented by plotting the diffusion time τ_d as a function of the squared radius ω^2. D is the lateral diffusion coefficient for Brownian motion; D_{eff}, the effective diffusion coefficient; D_{micro}, the microscopic diffusion coefficient; D_{in}, the diffusion coefficient inside domains; D_{out}, the diffusion coefficient outside domains; L, the size of the side of a square domain; and r_D, the radius of a circular domain. FCS Diffusion Law scaling from sv-FCS measurements have suggested that GPI-anchored proteins follow ’the traps and domains’ mode of membrane organization (Reproduced with permission from Ref. 132).

Fig. 4. GPI-anchored protein organization by homo-FRET. (A) Fluorescence emission anisotropy profile of GPI-anchored proteins plotted against a wide range of intensities (A) or normalised intensities (I/I_0) after photobleaching (B) from the membrane of live CHO cells (76, 94). The data clearly shows that (A) nanoclustering of GPI-anchored proteins is concentration independent and (B) the change in the anisotropy with decreased intensity upon photo bleaching reflects the change in homo-FRET due to GPI-anchored proteins nanoclustering. Theoretical modeling of the FRET changes upon photobleaching suggested that GPI-anchored proteins form nanoscale clusters of 2-4 molecules (C). (D) Box (i) showing presence of GPI-anchored proteins cluster rich regions (blue) from flat surfaces of CHO cells expressing FR-GPI labeled with PLF (fluorescein conjugated folate analog ligand for folate receptor) and (i’) represents the thresholded binary map of the region in box (i) to clearly show the cluster size ξ_1 (≤450 nm) and inter cluster distance ξ_2 (≈ 800-1250 nm). Normalised anisotropy distributions from regions mentioned above (Di) show a slower, exponentially decaying tail (red dots) which appears as a linear decay (black line) in contrast to the simulated Poisson distribution (green line) or the measured distribution of exogenously incorporated NBD-SM at
levels that give rise to homo-FRET which coincides with a quadratic decay profile (green line).
Fuel Ratio of inter-conversion rates of GPI-anchored proteins clustering is represented in an
Arrhenius plot shows a sharp crossover from temperature dependence to independence at
24°C, implying cluster remodeling is an active process (Reproduced from ref. 78).

Fig. 5. GPI-anchored protein organization by super-resolution microscopy. (A) Combined
confocal (right) and NSOM (left) image of GPI-anchored proteins distribution at cell surface of
fixed monocyte. NSOM imaging provided a direct measure of cluster configuration of the GPI-
anchored proteins and 3D projection of an NSOM image (B) with nanodomains (black arrows)
and monomers (white arrows) of GPI-anchored proteins show GPI-anchored protein
nanoclusters - concentrate on specific sites as hotspots (Reproduced with permission from 83).
Super-resolution techniques like PALM have been used to study GPI-anchored protein
nanoclustering. PC-PALM detects spatial distribution of peak centers (C) of photoactivable GFP
(PAGFP) molecules immobilized on a glass coverslip. (D) Plot of calculated autocorrelation
function \(g(r)_{\text{peak}}\) of PAGFP-GPI molecules. The correlation due to multiple appearances of a
single protein \(g(r)_{\text{stock}}\) and the protein correlation \(g(r)_{\text{protein}}\) were evaluated from the fit to
clustering model. (E, F) Cos-7 cells co-expressing PAGFP-GPI and actin-PAmCh in absence (E) or
presence (F) of crosslinking antibodies. This data shows that actin-PAmCh localizes with
clusters of antibody–cross-linked PAGFP-GPI (C-F, reproduced with permissions from ref. 85).

Fig. 6. Transbilayer coupling is brought about by long acyl chain interactions of GPI and
PS. (A) Cumulative frequency distribution (CFD) of fluorescence anisotropy measurements
performed on GPI analogues (A) GPI\(_{C16:0/C16:0}\) tagged with BODIPY TMR and (B) GPI\(_{C18:0/C18:0}\)
tagged with fluorescein incorporated into cells shows the effect of cholesterol depletion by
saponin treatment (sap; black line) or on blebs treated with jasplakinolide (jas; blue line)
compared to control cells (control; red line). C) Fluorescence anisotropy measurements of
fluorescently tagged FLAER (Alexa-488-FLAER, A488F which is a bacterial toxin that binds to
the glycan core of GPI-anchored protein in a monovalent manner) in wild-type and PGAP2/3
double mutant CHO cells: CFD plots of anisotropy measurements for wild-type (red line),
PGAP2/3 double-mutant (green line) and saponin treated (violet line) cells (5). The data clearly
shows that unremodeled GPI-anchored proteins fail to form nanoclusters. D) CDFs of
anisotropy measurements of A488F-labeled PS mutant CHO cells grown with (PS replete [PS+;
red line] or without [PS deplete (PS-); green line]) ethanolamine. The data indicates endogenous
GPI-anchored proteins do not form nanoclusters in the absence of PS. E) Equilibrium snapshot
of asymmetric bilayer: [upper leaflet: POPC (gray) + 4 % PSM (orange) and Chol (yellow) + few
GPI (red) (Ld phase)]. [lower leaflet: POPC (gray) + 35% of Chol(yellow) + few PS (blue)], water
in cyan. This data shows strong bilayer registry between GPI and PS across the bilayer.
Fig. 7. Clustering in active membrane composite membrane. Active composite membrane model proposes that myosin activity (zoomed inset, right) can organize short dynamic actin filaments into ‘aster-like’ configurations. The ‘aster’ can in turn drive nanoclustering of outer membrane proteins and lipids, which can couple (in)directly to the short dynamic actin filaments. Outer leaflet GPI-anchored proteins (blue) with long acyl chains do so via transbilayer coupling (5) with inner leaflet phosphatidylserine (PS), connecting to ‘aster’ via actin adaptors (green). On the other hand, transmembrane protein with actin binding domain (TMABD, pink) can couple directly to the underlying actin ‘asters’ to form distinct nanoclusters (Adapted from Refs. 92, 121).
Figure 1

[Diagram showing various biological processes and pathways related to lipid metabolism and protein interactions.]

- Trypanosomes
- Mycobacteria
- GPI anchors
- Endosome
- Lysoosome
- Concentration sorting
- Vesicle formation
- PI3K pathway
- Phagosome
- Endosome
- Lipid biosynthesis
- Inositol phosphates
- Fatty acid remodeling
- PI3K-pi
- Geranylgeranyl transferase
- PI3K-AKT
- Nucleolus
- Protein

Key:
- Unmodified GPI-AP
- Modified GPI-AP with a signal lipid
- PI(4,5)P2
- Phosphatidyl inositol
- Phosphatidyl choline
Figure 2

B

C

E

Raft phase

GPI-I-E

SFMT

SPT

Gold-GPI-I-E

Start

Finish

100nm

[1,6] 2.1 ms

[2,4] 3.0 ms

[3,5] 1.5 ms

[4,2] 13.4 ms

[5,3] 2.9 ms

[6,1] 3.8 ms

[7] 2.7 ms

[8] 7.0 ms

Membrane-skeleton "fence"

Anchored-protein "picket"

Bottom view
(from inside the cell, anchored proteins are hidden for clarity)

Top view
(from outside the cell)
Figure 6

(A) GPI C16:0/C16:0

(B) GPI C18:0/C18:0

(C) A488F-GPI-AP

(D) Control

Anisotropy, r
Plasma Membrane

TM-ABD GPI-AP (Outer leaflet)

Nanoclusters

Phosphatidylserine (PS) (inner leaflet)

ABD/Actin Adaptor

Short dynamic actin filament

Cortical actin meshwork

Myosin