Regulation of lipid metabolism by obeticholic acid in hyperlipidemic hamsters

Bin Dong¹, Mark Young², Xueqing Liu², Amar Bahadur Singh¹, and Jingwen Liu¹,*

¹ Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
² Intercept Pharmaceuticals, Inc., San Diego, CA 92121

Short title: Regulation of lipid metabolism by OCA in vivo

*Address correspondence to: Jingwen Liu, Ph.D., VA Palo Alto Health Care System
3801 Miranda Avenue, Palo Alto, CA 94304
Tel. 650 493-5000, ext. 64411
Fax. 650 496-2505
Email: Jingwen.Liu@va.gov

Abbreviations: BA, bile acid; FXR, farnesoid X receptor; HFHCD, high fat and high cholesterol diet; LDL-C, LDL-cholesterol; LDLR, LDL receptor; OCA, obeticholic acid; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NCD, normal chow diet; SR-BI, scavenger receptor class B type I; PCSK9, proprotein convertase subtilisin/kexin type 9; SRE, sterol-regulatory element; SREBP, SRE binding protein
Abstract

The farnesoid X receptor (FXR) plays critical roles in plasma cholesterol metabolism, in particular HDL-C homeostasis. Obeticholic acid (OCA) is a FXR agonist being developed for treating various chronic liver diseases. Previous studies reported inconsistent effects of OCA on regulating plasma cholesterol levels in different animal models and in different patient populations. The mechanisms underlying its divergent effects yet have not been thoroughly investigated. The scavenger receptor class B type I (SR-BI) is a FXR modulated gene and the major receptor for HDL-C. We investigated effects of OCA on hepatic SR-BI expression and correlated such effects with plasma HDL-C levels and hepatic cholesterol efflux in hyperlipidemic hamsters. We demonstrated that OCA induced a time-dependent reduction in serum HDL-C levels after 14 days treatment, which was accompanied by a significant reduction of liver cholesterol content and increases in fecal cholesterol in OCA treated hamsters. Importantly, hepatic SR-BI mRNA and protein levels in hamsters were increased to 1.9- and 1.8-fold of control by OCA treatment. Further investigations in normolipidemic hamsters did not reveal OCA-induced changes in serum HDL-C levels or hepatic SR-BI expression. We conclude that OCA reduces plasma HDL-C levels and promotes transhepatic cholesterol efflux in hyperlipidemic hamsters via a mechanism involving upregulation of hepatic SR-BI.

Keywords

FXR, Obeticholic acid, SR-BI, HDL-C, HNF4α, LDLR, SREBP2
Introduction

Bile acids (BAs) are the major metabolites of cholesterol and are predominantly produced in the liver and secreted into the small intestine. Secretion of biliary BAs and cholesterol into the intestine is the major route by which cholesterol is excreted from the body. BAs function both as detergents that facilitate lipid absorption and as endogenous ligands that regulate metabolic pathways through activation of the farnesoid X receptor (FXR).

FXR is expressed mainly in the liver, intestine, kidney and adrenal glands. FXR forms a heterodimer with RXR to modulate expression of target genes by binding to DNA sequences referred as FXR response elements (FXRREs) that are typically composed of two inverted repeats separated by one nucleotide (IR1) (1-3). In addition to inducing gene expression directly, FXR mediates the repression of a number of genes involved in BAs synthesis indirectly through the upregulation of small heterodimer partner (SHP) and MAFG (V-Maf Avian Musculoaponeurotic Fibrosarcoma Oncogene Homolog G) that are FXR-induced transcriptional repressors (4). Activation of hepatic FXR modulates the expression of numerous hepatic genes involved in lipid homeostasis, including CYP7A1, CYP8B1, BSEP and scavenger receptor class B type I (SR-BI).

SR-BI is a physiologically relevant HDL receptor and plays distinct roles in plasma HDL metabolism and transhepatic cholesterol efflux in preclinical animal models and in humans (5-9). SR-BI mediates selective uptake of cholesterol ester from HDL particles into cells. Consistent with this role, SR-BI expression is highest in the liver and steroidogenic tissues. Increased hepatic SR-BI expression by adenoviral mediated overexpression in mice was associated with a reduction in plasma HDL-C (10,11). Conversely, targeted gene ablation of SR-BI in mice resulted in elevation of plasma HDL-C and reduced hepatic cholesterol excretion into feces (6,
Furthermore, additional studies in mice have established an inverse relationship between SR-BI expression and atherosclerosis primarily via the mechanism of promoting reverse cholesterol transport (12,13). The impacts of SR-BI on human HDL metabolism were demonstrated by the identification of a loss of function SR-BI variant that is associated with extremely high plasma HDL-C level (9) and identification of human SR-BI variants (14,15).

Obeticholic acid (OCA) is a first-in-class FXR agonist being developed for primary biliary cholangitis (PBC), non-alcoholic steatohepatitis (NASH) and non-alcoholic fatty liver disease (NAFLD) (16). In adult patients with NASH, OCA treatment significantly improved the biochemical and histological features of NASH and also affected plasma lipoprotein profiles in those patients with elevated total cholesterol (TC), LDL-C and reduced HDL-C levels (17). The treatment related elevations of serum TC and LDL-C were also observed in another study of NAFLD patients treated with OCA (18) and in healthy subjects (19). Interestingly, in a study of PBC patients, OCA was shown to lower serum TC and HDL-C effectively without any impact on serum LDL-C (20). Currently, how OCA treatment differentially modulates plasma cholesterol metabolism in patients with various liver diseases is largely unknown.

In preclinical animal models, OCA treatment produced variable effects on plasma lipoprotein profiles. In Zucker (fa/fa) obese rat fed a normal chow diet OCA effectively lowered plasma HDL-C and triglycerides (TG) levels which were accompanied by reduced expressions of hepatic lipogenic genes (21). In LDLR-/- mice, OCA treatment did not alter plasma TC levels or plasma lipoprotein profile (22). In another study conducted in wild type C57BL/6J mice fed a high-fat diet (HFD), OCA showed no effect on plasma TC level or LDL-C levels but caused a small increase in HDL-C (23). In contrast to the lack of effect in reduction of plasma HDL-C in mice, administration of OCA to golden Syrian hamsters fed a HFD led to a reduction of HDL-C
and a small increase in VLDL-C while total plasma cholesterol levels were unchanged (22,24). Interestingly, despite the inconsistent changes on plasma HDL-C metabolism in these animal models after OCA treatment, OCA-modulated expression of typical FXR regulated genes involved in the BA synthetic pathway including CYP7A1 and SHP were consistently demonstrated in all those studies. Since SR-BI plays a key role in HDL-C uptake and the induction of hepatic SR-BI expression by OCA has not been thoroughly examined, in this current study we investigated the effects of OCA on hepatic SR-BI expression and correlated such effects with plasma HDL-C levels and hepatic cholesterol efflux in dyslipidemic and normolipidemic hamsters. Our results demonstrate that OCA treatment effectively increased hepatic SR-BI mRNA and protein levels which were associated with reduced plasma HDL-C levels and increased transhepatic cholesterol excretion into feces in hamsters fed a high fat and high cholesterol diet (HFHCD) but not in hamsters fed a normal chow diet (NCD).

Materials and Methods

Animals, diet and drug treatment

All animal experiments were performed according to procedures approved by the VA Palo Alto Health Care System Institutional Animal Care and Use Committee (IACUC). Six-week old male golden Syrian hamsters were purchased from Harlan Sprague Dawley. Hamsters were housed (2 animals/cage) under controlled temperature (22°C) and lighting (12 h light/dark cycle). Animals had free access to autoclaved water and food. After an acclimatization period of 7 days, hamsters were fed a HFHCD containing 40% calories from fat and 0.5% cholesterol (#D12107C, Research Diets, Inc., New Brunswick, NJ) for two weeks. OCA was suspended in 0.5% carboxyl-methyl cellulose (vehicle) at a concentration of 3 mg/ml and sonicated at 4°C in a
Bioruptor 300 instrument (Diagenode, Inc.) for 4-6 cycles of 30sec ON: 30sec OFF at a "medium" setting with intermittent vortexing. Continuous on the HFHCD, hamsters were then divided into two groups (n = 8 per group) and were given a daily dose of OCA at 10 mg/kg by oral gavage. The control group received vehicle. The drug treatment lasted 14 days. Serum samples were collected after 16 h fasting before and during the drug treatment.

In another in vivo study, male hamsters fed a NCD were treated with OCA (10 mg/kg, n = 6) or vehicle (n = 6) for 14 days and fasting serum samples were collected before and during the drug treatment. In the third in vivo study, male hamsters fed a NCD were gavaged with OCA at doses of 10 mg/kg, 20 mg/kg or 30 mg/kg for three days (n = 5 per group). The control animals received vehicle (n = 5) for 3 days. Overnight fasting serum samples were collected before and after the drug treatment. In addition to fasting serum collection, fed serum samples were collected on day 13 of the drug treatment in first and second studies. Health parameters including body weight and food intake were monitored and recorded throughout the experimental duration. After the last dosing, all animals were sacrificed for collection of fasting serum and liver tissues. Livers were immediately removed, weighed, cut into small pieces, and stored at –80ºC for RNA and protein isolations and lipid measurement. Fecal samples were collected over a 24 h period before the treatment and after 12 day of treatment from 14-day treatment studies.

Measurement of serum lipids

Standard enzymatic methods were used to determine TC, HDL-C and TG with kits purchased from Stanbio Laboratory.

Measurement of serum total bilirubin and alanine transaminase (ALT)
Serum total bilirubin concentration was measured using the bilirubin assay kit (Sigma-Aldrich, catalog #: MAK126) following the instructions. Serum ALT activity was measured using the ALT/SGPT Liqui-UV kit (Stanbio, catalog #: 2930-430) following the instructions.

HPLC separation of serum lipoprotein cholesterols and triglycerides

For the hyperlipidemic hamster study, after 14 days of treatment, individual fasting serum samples from OCA-treated group and vehicle control group were analyzed for cholesterol and triglycerides levels of each of the major lipoprotein classes including chylomicron (CM, >80 nm), VLDL (30-80 nm), LDL (16-30 nm), and HDL (8-16 nm) with a dual detection HPLC system consisting of two tandem connected TSK gel Lipopropak XL columns (300 X 7.8-mm; Tosoh, Japan) at Skylight Biotech, Inc. (Tokyo, Japan) as we previously described (25). In addition, 50 μl of serum sample from two animals of the same treatment group of day 0, day 7 and day 13 were pooled together and were analyzed for cholesterol and TG levels in different lipoprotein fractions after HPLC separation at Skylight Biotech, Inc.

Detection of hamster PCSK9 in serum

Levels of hamster serum PCSK9 were measured using the Mouse PCSK9 Quantikine ELISA Kit (R&D Systems) (26). Briefly, serum samples were diluted 1:10 in Calibrator diluent and allowed to bind for 2 h onto microplate wells that were precoated with the capture antibody. Samples were then sequentially incubated with PCSK9 conjugate followed by the PCSK9 substrate solution with extensive intermittent washes between each step. The amount of PCSK9 in serum was estimated colorimetrically using a standard microplate reader (MDS Analytical technologies).

Measurement of hepatic and fecal lipids
Fifty mg of frozen liver tissue or 20 mg of dried feces were homogenized in 1 ml chloroform/methanol (2:1). After homogenization, lipids were further extracted by rocking samples overnight at room temperature, followed by centrifugation at 5000 rpm for 10 min. Supernatant was transferred to a new tube and mixed with 0.2 mL 0.9% saline. The mixture was then centrifuged at 2000 rpm for 5 min and the lower phase containing the lipids was transferred into a new tube. The lipid phase was dried overnight and dissolved in 0.25 ml isopropanol containing 10% triton X-100. Total cholesterol and triglycerides were measured using kits from Stanbio Laboratory.

Measurement of fecal total bile acids

Twenty mg of dried feces were homogenized and extracted in 1 ml of 75% ethanol at 50°C for 2 h (27). The extract was centrifuged and the supernatant was used to measure total bile acids using a kit from Diazyme, Poway, CA.

RNA isolation and real time quantitative RT-PCR (qRT-PCR)

Total RNA was extracted from liver tissue using the Quick RNA mini Prep kit (Zymo Research) and was reverse-transcribed into cDNA. Real-time qRT-PCR was performed with 50 ng of cDNA template and specific primers using a SYBR Green PCR Kit (power SYBR® Green PCR Master Mix) and an ABI Prism 7700 system (Applied Biosystems® Life Technologies) according to the manufacturer's protocols. qRT-PCR primers for each gene are listed in Table 1. Target mRNA expression in each sample was normalized to the housekeeping gene actin. The 2\(^{-\Delta\Delta Ct}\) method was used to calculate relative mRNA expression levels.

Western blot analysis

Approximately 50 mg of frozen liver tissue was homogenized in 0.3 ml RIPA buffer containing 1 mM PMSF and protease inhibitor cocktail (Roche). After protein quantitation using
BCA protein assay reagent (Pierce), 50 μg of homogenate proteins from individual liver samples were resolved by SDS-PAGE and transferred to nitrocellulose membranes. Anti-SR-BI antibody was purchased from Abcam (Cambridge, MA). Anti-LDLR antibody was obtained from BioVision (Mountain View, CA). Anti-HNF4α, anti-FASN and anti-SCD1 antibodies were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-hamster PCSK9 antibody that recognizes the C-terminal end of hamster PCSK9 (CRNRPSAKASVHQ) was developed in our laboratory and previously reported (28). Rabbit anti-SREBP2 antibodies were generously provided by Dr. Sahng Wook Park (Yonsei University College of Medicine, Seoul, Korea) and were used as previously described (29). Anti-β-actin antibody was purchased from Sigma-Aldrich. All primary antibodies were used at 1:1000 dilution and the secondary antibody dilution was 1:10000. Immunoreactive bands of predicted molecular mass were visualized using SuperSignal West Substrate (Thermo Scientific) and quantified with the Alpha View Software with normalization by signals of β-actin.

Statistical analysis

Values are presented as mean ± SEM. Significant differences between control and treatment groups were assessed by One-way ANOVA with Dunnett's Multiple Comparison posttest or Student two-tailed t-test. Statistical significance is displayed as $p < 0.05$ (one asterisk), $p < 0.01$ (two asterisks) or $p < 0.001$ (three asterisks).
Results

Time-dependent reduction of serum HDL-C levels by OCA treatment

To determine the effects of OCA on plasma cholesterol metabolism, male hamsters fed a HFHCD for two weeks were orally treated with OCA (10 mg/kg/day) or vehicle as control for 14 days. Measurements of fasting serum TC and TG levels showed that OCA administration reduced TC levels to 80% of vehicle control ($p < 0.01$) after 7-days of treatment and TC levels further declined to 60% of control after 14 days in OCA treated hamsters ($p < 0.01$) (Fig. 1A) while OCA did not significantly affect serum TG levels (Fig. 1B). We also examined the effects of OCA on serum lipids under fed conditions. Although there was a trend toward a reduction in non-fasting serum TG levels with OCA (vehicle, 350 ± 28 mg/dL, OCA, 272 ± 31 mg/dL), it did not reach a statistical significance, whereas non-fasting TC levels were markedly decreased in OCA-treated hamsters (vehicle, 475 ± 36 mg/dL, OCA, 261 ± 7.2 mg/dL; $p < 0.001$), consistent with the effects of OCA under the fasted state. OCA treatment for 14 days slightly reduced body weight gain (8% versus 12.4% in the control group, $p < 0.05$) (Supplemental Figure S1A), which was likely caused by lower food intake in OCA-treated animals (Supplemental Figure S1B). The liver weights were slightly lower in OCA-treated hamsters while liver index was not affected (Supplemental Figure S1C, D). Thus, the cholesterol lowering effects of OCA in these hyperlipidemic hamsters were time-dependent and were prominent.

To gain a better understanding of the cholesterol lowering effect of OCA and its impact on plasma lipoprotein cholesterol profiles, we performed HPLC separation of all serum samples individually (day 14 group) or pooled samples that combined two serum samples together from the same group (day 0, day 7 and day 13). Results showed that before the drug treatment, the control and OCA groups have identical lipoprotein fractions and cholesterol is largely carried in
the HDL fraction in hamsters fed the HFHC diet for two weeks (Supplemental Figure S2A, B). After 7-days of OCA treatment, the reduction of TC was driven nearly by the sole reduction of HDL-C as cholesterol levels in chylomicron and VLDL fractions were unchanged and only a small decrease in LDL fraction was observed (Fig. 1C, D). At the end of 14 days treatment, cholesterol levels in HDL fraction were further decreased by OCA treatment to 56% of control (-80.3 mg/dL, \(p < 0.001 \)) (Fig. 1E, F). In addition, a 35% reduction in VLDL-C (-44 mg/dL) and a 54.5% reduction in LDL-C (-39 mg/dL) were also observed. Furthermore, we observed a consistent reduction in HDL-C and other lipoprotein cholesterol concentrations by OCA under the fed state (Fig. 1G, H). HPLC analysis of lipoprotein-TG fractions (Supplemental Figure S2C-G) revealed only a small reduction of VLDL-TG after 14 days of OCA treatment, which was consistent with overall insignificant effects of OCA on serum TG levels in hyperlipidemic hamsters. In addition, we measured serum ALT levels and total bilirubin levels which were in normal ranges of hamster values and were not significantly elevated by OCA treatment (Supplemental Figure S3), indicating that liver functions were not disturbed under the diet or treatment conditions. Altogether, these data demonstrate that FXR activation by OCA led to a strong cholesterol lowering effect driven largely by reducing serum HDL-C levels in this hyperlipidemic animal model under both fasted and non-fasted conditions.

OCA treatment reduces hepatic cholesterol and increases fecal cholesterol contents

Next we investigated whether the plasma HDL-C lowering effect of OCA was associated with changes in hepatic and fecal cholesterol contents. Measurement of hepatic lipids showed that OCA treatment of 14 days significantly reduced hepatic cholesterol contents by approximately 24% compared to vehicle control (\(p < 0.01 \)) (Fig. 2A). OCA also reduced hepatic
TG contents (Fig. 2B), which was consistent with reported effects of other FXR agonists on lowering hepatic TG (23, 30, 31). The cholesterol contents of fecal samples collected on day 0 and day 13 of control group were nearly identical, but cholesterol levels were significantly increased in fecal samples after 13 days of OCA treatment (Fig. 2C). We also detected a substantial reduction in fecal BAs levels after OCA treatment (Fig. 2D). Collectively, these data demonstrated that the removal of HDL-C from circulation by OCA was accompanied by an increase in transhepatic cholesterol movement into feces.

OCA upregulates hepatic SR-BI mRNA and protein levels

To gain a mechanistic insight into the OCA-mediated increases of fecal cholesterol levels and reductions of BA synthesis, we investigated the influence of FXR activation by OCA on expressions of hepatic genes that are involved in BA synthesis and transhepatic cholesterol efflux (Fig. 3A). Hepatic gene expression analysis by qRT-PCR showed that the mRNA expression of classical FXR-controlled genes in BA synthetic pathway (CPY7A1, SHP, BSEP) was strongly modulated by OCA. The substantial reduction of CYP7A1 resulted in the decreased fecal BA content via inhibition of BA synthesis in liver tissue. Interestingly, among the four genes involved in transhepatic cholesterol efflux, with the exception of ATP-binding cassette (ABC) G5, mRNA levels of ABCB4, endothelial lipase (EL) and SR-BI were all elevated in OCA-treated hamsters. In addition, we measured mRNA levels of ABCA1, ApoA1, PPARα and HNF4α. ABCA1 is involved in hepatic efflux of cholesterol and phospholipid to lipid-poor HDL particles (32) and we detected a small reduction (< 20%) in ABCA1 mRNA levels by OCA treatment whereas ApoA1, HNF4α and PPARα mRNA levels were unchanged. Interestingly, a previous study has demonstrated a FXR-dependent upregulation of mouse Insig2a gene
transcription (33). Using qPCR and specific hamster primers, we detected a nearly 40% increase
\(p < 0.05 \) in the mRNA levels of Insig2a in OCA treated hamster livers, confirming the original
findings made in mice.

The function of SR-BI in reversal cholesterol transport is well characterized and the
increased expression of SR-BI protein in liver is linked to enhanced HDL-C uptake from plasma
in mice (34). Western blotting of liver homogenates of all liver samples demonstrated a 1.8-fold
increase \(p < 0.001 \) in SR-BI protein levels in OCA-treated animals compared to control (Fig.
3B, C). Increased expression of HNF4α by FXR agonist GW4064 was reported as a causal factor
for FXR-mediated elevation of SR-BI expression in mice (35). However, in our study, HNF4α
protein levels were unchanged in these samples which were in line with the negative results of
qRT-PCR. It was shown that activation of Janus N-terminal kinase (p-JNK) by GW4064 was
responsible for increased HNF4α expression and subsequent SR-BI upregulation by this FXR
ligand in mice (35). Thus, we examined p-JNK and total JNK protein levels in hamster livers and
we did not detect differences between OCA-treated and control groups (Supplemental Figure
S4). Thus, our data suggest that upregulation of SR-BI by OCA does not involve changes in
hepatic HNF4α abundance. Altogether, these results of mRNA and protein analysis demonstrated
that OCA upregulates hepatic SR-BI expression which may account for the reduction of plasma
HDL-C and the increase in fecal cholesterol in these dyslipidemic hamsters treated with OCA.

Effects of OCA treatment on SREBP pathway

The plasma cholesterol metabolism is also critically influenced by the expression level of
hepatic LDL receptor (LDLR) and its negative regulator PCSK9, both of which are
transcriptionally activated by the mature form of sterol-regulatory element binding protein 2 (m-

Downloaded from www.jlr.org by guest, on October 22, 2017
SREBP2) via the SRE-1 sites in their gene regulatory region (36,37). Using total liver homogenates, we analyzed hepatic LDLR, PCSK9 and SREBP2 precursor and mature protein levels by Western blotting (Fig. 4A, B) and serum PCSK9 levels by ELISA (Fig. 4C). OCA treatment produced small but significant increases in LDLR protein level to 24% over control and p-SREBP2 and m-SREBP2 protein levels to approximately 40% over control whereas serum and hepatic PCSK9 protein levels were not changed by OCA treatment. In addition, we examined the protein levels of fatty acid synthetase (FASN) and stearoyl-CoA desaturase-1 (SCD1) and no differences in their expressions between the two groups were observed. The results of Western blotting were further corroborated by qRT-PCR analysis of hepatic gene expression (Fig. 4D). OCA treatment increased mRNA levels of LDLR by 72% compared to control. The mRNA level of HMG CoA-reductase (HMGCR), another SREBP2-modulated gene was also elevated in OCA-treated liver tissues. Combined with the observation that hepatic cholesterol levels were reduced in liver tissues of OCA treated hamsters, these data together suggest that a modest increase in hepatic LDLR abundance as the result of activated SREBP pathway may contribute to the reduction of serum LDL-C levels at the latter time point of OCA treatment. In addition, measurement of mRNA levels of TNF1α and collagen type I (Col1a1) (Fig. 4E) demonstrated significant mRNA reductions of these inflammatory and fibrosis-related marker genes, which were in line with anti-inflammatory effects of this FXR agonist (16).

OCA treatment did not affect serum cholesterol and hepatic SR-BI expression levels in normolipidemic hamsters

We were interested in learning whether the effects of OCA on plasma cholesterol metabolism and SR-BI expression are affected by hepatic cholesterol levels. We treated hamsters fed a NCD
with OCA at 10 mg/kg for two weeks. No obvious differences in food intake, body weight or liver weight were observed between OCA and the control groups (Supplemental Figure S5A-D). Measurement of serum lipids showed that administration of OCA to normolipidemic hamsters had no effects on serum TC and HDL-C levels (Fig. 5A, B) while serum TG levels were modestly increased owing to an increase in the VLDL-TG fraction (Supplemental Figure S5E, F). Hepatic TG content was significantly reduced while hepatic cholesterol content was increased in OCA-treated animals by 38% compared to the control group (Fig. 5C, D). Measurement of fecal cholesterol and BAs demonstrated a reduction in fecal BAs but no changes in fecal cholesterol contents after OCA treatment (Fig. 5E, F).

Hepatic gene expression analysis by qRT-PCR demonstrated that among FXR-modulated genes, CYP7A1, SHP, BSEP, INSIG2A and ABCB4 were modulated by OCA to levels comparable to its effects seen in hamsters fed the HFHCD. However, the induction on EL and SR-BI gene expression by OCA were not observed in the normolipidemic hamsters (Fig. 6A). Furthermore, hepatic SR-BI protein levels were not increased by OCA treatment (Fig. 6B, C), which corroborated the results of qRT-PCR. Despite a small increase in hepatic cholesterol content, we did not detect differences in hepatic expressions of a panel of SREBP target genes including LDLR mRNA and PCSK9 (Fig. 6D) as well as their proteins (Fig. 6B, C).

To further examine dose dependent effects of OCA on hepatic SR-BI and other FXR modulated genes in normolipidemic hamsters, another cohort of hamsters fed a NCD were orally dosed with OCA for three days at 10 mg/kg, 20 mg/kg or 30 mg/kg while the control animals received the vehicle. Treatment of animals with OCA at these doses did not affect serum levels of TC and HDL-C (Supplemental Figure S6A, B). Health parameters including serum bilirubin levels, food intake and body weights of hamsters were not significantly different among the
groups (Supplemental Figure S6C-E). Measurements of liver weight showed a tendency of dose-dependent increase in liver weight, which was further manifested in comparisons of liver index (Supplemental Figure S6F, G). The liver index of OCA 30 mg/kg group was 19% higher than the control group ($p < 0.001$), suggesting a mild adaptive changes in the liver.

Hepatic gene expression analysis of a panel of FXR-modulated genes (Fig. 7A) demonstrated dose-dependent effects of OCA on mRNA levels of SHP, CYP7A1, CYP8B1, BSEP and INSIG2A and showed that OCA at a dose of 20 mg/kg had a greater effect than 30 mg/kg. The relative lower effect of 30 mg/kg OCA treatment on modulating FXR target genes including SHP, BSEP and INSIG2A could reflect a mild liver toxicity at this higher dose. Importantly, we did not observe a significant upregulation of EL or SR-BI mRNA expressions by OCA under these doses, which was further confirmed by Western blot analysis of liver SR-BI protein abundances (Fig. 7B). Overall, results of the 3-day treatment study with OCA at doses up to 30 mg/kg largely confirmed our results obtained from 14-day OCA treatment of 10 mg/kg. Collectively, these results suggest that under normolipidemic conditions, FXR activation by OCA inhibited BA synthesis without inducing SR-BI mediated transhepatic cholesterol movement.

LXR activation alone did not induce hepatic expression of SR-BI in hamsters

One substantial difference between NCD and HCHFD fed hamsters is the hepatic cholesterol content. Higher hepatic cholesterol amount in HFHCD fed hamsters might have a stimulating effect on SR-BI expression through LXR activation as it was reported that SR-BI expression in human macrophages was induced by LXR agonists (38). To learn whether SR-BI expression in hamsters could be directly induced by LXR activation, we examined SR-BI protein levels in
liver tissues of NCD fed hamsters that were previously treated with a specific LXR agonist GW3965 (30 mg/kg) or vehicle for 7 days (39). As shown in Supplemental Figure S7, hepatic SR-BI protein levels did not differ between the two groups. We further confirmed the lack of inducing effect of GW3965 treatment on hepatic SR-BI expression in hamsters fed a high fat diet or a dyslipidemic fructose diet (data not shown).

Discussion

We set out this study to understand how OCA, a therapeutic FXR agonist, regulates plasma cholesterol metabolism under dyslipidemic conditions by utilizing hyperlipidemic hamsters, a model that has been used with increasing frequency in recent years to study lipoprotein metabolism, atherosclerosis and to evaluate effects of hypolipidemic agents including PPAR activators and LXR agonists (39-42). The important new findings of our current study are that activation of hepatic FXR by OCA increases SR-BI expression and accelerates the removal of circulating HDL-C with increased cholesterol fecal excretion in hyperlipidemic hamsters.

Previous animal studies of OCA conducted in rat, wild type mice, LDLR deficient mice and CETP transgenic mice produced inconsistent effects on plasma cholesterol levels, in particular HDL-C levels. For example, Hambruch et al. reported that in C57BL/6J mice fed a HFD, OCA treatment of four weeks at a dose of 30 mg/kg caused a small increase in HDL-C without significant effect on total plasma cholesterol (23); however, in the same study, it was reported that after 12 weeks of treatment, OCA at 10 mg/kg dose reduced plasma total cholesterol significantly and showed a trend in HDL-C lowering in CETPtg-LDLR(-/-) mice.

In this study, we demonstrated a specific and a time-dependent reduction of HDL-C levels by treating hyperlipidemic hamsters with 10 mg/kg OCA. The facts that reduction of HDL-C
preceded the decrease in LDL-C and VLDL-C levels and the majority of plasma cholesterol was carried in HDL particles suggest that enhanced HDL-C removal by OCA is likely the primary driving force for plasma cholesterol lowering observed in this animal model. It was previously reported that in a cohort of a HFD fed hamsters, OCA treatment of 11 days at a daily dose of 30 mg/kg reduced cumulative food intake by 13%, lowered HDL-C and increased VLDL-C, resulting in unchanged total plasma cholesterol levels (22, 24). In our study, we observed a similar amount of reduction in cumulative food intake (~14%), but we observed significant HDL-C reduction without any elevation of VLDL-C or LDL-C. It is not clear what factors contributed to the different effects of OCA on VLDL-C fraction in these different hamster studies. The conflicting results might be due to different OCA doses, different diet compositions or different OCA preparations.

In the previous report of HFD-fed hamsters, OCA reduced liver BA pool size and fecal BAs (22), which was in line with our current study of HFHCD fed hamsters in which OCA treatment of 14 days reduced fecal BAs by 62%. Importantly, in addition to reduction of fecal BAs, the current study demonstrated a reduction of hepatic cholesterol contents and an increase in fecal cholesterol levels in OCA-treated hamsters. Among FXR modulated genes that are involved in BA metabolism, the upregulations of SR-BI, ABCB4, ABCG5 and EL by FXR agonists FXR-450 and PX20606 in mice were linked to the clearance of cholesteryl esters from HDL and their excretion into feces via the bile (23). In the same study, it was reported that OCA did not increase hepatic SR-BI, ABCB4, EL or ABCG5 mRNA levels in mice, which was correlated with a lack of effect of OCA on cholesterol efflux in mice (23). However, we detected significant inductions of SR-BI, ABCB4 and EL mRNA levels in hamster livers after OCA treatment. We further demonstrated a 1.8-fold increase in hepatic SR-BI protein levels by OCA treatment. It has
been suggested that the function of SR-BI in biliary cholesterol secretion is mediated through ABCG5/ABCG8 dependent as well as independent mechanisms (43,44). While ABCB4 is mainly involved in phospholipid secretion (45) and is shown not to be dependent on biliary sterol secretion (46), a model emerges in hyperlipidemic hamsters in which the increased hepatic uptake of cholesterol esters from HDL via SR-BI and enhanced HDL metabolism by endothelial lipase, coupled with increased cholesterol excretion via ABCB4 lead to stimulated transhepatic cholesterol efflux in hyperlipidemic hamsters by OCA treatment. Further investigations using radioisotope labeled cholesterol to demonstrate a direct effect of OCA on upregulation of HDL-C uptake in SR-BI wild-type and deficient animals will be required to validate this working model.

The results from our chow fed hamster studies showed that OCA treatment of 14 days inhibited BAs hepatic synthesis which was evidenced by strong effects on hepatic CPY7A1 and SHP gene expression and reduction of fecal BAs. However, these OCA effects occurred in the absence of changes in serum HDL-C, fecal cholesterol and hepatic expression of EL and SR-BI, indicating that the transhepatic cholesterol efflux was not induced by OCA in these normolipidemic hamsters, which might account for the small increase in hepatic cholesterol content. The lack of OCA effect on hepatic SR-BI expression under normolipidemic conditions was also consistently observed in chow fed hamsters treated with OCA at daily doses up to 30 mg/kg.

It has been shown that the regulation of SR-BI expression by FXR involves different mechanisms. One study reported that FXR activation by synthetic agonist GW4064 increased transcription factor HNF4α protein levels that led to the transcriptional activation of SR-BI gene through HNF4α binding sequences embedded in promoter region and intronic sequences of
murine SR-BI gene (35). Another study identified multiple functional FXR binding sites (IR1) in the first intron of the murine SR-BI gene (47). Furthermore, it was reported that treating HepG2 cells with GW4064 increased SR-BI mRNA levels. This effect was linked to the binding of FXR to a putative FXRRE site (DR8) in the promoter region of human SR-BI gene (48). In this current study we observed increased SR-BI mRNA and protein expression to similar extent by OCA treatment in the absence of changes in hepatic HNF4α abundance of hamsters fed a HFHCD. Thus, our data suggest that SR-BI gene transcription is directly induced by FXR activation in hamster species under hyperlipidemic conditions but not under normolipidemic state. One major difference between NCD and HCHFD fed hamsters is the hepatic cholesterol content. Higher hepatic cholesterol in HFHCD fed hamsters might have a stimulating effect on SR-BI expression through LXR activation as SR-BI expression in human macrophages was induced by LXR agonists (38). However, our examination of SR-BI protein abundances in livers of normolipidemic hamsters treated with LXR agonist GW3965 or vehicle failed to detect any differences in SR-BI expression levels (Supplemental Figure S7), suggesting that in hamster species, SR-BI is not directly regulated by LXR alone. Thus, currently, it is unclear how different levels of hepatic cholesterol or cholesterol metabolites could impact the effect of OCA on SR-BI gene expression in hamster species. Since activation of SR-BI transcription is associated with a favorable lipoprotein cholesterol profile, our findings warrant further investigations to better understand the influence of dietary cholesterol on the inducibility of SR-BI expression by FXR agonists including OCA at the gene transcriptional level in different animal models and in humans.

In our hyperlipidemic hamster study, in addition to HDL-C reduction, OCA treatment lowered serum LDL-C and VLDL-C fractions at the later treatment time points. Previous in vitro
studies reported that FXR activation in hepatic cells led to LDLR mRNA stabilization (49) or inhibition of PCSK9 transcription (50). Either of these effects could result in decreases in plasma LDL-C levels owing to increased hepatic LDLR abundance. As investigated here, while we did not observe changes in serum and hepatic PCSK9 protein levels, we did detect small but significant increases in hepatic LDLR mRNA and protein levels which were accompanied by increased mature form of SREBP2 in the liver of OCA treated hamsters fed a HFHCD (Fig. 4). Combined with the observation of reduced liver cholesterol content, our results suggest that in hamsters fed a cholesterol enriched diet, hepatic SREBP pathway was repressed; alleviation of this repression through SR-BI facilitated transhepatic cholesterol excretion into feces probably generated a positive yet modest impact on the intracellular proteolytic process that converts the inactive SREBP2 to the active form to enter the nucleus and turn on the LDLR gene transcription along with a subset of SREBP2-target genes. In the absence of changes in PCSK9 hepatic and serum levels, the increase in hepatic LDLR expression may contribute, at least in part, to the LDL-C reduction. Furthermore, previous in vitro and in vivo studies have suggested that SR-BI mediates selective uptake of cholesterol esters from LDL particles in additional to HDL particles (8, 51). Thus, the OCA mediated reduction of serum LDL-C and VLDL-C could result from its combined activities in increasing SR-BI and LDLR abundances in liver tissue.

In summary, OCA treatment of hyperlipidemic hamsters elicited reductions of serum HDL-cholesterol levels with concomitant upregulation of hepatic SR-BI expression and increased cholesterol excretion into feces. Our findings in this hamster model suggest that induction of hepatic SR-BI expression may account for the hypocholesterolemic effect of OCA under hyperlipidemic states.
Acknowledgments

This study was supported by the Department of Veterans Affairs (Office of Research and Development, Medical Research Service), by a grant (1R01AT006336-01A1) from National Center for Complementary & Integrative Health and by a collaborative research grant from Intercept Pharmaceuticals.

References

 receptor agonist obeticholic acid in patients with type 2 diabetes and nonalcoholic fatty liver disease. *Gastroenterology* **145**: 574-582.

19. Pencek, R., T. Marmon, J. D. Roth, A. Liberman, R. Hooshmand-Rad, and M. Young.

monkeys and prevent atherosclerosis in cholesteryl ester transfer protein transgenic low-density lipoprotein receptor (−/−) mice. J Pharmacol Exp Ther 343: 556-567.

transgenic and knockout mice identifies direct SREBP target genes. *Proc Natl Acad Sci USA* **100**: 12027-12032.

Table 1. Primers used in qRT-PCR.

<table>
<thead>
<tr>
<th></th>
<th>Forward</th>
<th>Reverse</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCA1</td>
<td>AACAGTTTGTGGCCCTTTTG</td>
<td>AGTTCCAGGCTGGGGGTACTT</td>
</tr>
<tr>
<td>ABCB4</td>
<td>TCCTATGCACTGGCCTTCTG</td>
<td>GCCCCGATGAGGATTTGAGAA</td>
</tr>
<tr>
<td>ABCG5</td>
<td>ACTGGACTGCACTGACTGCAA</td>
<td>AGTCAGGATGGGCAATTTTTGTGG</td>
</tr>
<tr>
<td>APOA1</td>
<td>TGGCTGTGCTCCTCCTGACC</td>
<td>CTCTGCGGCTGTCTTTTCACC</td>
</tr>
<tr>
<td>BSEP</td>
<td>AGGGCTCTCAACTCTCTCTG</td>
<td>ATACAGGTCCGACCCCTCTCTG</td>
</tr>
<tr>
<td>COL1A1</td>
<td>GCTCCTCTTAGGGGCCACT</td>
<td>CCACGTTCACCACATTGGGG</td>
</tr>
<tr>
<td>CYP7A1</td>
<td>TTCTGCAACTTCTGAGGC</td>
<td>GCCTCCTTGATGATGCTATCTAGT</td>
</tr>
<tr>
<td>CYP8B1</td>
<td>GATGGCACCAGGAAACTGGA</td>
<td>TAGTGGTAGCTTTCTTGCG</td>
</tr>
<tr>
<td>EL</td>
<td>ACGCTGGCAACTTTGTGAAA</td>
<td>AGGTATGCAGGACATCCCA</td>
</tr>
<tr>
<td>FASN</td>
<td>AGTTCCCTGTCCAGGTTCTG</td>
<td>CCACCTAAGCCACCAGTGAT</td>
</tr>
<tr>
<td>HMGCR</td>
<td>GACGGTGACACTTACCATCTGT</td>
<td>GATGCACCCTGTTATGTTGGA</td>
</tr>
<tr>
<td>HMGCS1</td>
<td>TTTGATGCACTGTTTGAGG</td>
<td>CCACCTGTAGGTCTGCGATT</td>
</tr>
<tr>
<td>HNF1α</td>
<td>GAGGCTGCTAGCAATTCAC</td>
<td>CACTCCTCCACCAAGGTCTC</td>
</tr>
<tr>
<td>HNF4α</td>
<td>CGAGTGGGCCAAGTACATCC</td>
<td>CCGAGGGACGATGTCATT</td>
</tr>
<tr>
<td>INSIG2A</td>
<td>TTCTCAGTTAGCTGGCCT</td>
<td>GTACCACATCTTTGGCTGAACG</td>
</tr>
<tr>
<td>LDLR</td>
<td>TTGGGTTGATCCAATCTCC</td>
<td>GATGGCAGCTGGAATGCTGGAT</td>
</tr>
<tr>
<td>PCSK9</td>
<td>TGCTCCAGAGGTCACTCAG</td>
<td>GTCCACACTCTGTGACATGAAG</td>
</tr>
<tr>
<td>PPARα</td>
<td>CCTGTCTGTTGGGATGTAC</td>
<td>AGGTAGGCGCTGTTGATTCT</td>
</tr>
<tr>
<td>SHP</td>
<td>AGGGAGGCCCTGGATGTC</td>
<td>AGAAGGACGGCAGGTTCC</td>
</tr>
<tr>
<td>SR-BI</td>
<td>GCGTGGACCCATATGTCTACAG</td>
<td>GTCAGGCTGGAAATGGAAGCC</td>
</tr>
<tr>
<td>SREBP1c</td>
<td>GCACTTCTTGACACCTTCTTC</td>
<td>CTGTACAGGCTCTCTCTGTGG</td>
</tr>
<tr>
<td>SREBP2</td>
<td>GAGAGCTGTGAATTTTTCCAGTG</td>
<td>CTACAGATGATATCCCGACCAA</td>
</tr>
<tr>
<td>TNF1α</td>
<td>ACTGAACTTCCGGGTTGATCG</td>
<td>CTTGGTGGTTGTGCTACGACG</td>
</tr>
</tbody>
</table>
Figure 1. OCA reduces serum TC and HDL-C in hamsters fed a HFHCD. Male hamsters fed a HFHCD for two weeks were treated by daily gavage with vehicle (n = 8) or 10 mg/kg OCA (n = 8) for 14 days. Fasted serum samples were collected before the treatment (day 0) and at day 7 and day 14, fed serum samples were collected on day 13. A, Fasted serum TC; B, Fasted serum TG; C, Cholesterol retention time; D, Cholesterol concentration; E, VLDL+LDL; F, HDL-C; G, VLDL+LDL; H, HDL-C.
TG; C-H, Cholesterol distribution in HPLC-separated lipoprotein factions from hamsters on a HFHCD treated with vehicle or OCA (C and D, treatment day 7 fasted serum samples; E and F, treatment day 14 fasted serum samples; G and H, treatment day 13 fed serum samples). All values are expressed as mean ± SEM. Significance is indicated as *$p < 0.05$; **, $p < 0.01$ and ***, $p < 0.001$ as compared to vehicle control group.
Figure 2. OCA treatment reduces hepatic cholesterol and increases fecal cholesterol contents along with reductions of hepatic TG and fecal BA. Male hamsters fed a HFHCD were orally administered vehicle (n = 8) or OCA at 10 mg/kg (n = 8) for 14 days. Feces were collected on day 0 and day 13 of treatment, dried and weighed. Hamsters were sacrificed and serum and livers were isolated at the termination of the experiment.
(A-B) Lipids were extracted from individual liver samples and TC, TG were measured. Values are mean ± SEM of 8 hamsters per group. **p < 0.01 and ***p < 0.001 as compared to the vehicle control group.

(C-D) Lipids were also extracted from dried feces and TC and BA were measured. Values are mean ± SEM of 4 fecal samples per group. *p < 0.05, **p < 0.01 as compared to the control group.
Figure 3. Upregulation of hepatic SR-BI mRNA and protein expressions by OCA in the liver of hyperlipidemic hamsters. Hamsters were sacrificed and liver tissues were isolated after 14 days of drug treatment.
(A) Total RNA was isolated from individual liver and relative mRNA abundances of indicated genes were determined by conducting qRT-PCR and normalized to Actin. Values are mean ± SEM of 8 hamsters per group.

(B) Individual liver homogenates were prepared and protein concentrations were determined. 50 µg of homogenate proteins per liver sample were resolved by SDS-PAGE. SR-BI and HNF4α proteins were detected by immunoblotting using anti-SR-BI and anti-HNF4α antibodies. The membrane was reprobed with anti-β-actin antibody.

(C) The protein abundance of SR-BI and HNF4α was quantified with normalization by signals of β-actin using the Alpha View Software. Values are the mean ± SEM of 8 samples per group. ***p < 0.001 as compared to the vehicle control group.
Figure 4. Effects of OCA treatment on SREBP pathway

(A) Individual liver homogenates were prepared and protein concentrations were determined. 50 µg of homogenate proteins per liver sample were resolved by SDS-PAGE. LDLR, PCSK9, p-
SREBP2, m-SREBP2, SCD1, FASN and β-actin proteins were detected individually by immunoblotting using specific antibodies.

(B) The abundance of indicated proteins was quantified with normalization by signals of β-actin using the Alpha View Software. Values are the mean ± SEM of 7-8 samples per group.

(C) Individual hamster serum PCSK9 levels were quantified by a mouse PCSK9 ELISA kit. Values are the mean ± SEM of 8 samples per group.

(D, E) Total RNA was isolated from individual liver and relative mRNA abundances of indicated genes were determined by conducting qRT-PCR and normalized to actin. Values are mean ± SEM of 8 hamsters per group. *p < 0.05 and ***p < 0.001 as compared to the vehicle control group.
Figure 5. OCA treatment did not affect serum cholesterol levels and fecal cholesterol content in hamsters fed a NCD. Male hamsters fed a NCD were treated by daily gavage with vehicle (n = 6) or 10 mg/kg OCA (n = 6) for 14 days. Fasting serum samples were collected.
before the treatment (day 0) and at day 7 and day 14. Feces were collected on day 0 and day 13 of treatment, dried and weighed. Hamsters were sacrificed and serum and livers were isolated at the termination of the experiment.

(A-B) TC and HDL-C were measured from all serum samples.

(C-D) Lipids were extracted from individual liver samples, and TC and TG and were measured. Values are mean ± SEM of 6 hamsters per group. **p < 0.01 and ***p < 0.001 as compared to the vehicle control group.

(E-F) Lipids were also extracted from dried feces and TC and BAs were measured. Values are mean ± SEM of 3 fecal samples per group. **p < 0.01 as compared to the control group.
Figure 6. OCA modulated the expression of genes involved in BA synthetic pathway without inducing the expression of SR-BI and EL in liver tissue of normolipidemic hamsters.

(A, D) qRT-PCR analysis of hepatic gene expression in FXR pathway and SREBP pathway. *p < 0.05 and **p < 0.01 as compared to the vehicle control group.

(B, C) Western blot analysis of hepatic protein expressions. Values are the mean ± SEM of 6 samples per group.
Figure 7. Examination of dose-dependent effects of OCA on the expression of genes involved in BA synthetic pathway and on SR-BI protein abundances in hamsters fed a NCD and treated with OCA for 3 days.
(A) qRT-PCR analysis of hepatic gene expression in FXR pathway. Values are the mean ± SEM of 5 liver samples per group. *p < 0.05, **p < 0.01 and ***p < 0.001 as compared to the vehicle control group.

(B) Western blot analysis of hepatic SR-BI protein expression. Values are the mean ± SEM of 4 randomly chosen liver samples per group.