- Rousseau C.
- Winter N.
- Pivert E.
- Bordat Y.
- Neyrolles O.
- Avé P.
- Huerre M.
- Gicquel B.
- Jackson M.
- Alibaud L.
- Rombouts Y.
- Trivelli X.
- Burguière A.
- Cirillo S.L.G.
- Cirillo J.D.
- Dubremetz J-F.
- Guérardel Y.
- Lutfalla G.
- Kremer L.

- Nicoara S.C.
- Minnikin D.E.
- Lee O.C.Y.
- O'Sullivan D.M.
- McNerney R.
- Pillinger C.T.
- Wright I.P.
- Morgan G.H.
- Constant P.
- Perez E.
- Malaga W.
- Lanéelle M-A.
- Saurel O.
- Daffé M.
- Guilhot C.
- Constant P.
- Perez E.
- Malaga W.
- Lanéelle M-A.
- Saurel O.
- Daffé M.
- Guilhot C.
MATERIALS AND METHODS
Chemicals
Bacterial strains and growth conditions
Bacterial lipid extraction
LC/MS fractionation of PDIMs
Alkaline hydrolysis and preparation of N-(4-aminomethylphenyl) pyridiniumderivative with reagent
MS
Nomenclature
RESULTS
CID MSn on the 3-methoxy, 4-methyl, 9,11-di-(3,5,7,9-tetramethyloctaeicosanoyl) tetratriacontanediol (C32:0/C32:0-mC35:0 PDIM) standard

CID MSn on 3-keto, 4-methyl, 9,11-di-(3,5,7-trimethylhexaeicosanoyl) tetratriacontanediol (C29:0/C29:0-kC35:0 PDIM)

Measured | Theoretical Mass | Deviation | Relative Intensity | Composition | Major Structures | Minor Structures |
---|---|---|---|---|---|---|
Da | Da | mDa | % | |||
1,245.2760 | 1,245.2759 | 0.11 | 0.27 | C82 H166 O5 N | 27:0/27:0-m27:0 | |
1,257.2762 | 1,257.2759 | 0.32 | 0.32 | C83 H166 O5 N | 27:0/27:0-k29:0 | |
1,273.3074 | 1,273.3072 | 0.23 | 0.41 | C84 H170 O5 N | 27:0/27:0-m29:0 | |
1,285.3074 | 1,285.3074 | 0 | 0.67 | C85 H170 O5 N | 27:0/27:0-k31:0 | |
1,299.3235 | 1,299.323 | 0.52 | 0.71 | C86 H172 O5 N | 26:0/29:0-k31:0 | |
1,313.3391 | 1,313.3387 | 0.41 | 1.52 | C87 H174 O5 N | 27:0/27:0-k33:0 | |
1,327.3543 | 1,327.3543 | −0.04 | 5.66 | C88 H176 O5 N | 26:0/29:0-k33:0 | 27:0/26:0-k35:0 |
1,341.3700 | 1,341.3700 | 0.06 | 8.5 | C89 H178 O5 N | 27:0/29:0-k33:0 | 26:0/30:0-k33:0;26:0/29:0-k34:0; 28:0/26:0-k35:0 |
1,355.3856 | 1,355.3856 | −0.03 | 11.82 | C90 H180 O5 N | 29:0/29:0-k32:0 | 29:0/26:0-k35:0; 27:0/29:0-k34:0; 28:0/29:0-k33:0 |
1,357.4030 | 1,357.4013 | 1.73 | 10.95 | C90 H182 O5 N | 27:0/29:0-m33:0 | |
1,369.4012 | 1,369.4013 | −0.04 | 45.27 | C91 H182 O5 N | 29:0/29:0-k33:0 | 29:0/27:0-k35:0; 26:0/32:0-k33:0; 26:0/30:0-k35:0: 28:0/28:0-k35:0; 29:0/28:0-k34:0; 30:0/28:0-k33:0; 29:0/30:0-k32:0; 27:0/30:0-k34:0 |
1,371.4176 | 1,371.4169 | 0.69 | 14.47 | C91 H184 O5 N | 29:0/26:0-m35:0 | |
1,383.4170 | 1,383.4169 | 0.07 | 23.97 | C92 H184 O5 N | 29:0/30:0-k33:0 | 29:0/29:0-k34:0; 29:0/28:0-k35:0; 29:0/30:0-k33:0; 27:0/32:0-k33:0; 27:0/30:0-k35:0; 26:0/31:0-k35:0; 29:0/31:0-k32:0 |
1,385.4327 | 1,385.4326 | 0.12 | 61.93 | C92 H186 O5 N | 29:0/29:0-m33:0 | 27:0/29:0-m35:0; 30/26:0-m35:0; 30:0/27:0-m34:0; 30:0/28:0-m33:0; 29:0/30:0-m32:0; 26:0/32:0-m33:0; 27:0/32:0-m32:0 |
1,397.4322 | 1,397.4326 | −0.37 | 55.45 | C93 H186 O5 N | 29:0/29:0-k35:0; | 26:0/32:0-k35:0; 27:0/32:0-k34:0; 27:0/31:0-k35:0; 28:0/32:0-k33:0; 29:0/32:0-k32:0; 28:0/30:0-k35:0; 29:0/30:0-k34:0; 30:0/30:0-k33:0; 29:0/31:0-k33 |
1,399.4488 | 1,399.4482 | 0.63 | 27.54 | C93 H188 O5 N | 29:0/30:0-m33:0 | |
1,411.4489 | 1,411.4482 | 0.67 | 58.04 | C94 H188 O5 N | 29:0/32:0-k33:0; | 29:0/30:0-k35:0; 27:0/32:0-k35:0 |
1,413.4641 | 1,413.4639 | 0.27 | 96.37 | C94 H190 O5 N | 29:0/29:0-m35:0 | |
1,425.4647 | 1,425.4639 | 0.84 | 21.92 | C95 H190 O5 N | 30:0/32:0-k33:0; 29:0/32:0-k34:0 | 29:0/31:0-k35:0; 30:0/32:0-k33:0; 30:0/30:0-k35:0; 32:0/28:0-k35:0; 33:0/29:0-k33:0; 27:0/32:0-k36:0; 27:0/33:0-k35:0 |
1,427.4806 | 1,427.4795 | 1.13 | 52.4 | C95 H192 O5 N | 29:0/32:0-m33:0 | 29:0/30:0-m35:0; 29:0/31:0-m34:0; 29:0/29:0-m35:0 |
1,439.4799 | 1,439.4795 | 0.4 | 61.38 | C96 H192 O5 N | 29:0/32:0-k35:0 | 31:0/32:0-k33:0; 30:0/32:0-k34:0; 31:0/30:0-k35:0 |
1,453.4957 | 1,453.4952 | 0.53 | 34.67 | C97 H194 O5 N | 32:0/32:0-k33:0; 30:0/32:0-k35:0 | 29:0/32:0-k36:0; 29:0/33:0-k35:0; |
1,455.5114 | 1,455.5108 | 0.6 | 57.3 | C97 H196 O5 N | 29:0/32:0-m35:0 | 30:0/31:0-m35:0 |
1,467.5113 | 1,467.5108 | 0.49 | 9.6 | C98 H196 O5 N | 32:0/32:0-k34:0; 31:0/32:0-k35:0 | 32:0/31:0-k35:0; |
1,469.5273 | 1,469.5265 | 0.86 | 29.83 | C98 H198 O5 N | 30:0/32:0-m35:0 | 32:0/32:0-m33:0 |
1,481.5268 | 1,481.5265 | 0.32 | 35.06 | C99 H198 O5 N | 32:0/32:0-k35:0 | |
1,495.5423 | 1,495.5421 | 0.21 | 3.99 | C100 H200 O5 N | 32:0/33:0-k35:0 | |
1,497.5582 | 1,497.5578 | 0.4 | 34.11 | C100 H202 O5 N | 32:0/32:0-m35:0 | |
1,509.5583 | 1,509.5578 | 0.58 | 1.41 | C101 H202 O5 N | 32:0/34:0-k35:0 | |
1,511.5755 | 1,511.5734 | 2.07 | 2.74 | C101 H204 O5 N | 32:0/33:0-m35:0 | |
1,523.5742 | 1,523.5734 | 0.78 | 1.84 | C102 H204 O5 N | 33:0/34:0-k35:0 | |
1,539.6051 | 1,539.6047 | 0.44 | 1.62 | C103 H208 O5 N | 32:0/35:0-m35:0 |
Characterization of M. tuberculosis biofilm PDIMs as [M + NH4]+ ions


Characterization of multiple-methyl-branched long-chain mycocerosic (mycoceranic) acid substituents

DISCUSSION
- Alibaud L.
- Rombouts Y.
- Trivelli X.
- Burguière A.
- Cirillo S.L.G.
- Cirillo J.D.
- Dubremetz J-F.
- Guérardel Y.
- Lutfalla G.
- Kremer L.
Supplementary Material
REFERENCES
- Sur quelques substances ii 60 atomes de carbone isolees des lipides de souches humaines de Mycobacterium tuberculosis.Bull. Soc. Chim. Fr. 1954; 21: 108-112
- The chemistry of some native constituents of the purified wax of Mycobacterium tuberculosis.J. Biol. Chem. 1957; 224: 149-164
- The chemistry of the lipids of tubercle bacilli: XLVIII. The occurrence of phthiocerol in the wax from various strains of the human tubercle bacillus.J. Biol. Chem. 1937; 119: 535-541
- The chemistry of the lipids of tubercle bacilli: XLVI. Phthiocerol, a new alcohol from the wax of the human tubercle bacillus.J. Biol. Chem. 1936; 114: 467-472
- Mycocerosic acid biomarkers for the diagnosis of tuberculosis in the Coimbra Skeletal Collection.Tuberculosis (Edinb.). 2009; 89: 267-277
- The methyl-branched fortifications of Mycobacterium tuberculosis.Chem. Biol. 2002; 9: 545-553
- The dimycocerosate ester polyketide virulence factors of mycobacteria.Prog. Lipid Res. 2005; 44: 259-302
- Both phthiocerol dimycocerosates and phenolic glycolipids are required for virulence of Mycobacterium marinum.Infect. Immun. 2012; 80: 1381-1389
- Distribution of phthiocerol diester, phenolic mycosides and related compounds in mycobacteria.J. Gen. Microbiol. 1988; 134: 2049-2055
- Distribution of some mycobacterial waxes based on the phthiocerol family.J. Gen. Microbiol. 1985; 131: 1375-1381
- A glycolipid of hypervirulent tuberculosis strains that inhibits the innate immune response.Nature. 2004; 431: 84-87
- Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria.Mol. Microbiol. 1997; 24: 263-270
- Production of phthiocerol dimycocerosates protects Mycobacterium tuberculosis from the cidal activity of reactive nitrogen intermediates produced by macrophages and modulates the early immune response to infection.Cell. Microbiol. 2004; 6: 277-287
- Complex lipid determines tissue-specific replication of Mycobacterium tuberculosis in mice.Nature. 1999; 402: 79-83
- Identification of a virulence gene cluster of Mycobacterium tuberculosis by signature-tagged transposon mutagenesis.Mol. Microbiol. 1999; 34: 257-267
- Analysis of the phthiocerol dimycocerosate locus of Mycobacterium tuberculosis: evidence that this lipid is involved in the cell wall permeability barrier.J. Biol. Chem. 2001; 276: 19845-19854
- Phthiocerol dimycocerosate transport is required for resisting interferon-γ–independent immunity.J. Infect. Dis. 2009; 200: 774-782
- Mycobacteria manipulate macrophage recruitment through coordinated use of membrane lipids.Nature. 2014; 505: 218-222
- Mycobacterial lipids: chemistry and biologic activities. In Tuberculosis.Saunders Company. 1979; : 63-193
- Lipid Composition in the Classification and Identification of Acid-Fast Bacteria.Academic. 1980;
- The characterization of mycobacterial strains by the composition of their lipide extracts.Ann. N. Y. Acad. Sci. 1957; 69: 145-157
- Structure of phthiocerol.Nature. 1959; 183: 117-119
- A Mycobacterium marinum TesA mutant defective for major cell wall-associated lipids is highly attenuated in Dictyostelium discoideum and zebrafish embryos.Mol. Microbiol. 2011; 80: 919-934
- Characterization of phthiocerol dimycocerosates from Mycobacterium tuberculosis.Biochim. Biophys. Acta. 1983; 753: 445-449
- Characterisation of phenolic glycolipids from Mycobacterium marinum.Biochim. Biophys. Acta. 1990; 1042: 176-181
- Development and optimization of a gas chromatography/mass spectrometry method for the analysis of thermochemolytic degradation products of phthiocerol dimycocerosate waxes found in Mycobacterium tuberculosis.Rapid Commun. Mass Spectrom. 2013; 27: 2374-2382
- The envelope layers of mycobacteria with reference to their pathogenicity In Advances in Microbial Physiology.Academic Press. 1997; : 131-203
- Structure of the major triglycosyl phenol-phthiocerol of Mycobacterium tuberculosis (strain Canetti).Eur. J. Biochem. 1987; 167: 155-160
- Role of the pks15/1 gene in the biosynthesis of phenolglycolipids in the Mycobacterium tuberculosis complex: evidence that all strains synthesize glycosylated p-hydroxybenzoic methyl esters and that strains devoid of phenolglycolipids harbor a frameshift mutation in the pks15/1 gene.J. Biol. Chem. 2002; 277: 38148-38158
- Identification of the missing trans-acting enoyl reductase required for phthiocerol dimycocerosate and phenolglycolipid biosynthesis in Mycobacterium tuberculosis.J. Bacteriol. 2007; 189: 4597-4602
- Lipidomics reveals control of Mycobacterium tuberculosis virulence lipids via metabolic coupling.Proc. Natl. Acad. Sci. USA. 2007; 104: 5133-5138
- Asymmetric total synthesis of PDIM A: a virulence factor of Mycobacterium tuberculosis.Chemistry. 2008; 14: 4157-4159
- Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria.Mol. Microbiol. 2008; 69: 164-174
- Characterization of polar lipids of Listeria monocytogenes by HCD and low-energy CAD linear ion-trap mass spectrometry with electrospray ionization.Anal. Bioanal. Chem. 2015; 407: 2519-2528
- The presence of a glycol in the wax of tubercle bacilli.C. R. Hebd. Seances Acad. Sci. Ser. D. 1934; 198: 1549-1550
- Electrospray ionization multiple-stage linear ion-trap mass spectrometry for structural elucidation of triacylglycerols: assignment of fatty acyl groups on the glycerol backbone and location of double bonds.J. Am. Soc. Mass Spectrom. 2010; 21: 657-669
- Mobile and localized protons: a framework for understanding peptide dissociation.J. Mass Spectrom. 2000; 35: 1399-1406
- Fragmentation pathways of protonated peptides.Mass Spectrom. Rev. 2005; 24: 508-548
- Elucidation of the double-bond position of long-chain unsaturated fatty acids by multiple-stage linear ion-trap mass spectrometry with electrospray ionization.J. Am. Soc. Mass Spectrom. 2008; 19: 1673-1680
- LC/ESI-MS/MS detection of FAs by charge reversal derivatization with more than four orders of magnitude improvement in sensitivity.J. Lipid Res. 2013; 54: 3523-3530
- Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization.Anal. Chem. 2010; 82: 6790-6796
- Identification and quantitation of fatty acid double bond positional isomers: a shotgun lipidomics approach using charge-switch derivatization.Anal. Chem. 2013; 85: 9742-9750
- Fatty acidomics: global analysis of lipid species containing a carboxyl group with a charge-remote fragmentation-assisted approach.Anal. Chem. 2013; 85: 9312-9320
- Charge-remote fragmentations: method, mechanism and applications.Int. J. Mass Spectrom. Ion Process. 1992; 118–119: 137-165
- Charge-remote fragmentation: an account of research on mechanisms and applications.Int. J. Mass Spectrom. 2000; 200: 611-624
- A new charge-associated mechanism to account for the production of fragment ions in the high-energy CID spectra of fatty acids.J. Am. Soc. Mass Spectrom. 2005; 16: 280-290
- Biosynthesis of phthiocerol; incorporation of methionine and propionic acid.Chem. Ind. 1963; 31: 1285-1286
Article info
Publication history
Footnotes
This work was supported by U.S. Public Health Service Grants P41-GM103422, P60-DK-20579, P30-DK56341, and 1R21HL120760-01. C.L.S. is supported by a Beckman Young Investigator Award from the Arnold and Mabel Beckman Foundation and an Interdisciplinary Research Initiative grant from the Children's Discovery Institute of Washington University and St. Louis Children's Hospital. K.N.F. is supported by a pilot award from the Center for Women's Infectious Disease Research at Washington University School of Medicine. The contents are solely the responsibility of the authors and do not necessarily represent the official views of the National Institutes of Health.
The online version of this article (available at http://www.jlr.org) contains a supplement.
Abbreviations:
AMPPIdentification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy