- Ory D.S.
- Ottinger E.A.
- Farhat N.Y.
- King K.A.
- Jiang X.
- Weissfeld L.
- Berry-Kravis E.
- Davidson C.D.
- Bianconi S.
- Keener L.A.
- et al.
- Boenzi S.
- Deodato F.
- Taurisano R.
- Martinelli D.
- Verrigni D.
- Carrozzo R.
- Bertini E.
- Pastore A.
- Dionisi-Vici C.
- Johnson D.W.
- Romanello M.
- Zampieri S.
- Bortolotti N.
- Deroma L.
- Sechi A.
- Fiumara A.
- Parini R.
- Borroni B.
- Brancati F.
- Bruni A.
- et al.
- Reunert J.
- Lotz-Havla A.S.
- Polo G.
- Kannenberg F.
- Fobker M.
- Griese M.
- Mengel E.
- Muntau A.C.
- Schnabel P.
- Sommerburg O.
- et al.
- Hammerschmidt T.G.
- de Oliveira Schmitt Ribas G.
- Saraiva-Pereira M.L.
- Bonatto M.P.
- Kessler R.G.
- Souza F.T.S.
- Trapp F.
- Michelin-Tirelli K.
- Burin M.G.
- Giugliani R.
- et al.
- Pettazzoni M.
- Froissart R.
- Pagan C.
- Vanier M.T.
- Ruet S.
- Latour P.
- Guffon N.
- Fouilhoux A.
- Germain D.P.
- Levade T.
- et al.
- Voorink-Moret M.
- Goorden S.M.I.
- van Kuilenburg A.B.P.
- Wijburg F.A.
- Ghauharali-van der Vlugt J.M.M.
- Beers-Stet F.S.
- Zoetekouw A.
- Kulik W.
- Hollak C.E.M.
- Vaz F.M.
MATERIALS AND METHODS
Human subjects
Experimental animals
Profiling of lysoSM-509 in human plasma and dried blood spots
lysoSM-509 structure identification
LC-HRMS of endogenous lysoSM-509 and synthetic PPCS.
Hydrogen/deuterium exchange experiment.
Derivatization.
Synthesis of PPCS, d5-PPCS, and potential precursors for PPCS bioanalysis
N-palmitoyl-l-serine methyl ester (2a).
(S)-N-palmitoyl-O-H-phosphonate-serine methyl ester (3a).
(S)-N-palmitoyl-O-phosphocholineserine methyl ester (5a).
N-palmitoyl-l-serine tert-butyl ester (2b).
(S)-N-palmitoyl-O-H-phosphonate-serine tert-butyl ester (3b).
(S)-N-palmitoyl-O-phosphocholineserine tert-butyl ester (5b).
(S)-N-palmitoyl-O-phosphocholineserine.
N-d5-palmitoyl-l-serine tert-butyl ester (2c).
(S)-N-d5-palmitoyl-O-H-phosphonate-serine tert-butyl ester (3c).
(S)-N-d5-palmitoyl-O-phosphocholineserine tert-butyl ester (5c).
(S)-N-d5-palmitoyl-O-phosphocholineserine.
Generation of PPCS in heathy human blood and quantification of PPCS in tissues from NPC animal models
Profiling of APCS in human plasma
Statistical methods
RESULTS
Elucidation of the structure of lysoSM-509

MS.

Chemical derivatization.
Proposed structure of lysoSM-509.

Synthesis of PPCS

Confirmation of the structure of lysoSM-509

Generation of PPCS in human blood


Elevation of PPCS in serum, brain, and liver from a NPC1 cat model

APCS in human plasma
MRM Transition | APCS | Precursor Ion (m/z) | Product Ion (m/z) |
---|---|---|---|
1 | APCS(14:0) | 481.3 | 184 |
2 | APCS(16:0) | 509.3 | 184 |
3 | APCS(16:1) | 507.3 | 184 |
4 | APCS(18:0) | 537.3 | 184 |
5 | APCS(18:1) | 535.3 | 184 |
6 | APCS(20:0) | 565.3 | 184 |
7 | APCS(22:0) | 593.3 | 184 |
8 | APCS(24:0) | 621.3 | 184 |
9 | APCS(24:1) | 619.3 | 184 |

DISCUSSION
- Pettazzoni M.
- Froissart R.
- Pagan C.
- Vanier M.T.
- Ruet S.
- Latour P.
- Guffon N.
- Fouilhoux A.
- Germain D.P.
- Levade T.
- et al.
- Voorink-Moret M.
- Goorden S.M.I.
- van Kuilenburg A.B.P.
- Wijburg F.A.
- Ghauharali-van der Vlugt J.M.M.
- Beers-Stet F.S.
- Zoetekouw A.
- Kulik W.
- Hollak C.E.M.
- Vaz F.M.
Acknowledgments
Supplementary Material
REFERENCES
- Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis.Science. 1997; 277: 228-231
- Identification of HE1 as the second gene of Niemann-Pick C disease.Science. 2000; 290: 2298-2301
- Niemann-Pick disease type C.Orphanet J. Rare Dis. 2010; 5: 16
- Consequences of NPC1 and NPC2 loss of function in mammalian neurons.Biochim. Biophys. Acta. 2004; 1685: 48-62
- Psychiatric and neurological symptoms in patients with Niemann-Pick disease type C (NP-C): Findings from the International NPC Registry.World J. Biol. Psychiatry. 2019; 20: 310-319
- Diagnostic tests for Niemann-Pick disease type C (NP-C): A critical review.Mol. Genet. Metab. 2016; 118: 244-254
- Long term follow-up to evaluate the efficacy of miglustat treatment in Italian patients with Niemann-Pick disease type C.Orphanet J. Rare Dis. 2015; 10: 22
- Intrathecal 2-hydroxypropyl-beta-cyclodextrin decreases neurological disease progression in Niemann-Pick disease, type C1: a non-randomised, open-label, phase 1–2 trial.Lancet. 2017; 390: 1758-1768
- Long-term treatment of Niemann-Pick type C1 disease with intrathecal 2-hydroxypropyl-beta-cyclodextrin.Pediatr. Neurol. 2018; 80: 24-34
- Intrathecal 2-hydroxypropyl-beta-cyclodextrin in a single patient with Niemann-Pick C1.Mol. Genet. Metab. 2015; 116: 75-79
- A sensitive and specific LC-MS/MS method for rapid diagnosis of Niemann-Pick C1 disease from human plasma.J. Lipid Res. 2011; 52: 1435-1445
- Cholesterol oxidation products are sensitive and specific blood-based biomarkers for Niemann-Pick C1 disease.Sci. Transl. Med. 2010; 2: 56ra81
- A new simple and rapid LC-ESI-MS/MS method for quantification of plasma oxysterols as dimethylaminobutyrate esters. Its successful use for the diagnosis of Niemann-Pick type C disease.Clin. Chim. Acta. 2014; 437: 93-100
- LC-MS/MS based assay and reference intervals in children and adolescents for oxysterols elevated in Niemann-Pick diseases.Clin. Biochem. 2015; 48: 596-602
- Cholestane-3beta,5alpha,6beta-triol: high levels in Niemann-Pick type C, cerebrotendinous xanthomatosis, and lysosomal acid lipase deficiency.J. Lipid Res. 2015; 56: 1926-1935
- Determination of serum cholestane-3beta,5alpha,6beta-triol by gas chromatography-mass spectrometry for identification of Niemann-Pick type C (NPC) disease.J. Steroid Biochem. Mol. Biol. 2017; 169: 54-60
- Rapid diagnosis of 83 patients with Niemann Pick type C disease and related cholesterol transport disorders by cholestantriol screening.EBioMedicine. 2015; 4: 170-175
- Comprehensive evaluation of plasma 7-ketocholesterol and cholestan-3beta,5alpha,6beta-triol in an Italian cohort of patients affected by Niemann-Pick disease due to NPC1 and SMPD1 mutations.Clin. Chim. Acta. 2016; 455: 39-45
- Genetic screening for Niemann-Pick disease type C in adults with neurological and psychiatric symptoms: findings from the ZOOM study.Hum. Mol. Genet. 2013; 22: 4349-4356
- Niemann-Pick type C-2 disease: identification by analysis of plasma cholestane-3beta,5alpha,6beta-triol and further insight into the clinical phenotype.JIMD Rep. 2015; 23: 17-26
- Diagnosis of Niemann-Pick disease type C with 7-ketocholesterol screening followed by NPC1/NPC2 gene mutation confirmation in Chinese patients.Orphanet J. Rare Dis. 2014; 9: 82
- Molecular and biochemical biomarkers for diagnosis and therapy monitorization of Niemann-Pick type C patients.Int. J. Dev. Neurosci. 2018; 66: 18-23
- High level of oxysterols in neonatal cholestasis: a pitfall in analysis of biochemical markers for Niemann-Pick type C disease.Clin. Chem. Lab. Med. 2016; 54: 1221-1229
- Plasma lysosphingomyelin demonstrates great potential as a diagnostic biomarker for Niemann-Pick disease type C in a retrospective study.PLoS One. 2014; 9: e114669
- Development of a bile acid-based newborn screen for Niemann-Pick disease type C.Sci. Transl. Med. 2016; 8: 337ra63
- Identification of novel bile acids as biomarkers for the early diagnosis of Niemann-Pick C disease.FEBS Lett. 2016; 590: 1651-1662
- A novel, highly sensitive and specific biomarker for Niemann-Pick type C1 disease.Orphanet J. Rare Dis. 2015; 10: 78
- Quantitation of plasmatic lysosphingomyelin and lysosphingomyelin-509 for differential screening of Niemann-Pick A/B and C diseases.Anal. Biochem. 2017; 525: 73-77
- LC-MS/MS multiplex analysis of lysosphingolipids in plasma and amniotic fluid: A novel tool for the screening of sphingolipidoses and Niemann-Pick type C disease.PLoS One. 2017; 12: e0181700
- Diagnosis of sphingolipidoses: a new simultaneous measurement of lysosphingolipids by LC-MS/MS.Clin. Chem. Lab. Med. 2017; 55: 403-414
- Rapid screening for lipid storage disorders using biochemical markers. Expert center data and review of the literature.Mol. Genet. Metab. 2018; 123: 76-84
- Recommendations for the detection and diagnosis of Niemann-Pick disease type C: An update.Neurol. Clin. Pract. 2017; 7: 499-511
- Electrospray ionization/tandem quadrupole mass spectrometric studies on phosphatidylcholines: the fragmentation processes.J. Am. Soc. Mass Spectrom. 2003; 14: 352-363
- Mass spectrometric analysis of long-chain lipids.Mass Spectrom. Rev. 2011; 30: 579-599
- A general method for the synthesis of glycerophospholipids and their analogues via H-phosphonate intermediates.J. Org. Chem. 1989; 54: 1338-1342
- Improved method for the synthesis of phosphatidylcholines.J. Lipid Res. 1984; 25: 1140-1142
- Use of high performance liquid chromatography-electrospray ionization-tandem mass spectrometry for the analysis of ceramide-1-phosphate levels.J. Lipid Res. 2010; 51: 641-651
- Identification of an unknown 31P nuclear magnetic resonance from dystrophic chicken as L-serine ethanolamine phosphodiester.Arch. Biochem. Biophys. 1977; 182: 683-689
- Accumulation of N-acylphosphatidylserines and N-acylserines in the frontal cortex in schizophrenia.Neurotransmitter (Houst.). 2014; 1: e263
- ABHD4 regulates multiple classes of N-acyl phospholipids in the mammalian central nervous system.Biochemistry. 2015; 54: 2539-2549
- Studies on the lipids of sheep red blood cells. IV. The identification of a new phospholipid. N-acyl phosphatidyl serine.Biochem. Biophys. Res. Commun. 1970; 38: 261-265
- Identification of N-acylphosphatidylserine molecules in eukaryotic cells.Biochemistry. 2007; 46: 14500-14513
- The endogenous brain constituent N-arachidonoyl L-serine is an activator of large conductance Ca2+-activated K+ channels.J. Pharmacol. Exp. Ther. 2009; 328: 351-361
- N-arachidonoyl L-serine, an endocannabinoid-like brain constituent with vasodilatory properties.Proc. Natl. Acad. Sci. USA. 2006; 103: 2428-2433
- N-arachidonoyl L-serine, a putative endocannabinoid, alters the activation of N-type Ca2+ channels in sympathetic neurons.J. Neurophysiol. 2008; 100: 1147-1151
- Inhibitors of lipid phosphatidate receptors: N-palmitoyl-serine and N-palmitoyl-tyrosine phosphoric acids.J. Lipid Res. 1996; 37: 391-398
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health Clinical and Translational Science Award UL1 TR000448 (X.J.) and Grants R01 NS081985 (D.S.O. and J.E.S.), P41-GM103422 (F-F.H), and 2R01DK067859 (M.H.G.); grants from the University of Pennsylvania Orphan Disease Center (X.J.), Dana's Angels Research Trust (D.S.O. and N.M.Y.), and Ara Parseghian Medical Research Foundation (D.S.O. and N.M.Y.); support from Accelerated Research for NPC Disease (D.S.O.), Hope for Hayley and Samantha's Search for the Cure Funds (E.B.K.), and Referral Center for Animal Models of Human Genetic Disease (National Institutes of Health Grant P40 OD010939; C.H.V.). This study was also supported by the intramural research program of the Eunice Kennedy Shriver National Institute of Child Health and Human Development (F.D.P.) and a Bench to Bedside Award from the Office of Rare Diseases (F.D.P. and D.S.O.). This work was performed in the Metabolomics Facility at Washington University (National Institutes of Health Grant P30 DK020579). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.
Abbreviations:
APCSIdentification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy