- Wang Q.
- Ding Y.
- Song P.
- Zhu H.
- Okon I.S.
- Ding N-Y.
- Chen H.
- Liu D.
- Zou M-H.
Tryptophan-derived 3-hydroxyanthranilic acid contributes to angiotensin II-induced abdominal aortic aneurysm formation in mice in vivo.
Circulation. 2017; 136: 2271-2283- Sampson U.K.
- Norman P.E.
- Fowkes F.G.R.
- Aboyans V.
- Song Y.
- Harrell Jr., F.E.
- Forouzanfar M.H.
- Naghavi M.
- Denenberg J.O.
- McDermott M.M.
Estimation of global and regional incidence and prevalence of abdominal aortic aneurysms 1990 to 2010.
Glob. Heart. 2014; 9: 159-170MA3RS Study Investigators. 2017. Aortic wall inflammation predicts abdominal aortic aneurysm expansion, rupture, and need for surgical repair. Circulation. 136: 787–797.
- Meital L.T.
- Sandow S.L.
- Calder P.C.
- Russell F.D.
Abdominal aortic aneurysm and omega-3 polyunsaturated fatty acids: mechanisms, animal models, and potential treatment.
Prostaglandins Leukot. Essent. Fatty Acids. 2017; 118: 1-9- Orešič M.
- Hänninen V.A.
- Vidal-Puig A.
Lipidomics: a new window to biomedical frontiers.
Trends Biotechnol. 2008; 26: 647-652- Wales K.M.
- Kavazos K.
- Nataatmadja M.
- Brooks P.R.
- Williams C.
- Russell F.D.
N-3 PUFAs protect against aortic inflammation and oxidative stress in angiotensin II-infused apolipoprotein E−/−mice.
PLoS One. 2014; 9: e112816- Kugo H.
- Zaima N.
- Mouri Y.
- Tanaka H.
- Yanagimoto K.
- Urano T.
- Unno N.
- Moriyama T.
The preventive effect of fish oil on abdominal aortic aneurysm development.
Biosci. Biotechnol. Biochem. 2016; 80: 1186-1191- Pope N.H.
- Salmon M.
- Davis J.P.
- Chatterjee A.
- Su G.
- Conte M.S.
- Ailawadi G.
- Upchurch G.R.
D-series resolvins inhibit murine abdominal aortic aneurysm formation and increase M2 macrophage polarization.
FASEB J. 2016; 30: 4192-4201- Yoshihara T.
- Shimada K.
- Fukao K.
- Sai E.
- Sato-Okabayashi Y.
- Matsumori R.
- Shiozawa T.
- Alshahi H.
- Miyazaki T.
- Tada N.
- et al.
Omega 3 polyunsaturated fatty acids suppress the development of aortic aneurysms through the inhibition of macrophage-mediated inflammation.
Circ. J. 2015; 79: 1470-1478- Kavazos K.
- Nataatmadja M.
- Wales K.M.
- Hartland E.
- Williams C.
- Russell F.D.
Dietary supplementation with omega-3 polyunsaturated fatty acids modulate matrix metalloproteinase immunoreactivity in a mouse model of pre-abdominal aortic aneurysm.
Heart Lung Circ. 2015; 24: 377-385- Aikawa T.
- Miyazaki T.
- Shimada K.
- Sugita Y.
- Shimizu M.
- Ouchi S.
- Kadoguchi T.
- Yokoyama Y.
- Shiozawa T.
- Hiki M.
- et al.
Low serum levels of epa are associated with the size and growth rate of abdominal aortic aneurysm.
J. Atheroscler. Thromb. 2017; 24: 912-920- Lindholt J.S.
- Kristensen K.L.
- Burillo E.
- Martinez-Lopez D.
- Calvo C.
- Ros E.
- Martín-Ventura J.L.
- Sala-Vila A.
Arachidonic acid, but not omega-3 index, relates to the prevalence and progression of abdominal aortic aneurysm in a population-based study of Danish men.
J. Am. Heart Assoc. 2018; 7: e007790- Arnold C.
- Konkel A.
- Fischer R.
- Schunck W-H.
Cytochrome P450-dependent metabolism of ω-6 and ω-3 long-chain polyunsaturated fatty acids.
Pharmacol. Rep. 2010; 62: 536-547Use of red blood cell fatty-acid profiles as biomarkers in cardiac disease.
Biomark. Med. 2009; 3: 25-32- Del Gobbo L.C.
- Imamura F.
- Aslibekyan S.
- Marklund M.
- Virtanen J.K.
- Wennberg M.
- Yakoob M.Y.
- Chiuve S.E.
- Dela Cruz L.
- Frazier-Wood A.C.
- et al.
ω-3 polyunsaturated fatty acid biomarkers and coronary heart disease: pooling project of 19 cohort studies.
JAMA Intern. Med. 2016; 176: 1155-1166- Kleber M.E.
- Delgado G.E.
- Lorkowski S.
- März W.
- von Schacky C.
Omega-3 fatty acids and mortality in patients referred for coronary angiography. The Ludwigshafen Risk and Cardiovascular Health Study.
Atherosclerosis. 2016; 252: 175-181- Harris W.S.
- Tintle N.L.
- Etherton M.R.
- Vasan R.S.
Erythrocyte long-chain omega-3 fatty acid levels are inversely associated with mortality and with incident cardiovascular disease: the Framingham Heart Study.
J. Clin. Lipidol. 2018; 12: 718-727.e6- Goozee K.
- Chatterjee P.
- James I.
- Shen K.
- Sohrabi H.R.
- Asih P.R.
- Dave P.
- Ball B.
- ManYan C.
- Taddei K.
- et al.
Alterations in erythrocyte fatty acid composition in preclinical Alzheimer's disease.
Sci. Rep. 2017; 7: 676- Park Y.
- Lim J.
- Lee J.
- Kim S.G.
Erythrocyte fatty acid profiles can predict acute non-fatal myocardial infarction.
Br. J. Nutr. 2009; 102: 1355-1361- Bannikoppa P.
- Dhayanand J.
- Madhukumar R.
- Padmanabhan A.
- Bafna U.
- Vijayakumar M.
- Devi K.U.
- Pramod K.
- Thomas T.
- Jayshree R.
- et al.
Fatty acid intake and erythrocyte fatty acid profile in women with breast, ovarian and cervical cancers.
Clin. Nutr. ESPEN. 2017; 19: 59-63- Itomura M.
- Fujioka S.
- Hamazaki K.
- Kobayashi K.
- Nagasawa T.
- Sawazaki S.
- Kirihara Y.
- Hamazaki T.
Factors influencing EPA+DHA levels in red blood cells in Japan.
In Vivo. 2008; 22: 131-135- Golledge J.
- Muller J.
- Daugherty A.
- Norman P.
Abdominal aortic aneurysm: pathogenesis and implications for management.
Arterioscler. Thromb. Vasc. Biol. 2006; 26: 2605-2613- Harris W.S.
- Von Schacky C.
The omega-3 index: a new risk factor for death from coronary heart disease?.
Prev. Med. 2004; 39: 212-220- Jackson K.H.
- Polreis J.M.
- Tintle N.L.
- Kris-Etherton P.M.
- Harris W.S.
Association of reported fish intake and supplementation status with the omega-3 index.
Prostaglandins Leukot. Essent. Fatty Acids. 2019; 142: 4-10Blocked randomization with randomly selected block sizes.
Int. J. Environ. Res. Public Health. 2011; 8: 15-20- Harris W.S.
- Del Gobbo L.
- Tintle N.L.
The omega-3 index and relative risk for coronary heart disease mortality: estimation from 10 cohort studies.
Atherosclerosis. 2017; 262: 51-54- Bürgin-Maunder C.S.
- Brooks P.R.
- Hitchen-Holmes D.
- Russell F.D.
Moderate dietary supplementation with omega-3 fatty acids does not impact plasma von Willebrand factor profile in mildly hypertensive subjects.
BioMed Res. Int. 2015; 2015: 394871- Fuhrman B.J.
- Barba M.
- Krogh V.
- Micheli A.
- Pala V.
- Lauria R.
- Chajes V.
- Riboli E.
- Sieri S.
- Berrino F.
- et al.
Erythrocyte membrane phospholipid composition as a biomarker of dietary fat.
Ann. Nutr. Metab. 2006; 50: 95-102- Dasilva G.
- Pazos M.
- García-Egido E.
- Gallardo J.M.
- Ramos-Romero S.
- Torres J.L.
- Romeu M.
- Nogués M-R.
- Medina I.
A lipidomic study on the regulation of inflammation and oxidative stress targeted by marine ω-3 PUFA and polyphenols in high-fat high-sucrose diets.
J. Nutr. Biochem. 2017; 43: 53-67- McNamara R.K.
- Jandacek R.
- Rider T.
- Tso P.
- Cole-Strauss A.
- Lipton J.W.
Omega-3 fatty acid deficiency increases constitutive pro-inflammatory cytokine production in rats: relationship with central serotonin turnover.
Prostaglandins Leukot. Essent. Fatty Acids. 2010; 83: 185-191- McNamara R.K.
- Jandacek R.
- Rider T.
- Tso P.
- Dwivedi Y.
- Pandey G.N.
Selective deficits in erythrocyte docosahexaenoic acid composition in adult patients with bipolar disorder and major depressive disorder.
J. Affect. Disord. 2010; 126: 303-311- Dogdu O.
- Koc F.
- Kalay N.
- Yarlioglues M.
- Elcik D.
- Karayakali M.
- Ozbek K.
- Kaya M.G.
Assessment of red cell distribution width (RDW) in patients with coronary artery ectasia.
Clin. Appl. Thromb. Hemost. 2012; 18: 211-214- Flock M.R.
- Skulas-Ray A.C.
- Harris W.S.
- Gaugler T.L.
- Fleming J.A.
- Kris-Etherton P.M.
Effects of supplemental long-chain omega-3 fatty acids and erythrocyte membrane fatty acid content on circulating inflammatory markers in a randomized controlled trial of healthy adults.
Prostaglandins Leukot. Essent. Fatty Acids. 2014; 91: 161-168- Farvid M.S.
- Ding M.
- Pan A.
- Sun Q.
- Chiuve S.E.
- Steffen L.M.
- Willett W.C.
- Hu F.B.
Dietary linoleic acid and risk of coronary heart disease: a systematic review and meta-analysis of prospective cohort studies.
Circulation. 2014; 130: 1568-1578- Wu J.H.
- Lemaitre R.N.
- King I.B.
- Song X.
- Psaty B.M.
- Siscovick D.S.
- Mozaffarian D.
Circulating omega-6 polyunsaturated fatty acids and total and cause-specific mortality: the Cardiovascular Health Study.
Circulation. 2014; 130: 1245-1253Increasing dietary linoleic acid does not increase tissue arachidonic acid content in adults consuming Western-type diets: a systematic review.
Nutr. Metab. (Lond.). 2011; 8: 36- Virtanen J.K.
- Mursu J.
- Voutilainen S.
- Tuomainen T-P.
The associations of serum n-6 polyunsaturated fatty acids with serum C-reactive protein in men: the Kuopio Ischaemic Heart Disease Risk Factor Study.
Eur. J. Clin. Nutr. 2018; 72: 342-348- Saifullah A.
- Watkins B.A.
- Saha C.
- Li Y.
- Moe S.M.
- Friedman A.N.
Oral fish oil supplementation raises blood omega-3 levels and lowers C-reactive protein in haemodialysis patients–a pilot study.
Nephrol. Dial. Transplant. 2007; 22: 3561-3567- Massaro M.
- Scoditti E.
- Carluccio M.A.
- De Caterina R.
Basic mechanisms behind the effects of n-3 fatty acids on cardiovascular disease.
Prostaglandins Leukot. Essent. Fatty Acids. 2008; 79: 109-115- Yates C.M.
- Calder P.C.
- Rainger G.E.
Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease.
Pharmacol. Ther. 2014; 141: 272-282Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance.
Biochim. Biophys. Acta. 2015; 1851: 469-484- Schunck W-H.
- Konkel A.
- Fischer R.
- Weylandt K-H.
Therapeutic potential of omega-3 fatty acid-derived epoxyeicosanoids in cardiovascular and inflammatory diseases.
Pharmacol. Ther. 2018; 183: 177-204- Park H.G.
- Park W.J.
- Kothapalli K.S.
- Brenna J.T.
The fatty acid desaturase 2 (FADS2) gene product catalyzes Δ4 desaturation to yield n-3 docosahexaenoic acid and n-6 docosapentaenoic acid in human cells.
FASEB J. 2015; 29: 3911-3919- Salvagno G.L.
- Sanchis-Gomar F.
- Picanza A.
- Lippi G.
Red blood cell distribution width: A simple parameter with multiple clinical applications.
Crit. Rev. Clin. Lab. Sci. 2015; 52: 86-105- Vayá A.
- Sarnago A.
- Fuster O.
- Alis R.
- Romagnoli M.
Influence of inflammatory and lipidic parameters on red blood cell distribution width in a healthy population.
Clin. Hemorheol. Microcirc. 2015; 59: 379-385- Song C.S.
- Park D.I.
- Yoon M.Y.
- Seok H.S.
- Park J.H.
- Kim H.J.
- Cho Y.K.
- Sohn C.I.
- Jeon W.K.
- Kim B.I.
Association between red cell distribution width and disease activity in patients with inflammatory bowel disease.
Dig. Dis. Sci. 2012; 57: 1033-1038- Fornal M.
- Wizner B.
- Cwynar M.
- Królczyk J.
- Kwater A.
- Korbut R.A.
- Grodzicki T.
Association of red blood cell distribution width, inflammation markers and morphological as well as rheological erythrocyte parameters with target organ damage in hypertension.
Clin. Hemorheol. Microcirc. 2014; 56: 325-335- Lippi G.
- Targher G.
- Montagnana M.
- Salvagno G.L.
- Zoppini G.
- Guidi G.C.
Relation between red blood cell distribution width and inflammatory biomarkers in a large cohort of unselected outpatients.
Arch. Pathol. Lab. Med. 2009; 133: 628-632- van der Poll T.
- de Boer J.D.
- Levi M.
The effect of inflammation on coagulation and vice versa.
Curr. Opin. Infect. Dis. 2011; 24: 273-278Inflammation and coagulation.
Crit. Care Med. 2010; 38: S26-S34