Advertisement
Thematic Review Series| Volume 60, ISSUE 10, P1648-1697, October 2019

Beyond adiponectin and leptin: adipose tissue-derived mediators of inter-organ communication

Open AccessPublished:June 17, 2019DOI:https://doi.org/10.1194/jlr.R094060
      The breakthrough discoveries of leptin and adiponectin more than two decades ago led to a widespread recognition of adipose tissue as an endocrine organ. Many more adipose tissue-secreted signaling mediators (adipokines) have been identified since then, and much has been learned about how adipose tissue communicates with other organs of the body to maintain systemic homeostasis. Beyond proteins, additional factors, such as lipids, metabolites, noncoding RNAs, and extracellular vesicles (EVs), released by adipose tissue participate in this process. Here, we review the diverse signaling mediators and mechanisms adipose tissue utilizes to relay information to other organs. We discuss recently identified adipokines (proteins, lipids, and metabolites) and briefly outline the contributions of noncoding RNAs and EVs to the ever-increasing complexities of adipose tissue inter-organ communication. We conclude by reflecting on central aspects of adipokine biology, namely, the contribution of distinct adipose tissue depots and cell types to adipokine secretion, the phenomenon of adipokine resistance, and the capacity of adipose tissue to act both as a source and sink of signaling mediators.

      THE ENDOCRINE ERA OF ADIPOSE TISSUE

      The roles of white adipose tissue (WAT) in long-term energy storage, thermal insulation, and mechanical protection and of brown adipose tissue (BAT) in nonshivering thermogenesis have long been appreciated (
      • Rosen E.D.
      • Spiegelman B.M.
      What we talk about when we talk about fat.
      ). The concept that adipose tissue could serve as an endocrine organ, however, was only shaped after the discovery of its two most characteristic secretory products, leptin and adiponectin.
      Leptin, identified in 1994, is a protein primarily produced by mature adipocytes (
      • Zhang Y.
      • Proenca R.
      • Maffei M.
      • Barone M.
      • Leopold L.
      • Friedman J.M.
      Positional cloning of the mouse obese gene and its human homologue.
      ,
      • Zhang F.
      • Basinski M.B.
      • Beals J.M.
      • Briggs S.L.
      • Churgay L.M.
      • Clawson D.K.
      • DiMarchi R.D.
      • Furman T.C.
      • Hale J.E.
      • Hsiung H.M.
      • et al.
      Crystal structure of the obese protein leptin-E100.
      ). It signals through the long isoform of the leptin receptor (LEPRb) and exerts the majority of its effects acting on the brain (
      • Zhang Y.
      • Proenca R.
      • Maffei M.
      • Barone M.
      • Leopold L.
      • Friedman J.M.
      Positional cloning of the mouse obese gene and its human homologue.
      ,
      • Cohen P.
      • Zhao C.
      • Cai X.
      • Montez J.M.
      • Rohani S.C.
      • Feinstein P.
      • Mombaerts P.
      • Friedman J.M.
      Selective deletion of leptin receptor in neurons leads to obesity.
      ,
      • de Luca C.
      • Kowalski T.J.
      • Zhang Y.
      • Elmquist J.K.
      • Lee C.
      • Kilimann M.W.
      • Ludwig T.
      • Liu S.M.
      • Chua Jr., S.C.
      Complete rescue of obesity, diabetes, and infertility in db/db mice by neuron-specific LEPR-B transgenes.
      ,
      • Guo K.
      • McMinn J.E.
      • Ludwig T.
      • Yu Y.H.
      • Yang G.
      • Chen L.
      • Loh D.
      • Li C.
      • Chua Jr., S.
      • Zhang Y.
      Disruption of peripheral leptin signaling in mice results in hyperleptinemia without associated metabolic abnormalities.
      ). Its circulating levels reflect the filling state of adipose tissue depots and thus relate directly to the body's long-term energy stores (
      • Maffei M.
      • Halaas J.
      • Ravussin E.
      • Pratley R.E.
      • Lee G.H.
      • Zhang Y.
      • Fei H.
      • Kim S.
      • Lallone R.
      • Ranganathan S.
      • et al.
      Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects.
      ,
      • Considine R.V.
      • Sinha M.K.
      • Heiman M.L.
      • Kriauciunas A.
      • Stephens T.W.
      • Nyce M.R.
      • Ohannesian J.P.
      • Marco C.C.
      • McKee L.J.
      • Bauer T.L.
      • et al.
      Serum immunoreactive-leptin concentrations in normal-weight and obese humans.
      ). The lowering of circulating leptin levels due to a reduction in adipose tissue mass triggers behavioral, metabolic, and endocrine responses that aim at replenishing and preserving the body's fuel reserves (
      • Ravussin Y.
      • Leibel R.L.
      • Ferrante Jr., A.W.
      A missing link in body weight homeostasis: the catabolic signal of the overfed state.
      ,
      • Flier J.S.
      • Maratos-Flier E.
      Leptin's physiologic role: does the emperor of energy balance have no clothes?.
      ). Among these responses are an increase in energy intake, a decrease in energy expenditure, and a reduction or elimination of highly energy-demanding processes, such as reproduction and immune-related processes (
      • Ravussin Y.
      • Leibel R.L.
      • Ferrante Jr., A.W.
      A missing link in body weight homeostasis: the catabolic signal of the overfed state.
      ,
      • Flier J.S.
      • Maratos-Flier E.
      Leptin's physiologic role: does the emperor of energy balance have no clothes?.
      ).
      Adiponectin, originally described in 1995 as “Acrp30” with additional reports following in 1996, is a protein exclusively produced by mature adipocytes (
      • Scherer P.E.
      • Williams S.
      • Fogliano M.
      • Baldini G.
      • Lodish H.F.
      A novel serum protein similar to C1q, produced exclusively in adipocytes.
      ,
      • Maeda K.
      • Okubo K.
      • Shimomura I.
      • Funahashi T.
      • Matsuzawa Y.
      • Matsubara K.
      cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1).
      ,
      • Hu E.
      • Liang P.
      • Spiegelman B.M.
      AdipoQ is a novel adipose-specific gene dysregulated in obesity.
      ,
      • Nakano Y.
      • Tobe T.
      • Choi-Miura N.H.
      • Mazda T.
      • Tomita M.
      Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma.
      ,
      • Straub L.G.
      • Scherer P.E.
      Metabolic messengers: adiponectin.
      ). It forms low molecular weight trimers, intermediate molecular weight hexamers, and high molecular weight dodeca- to octadecamers (
      • Wang Z.V.
      • Scherer P.E.
      Adiponectin, the past two decades.
      ). It signals through adiponectin receptor (AdipoR)1 and AdipoR2 and binds to the nonsignaling interacting protein, T-cadherin (
      • Straub L.G.
      • Scherer P.E.
      Metabolic messengers: adiponectin.
      ). It is found in circulation and critically involved in many signaling events from the adipocyte to other cell types and tissues (
      • Scherer P.E.
      • Williams S.
      • Fogliano M.
      • Baldini G.
      • Lodish H.F.
      A novel serum protein similar to C1q, produced exclusively in adipocytes.
      ). Its circulating levels are closely tied to the functional integrity of adipose tissue and decline with obesity (
      • Arita Y.
      • Kihara S.
      • Ouchi N.
      • Takahashi M.
      • Maeda K.
      • Miyagawa J.
      • Hotta K.
      • Shimomura I.
      • Nakamura T.
      • Miyaoka K.
      • et al.
      Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity.
      ,
      • Hotta K.
      • Funahashi T.
      • Arita Y.
      • Takahashi M.
      • Matsuda M.
      • Okamoto Y.
      • Iwahashi H.
      • Kuriyama H.
      • Ouchi N.
      • Maeda K.
      • et al.
      Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients.
      ). Adiponectin functions as a powerful insulin sensitizer and suppressor of cell death and inflammation, directly promoting anti-diabetic and anti-atherosclerotic outcomes (
      • Wang Z.V.
      • Scherer P.E.
      Adiponectin, the past two decades.
      ). It acts on the liver to decrease gluconeogenesis, on skeletal muscle to increase fatty acid oxidation, and on pancreatic β-cells and cardiac muscle cells as a key anti-lipotoxic agent, exerting many of these functions on the basis of its effects on sphingolipids (
      • Berg A.H.
      • Combs T.P.
      • Du X.
      • Brownlee M.
      • Scherer P.E.
      The adipocyte-secreted protein Acrp30 enhances hepatic insulin action.
      ,
      • Combs T.P.
      • Berg A.H.
      • Obici S.
      • Scherer P.E.
      • Rossetti L.
      Endogenous glucose production is inhibited by the adipose-derived protein Acrp30.
      ,
      • Yamauchi T.
      • Kamon J.
      • Waki H.
      • Terauchi Y.
      • Kubota N.
      • Hara K.
      • Mori Y.
      • Ide T.
      • Murakami K.
      • Tsuboyama-Kasaoka N.
      • et al.
      The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity.
      ,
      • Qi Y.
      • Takahashi N.
      • Hileman S.M.
      • Patel H.R.
      • Berg A.H.
      • Pajvani U.B.
      • Scherer P.E.
      • Ahima R.S.
      Adiponectin acts in the brain to decrease body weight.
      ).
      Adiponectin and leptin are clearly the two most widely studied adipocyte-derived factors with nearly 50,000 combined citations in PubMed identified with the name of these two adipokines as key search terms. Many reviews cover them extensively, so we do not want to belabor these two adipokines in detail here. However, suffice it to say that much still remains to be learned about both of these factors. While they are unquestionably important, their detailed mechanisms of action at the level of their target cells and organs, the underlying systemic resistance to the effects of these hormones, and their mutual effects on each other are yet to be better understood.

      ADIPOSE TISSUE-SECRETED SIGNALING MEDIATORS

      Screening endeavors undertaken in the wake of the discovery of leptin and adiponectin have revealed a vast spectrum of adipose tissue-secreted signaling mediators (see Fig. 1 and Table 1 for a compilation of central factors, some of which are portrayed in detail below) (
      • Halberg N.
      • Wernstedt-Asterholm I.
      • Scherer P.E.
      The adipocyte as an endocrine cell.
      ). The large diversity of adipose tissue secretory products may partially stem from the complex cellular composition of the tissue, which includes lipid-laden adipocytes, adipose tissue stromal cell populations of different adipogenic potentials, various immune cell populations, endothelial cells, pericytes, and neurons (
      • Ghaben A.L.
      • Scherer P.E.
      Adipogenesis and metabolic health.
      ). While the term “adipokine” is commonly used to refer to adipose tissue-derived proteins exclusively, it has occasionally been used to refer to the entirety of signaling mediators secreted by adipose tissue, and it is this latter definition that will be applied here.
      Figure thumbnail gr1
      Fig. 1Adipose tissue is a highly dynamic secretory organ that employs a plethora of adipokines (proteins, lipids, metabolites), noncoding RNAs, and EVs to relay information to other organs of the body.
      TABLE 1Collection of various adipose tissue-derived proteins, lipids, and metabolites with information on essential characteristics and several references for further reading
      ClassName (Abbreviation)CharacteristicsReferences
      ProteinsAngiotensin II (AII)Extracellular, generated(
      • Lu H.
      • Cassis L.A.
      • Kooi C.W.
      • Daugherty A.
      Structure and functions of angiotensinogen.
      ,
      • Pahlavani M.
      • Kalupahana N.S.
      • Ramalingam L.
      • Moustaid-Moussa N.
      Regulation and functions of the renin-angiotensin system in white and brown adipose tissue.
      ,
      • Schütten M.T.
      • Houben A.J.
      • de Leeuw P.W.
      • Stehouwer C.D.
      The link between adipose tissue renin-angiotensin-aldosterone system signaling and obesity-associated hypertension.
      ,
      • Grobe J.L.
      • Grobe C.L.
      • Beltz T.G.
      • Westphal S.G.
      • Morgan D.A.
      • Xu D.
      • de Lange W.J.
      • Li H.
      • Sakai K.
      • Thedens D.R.
      • et al.
      The brain Renin-angiotensin system controls divergent efferent mechanisms to regulate fluid and energy balance.
      ,
      • de Kloet A.D.
      • Krause E.G.
      • Scott K.A.
      • Foster M.T.
      • Herman J.P.
      • Sakai R.R.
      • Seeley R.J.
      • Woods S.C.
      Central angiotensin II has catabolic action at white and brown adipose tissue.
      ,
      • Yiannikouris F.
      • Karounos M.
      • Charnigo R.
      • English V.L.
      • Rateri D.L.
      • Daugherty A.
      • Cassis L.A.
      Adipocyte-specific deficiency of angiotensinogen decreases plasma angiotensinogen concentration and systolic blood pressure in mice.
      ,
      • de Kloet A.D.
      • Pati D.
      • Wang L.
      • Hiller H.
      • Sumners C.
      • Frazier C.J.
      • Seeley R.J.
      • Herman J.P.
      • Woods S.C.
      • Krause E.G.
      Angiotensin type 1a receptors in the paraventricular nucleus of the hypothalamus protect against diet-induced obesity.
      ,
      • Than A.
      • Leow M.K.
      • Chen P.
      Control of adipogenesis by the autocrine interplays between angiotensin 1–7/Mas receptor and angiotensin II/AT1 receptor signaling pathways.
      ,
      • Palominos M.M.
      • Dunner N.H.
      • Wabitsch M.
      • Rojas C.V.
      Angiotensin II directly impairs adipogenic differentiation of human preadipose cells.
      ,
      • Palominos M.M.
      • Dunner N.H.
      • Wabitsch M.
      • Rojas C.V.
      Angiotensin II directly impairs adipogenic differentiation of human preadipose cells.
      ,
      • Noll C.
      • Labbe S.M.
      • Pinard S.
      • Shum M.
      • Bilodeau L.
      • Chouinard L.
      • Phoenix S.
      • Lecomte R.
      • Carpentier A.C.
      • Gallo-Payet N.
      Postprandial fatty acid uptake and adipocyte remodeling in angiotensin type 2 receptor-deficient mice fed a high-fat/high-fructose diet.
      ,
      • Patel V.B.
      • Mori J.
      • McLean B.A.
      • Basu R.
      • Das S.K.
      • Ramprasath T.
      • Parajuli N.
      • Penninger J.M.
      • Grant M.B.
      • Lopaschuk G.D.
      • et al.
      ACE2 deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity.
      ,
      • Chou C.L.
      • Lin H.
      • Chen J.S.
      • Fang T.C.
      Renin inhibition improves metabolic syndrome, and reduces angiotensin II levels and oxidative stress in visceral fat tissues in fructose-fed rats.
      ,
      • Graus-Nunes F.
      • Rachid T.L.
      • de Oliveira Santos F.
      • Barbosa-da-Silva S.
      • Souza-Mello V.
      AT1 receptor antagonist induces thermogenic beige adipocytes in the inguinal white adipose tissue of obese mice.
      ,
      • Graus-Nunes F.
      • Rachid T.L.
      • de Oliveira Santos F.
      • Barbosa-da-Silva S.
      • Souza-Mello V.
      AT1 receptor antagonist induces thermogenic beige adipocytes in the inguinal white adipose tissue of obese mice.
      ,
      • Than A.
      • Xu S.
      • Li R.
      • Leow M.K.
      • Sun L.
      • Chen P.
      Angiotensin type 2 receptor activation promotes browning of white adipose tissue and brown adipogenesis.
      ,
      • Quiroga D.T.
      • Munoz M.C.
      • Gil C.
      • Pffeifer M.
      • Toblli J.E.
      • Steckelings U.M.
      • Giani J.F.
      • Dominici F.P.
      Chronic administration of the angiotensin type 2 receptor agonist C21 improves insulin sensitivity in C57BL/6 mice.
      )
      Generated from serine protease inhibitor A8/angiotensinogen (SERPINA8/AGT) by combined activity of renin or cathepsins and angiotensin-converting enzyme 1 (ACE1) or chymases
      Signals through G protein-coupled angiotensin receptor (ANGTR)1 and ANGTR2
      Regulates adipose tissue stromal cell adipogenesis
      Regulates adipose tissue thermogenesis
      Regulates blood pressure
      Regulates cardiac and vascular functions
      Regulates energy expenditure
      Regulates fluid homeostasis
      Regulates glucose tolerance and insulin sensitivity
      Regulates inflammation
      Regulates WAT browning
      May regulate body weight
      Increases adipocyte lipid uptake and lipogenesis
      Increases adipose tissue stromal cell proliferation
      Decreases adipocyte lipolysis
      ProteinsAdiponectin (ACRP30/ADIPOQ)Extracellular, secreted(
      • Straub L.G.
      • Scherer P.E.
      Metabolic messengers: adiponectin.
      ,
      • Wang Z.V.
      • Scherer P.E.
      Adiponectin, the past two decades.
      ,
      • Qi Y.
      • Takahashi N.
      • Hileman S.M.
      • Patel H.R.
      • Berg A.H.
      • Pajvani U.B.
      • Scherer P.E.
      • Ahima R.S.
      Adiponectin acts in the brain to decrease body weight.
      ,
      • Holland W.L.
      • Adams A.C.
      • Brozinick J.T.
      • Bui H.H.
      • Miyauchi Y.
      • Kusminski C.M.
      • Bauer S.M.
      • Wade M.
      • Singhal E.
      • Cheng C.C.
      • et al.
      An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice.
      ,
      • Holland W.L.
      • Miller R.A.
      • Wang Z.V.
      • Sun K.
      • Barth B.M.
      • Bui H.H.
      • Davis K.E.
      • Bikman B.T.
      • Halberg N.
      • Rutkowski J.M.
      • et al.
      Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin.
      ,
      • Bråkenhielm E.
      • Veitonmaki N.
      • Cao R.
      • Kihara S.
      • Matsuzawa Y.
      • Zhivotovsky B.
      • Funahashi T.
      • Cao Y.
      Adiponectin-induced antiangiogenesis and antitumor activity involve caspase-mediated endothelial cell apoptosis.
      ,
      • Shibata R.
      • Ouchi N.
      • Kihara S.
      • Sato K.
      • Funahashi T.
      • Walsh K.
      Adiponectin stimulates angiogenesis in response to tissue ischemia through stimulation of amp-activated protein kinase signaling.
      ,
      • Fu Y.
      • Luo N.
      • Klein R.L.
      • Garvey W.T.
      Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation.
      ,
      • Kim J.Y.
      • van de Wall E.
      • Laplante M.
      • Azzara A.
      • Trujillo M.E.
      • Hofmann S.M.
      • Schraw T.
      • Durand J.L.
      • Li H.
      • Li G.
      • et al.
      Obesity-associated improvements in metabolic profile through expansion of adipose tissue.
      ,
      • Yamauchi T.
      • Nio Y.
      • Maki T.
      • Kobayashi M.
      • Takazawa T.
      • Iwabu M.
      • Okada-Iwabu M.
      • Kawamoto S.
      • Kubota N.
      • Kubota T.
      • et al.
      Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions.
      ,
      • Okamoto M.
      • Ohara-Imaizumi M.
      • Kubota N.
      • Hashimoto S.
      • Eto K.
      • Kanno T.
      • Kubota T.
      • Wakui M.
      • Nagai R.
      • Noda M.
      • et al.
      Adiponectin induces insulin secretion in vitro and in vivo at a low glucose concentration.
      ,
      • Landskroner-Eiger S.
      • Qian B.
      • Muise E.S.
      • Nawrocki A.R.
      • Berger J.P.
      • Fine E.J.
      • Koba W.
      • Deng Y.
      • Pollard J.W.
      • Scherer P.E.
      Proangiogenic contribution of adiponectin toward mammary tumor growth in vivo.
      ,
      • Miller R.A.
      • Chu Q.
      • Le Lay J.
      • Scherer P.E.
      • Ahima R.S.
      • Kaestner K.H.
      • Foretz M.
      • Viollet B.
      • Birnbaum M.J.
      Adiponectin suppresses gluconeogenic gene expression in mouse hepatocytes independent of LKB1-AMPK signaling.
      ,
      • Ye R.
      • Holland W.L.
      • Gordillo R.
      • Wang M.
      • Wang Q.A.
      • Shao M.
      • Morley T.S.
      • Gupta R.K.
      • Stahl A.
      • Scherer P.E.
      Adiponectin is essential for lipid homeostasis and survival under insulin deficiency and promotes beta-cell regeneration.
      )
      May be intracellular
      Signals through AdipoR1 and AdipoR2
      Binds T-cadherin
      Improves glucose tolerance and insulin sensitivity
      Maintains cardiac and vascular functions
      Regulates angiogenesis
      Regulates ceramide metabolism
      May regulate cancer growth and metastasis
      Increases adipocyte and skeletal muscle cell glucose uptake
      Increases adipocyte lipogenesis
      Increases adipose tissue stromal cell adipogenesis
      Increases β-cell survival
      Increases energy expenditure
      Increases hepatocyte and skeletal muscle cell fatty acid oxidation
      May increase β-cell glucose-stimulated insulin secretion
      Decreases adipose tissue stromal cell proliferation
      Decreases atherosclerosis
      Decreases hepatocyte lipogenesis
      Decreases inflammation
      Decreases liver gluconeogenesis
      Decreases liver steatosis
      ProteinsAngiopoietin 1 (ANG1)Extracellular, secreted(
      • Augustin H.G.
      • Koh G.Y.
      • Thurston G.
      • Alitalo K.
      Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system.
      ,
      • Saharinen P.
      • Eklund L.
      • Alitalo K.
      Therapeutic targeting of the angiopoietin-TIE pathway.
      ,
      • Dallabrida S.M.
      • Zurakowski D.
      • Shih S.C.
      • Smith L.E.
      • Folkman J.
      • Moulton K.S.
      • Rupnick M.A.
      Adipose tissue growth and regression are regulated by angiopoietin-1.
      ,
      • Jung Y.J.
      • Choi H.J.
      • Lee J.E.
      • Lee A.S.
      • Kang K.P.
      • Lee S.
      • Park S.K.
      • Park T.S.
      • Jin H.Y.
      • Lee S.Y.
      • et al.
      The effects of designed angiopoietin-1 variant on lipid droplet diameter, vascular endothelial cell density and metabolic parameters in diabetic db/db mice.
      ,
      • Gamble J.R.
      • Drew J.
      • Trezise L.
      • Underwood A.
      • Parsons M.
      • Kasminkas L.
      • Rudge J.
      • Yancopoulos G.
      • Vadas M.A.
      Angiopoietin-1 is an antipermeability and anti-inflammatory agent in vitro and targets cell junctions.
      ,
      • Thurston G.
      • Rudge J.S.
      • Ioffe E.
      • Zhou H.
      • Ross L.
      • Croll S.D.
      • Glazer N.
      • Holash J.
      • McDonald D.M.
      • Yancopoulos G.D.
      Angiopoietin-1 protects the adult vasculature against plasma leakage.
      ,
      • Baffert F.
      • Le T.
      • Thurston G.
      • McDonald D.M.
      Angiopoietin-1 decreases plasma leakage by reducing number and size of endothelial gaps in venules.
      ,
      • Cho C.H.
      • Sung H.K.
      • Kim K.T.
      • Cheon H.G.
      • Oh G.T.
      • Hong H.J.
      • Yoo O.J.
      • Koh G.Y.
      COMP-angiopoietin-1 promotes wound healing through enhanced angiogenesis, lymphangiogenesis, and blood flow in a diabetic mouse model.
      ,
      • Bitto A.
      • Minutoli L.
      • Galeano M.R.
      • Altavilla D.
      • Polito F.
      • Fiumara T.
      • Calo M.
      • Lo Cascio P.
      • Zentilin L.
      • Giacca M.
      • et al.
      Angiopoietin-1 gene transfer improves impaired wound healing in genetically diabetic mice without increasing VEGF expression.
      ,
      • Falcón B.L.
      • Hashizume H.
      • Koumoutsakos P.
      • Chou J.
      • Bready J.V.
      • Coxon A.
      • Oliner J.D.
      • McDonald D.M.
      Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels.
      ,
      • Coxon A.
      • Bready J.
      • Min H.
      • Kaufman S.
      • Leal J.
      • Yu D.
      • Lee T.A.
      • Sun J.R.
      • Estrada J.
      • Bolon B.
      • et al.
      Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody.
      ,
      • Jeansson M.
      • Gawlik A.
      • Anderson G.
      • Li C.
      • Kerjaschki D.
      • Henkelman M.
      • Quaggin S.E.
      Angiopoietin-1 is essential in mouse vasculature during development and in response to injury.
      ,
      • Woo K.V.
      • Qu X.
      • Babaev V.R.
      • Linton M.F.
      • Guzman R.J.
      • Fazio S.
      • Baldwin H.S.
      Tie1 attenuation reduces murine atherosclerosis in a dose-dependent and shear stress-specific manner.
      ,
      • Lee J.
      • Kim K.E.
      • Choi D.K.
      • Jang J.Y.
      • Jung J.J.
      • Kiyonari H.
      • Shioi G.
      • Chang W.
      • Suda T.
      • Mochizuki N.
      • et al.
      Angiopoietin-1 guides directional angiogenesis through integrin alphavbeta5 signaling for recovery of ischemic retinopathy.
      )
      Signals through TIE2 and integrin αvβ5
      Improves glucose tolerance
      Regulates atherosclerosis
      Regulates cancer growth and metastasis
      Regulates inflammation
      Regulates vascular development and functions
      Increases angiogenesis
      Increases lymphangiogenesis
      Increases wound healing
      Decreases body weight gain
      ProteinsAngiopoietin 2 (ANG2)Extracellular, secreted(
      • Augustin H.G.
      • Koh G.Y.
      • Thurston G.
      • Alitalo K.
      Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system.
      ,
      • Saharinen P.
      • Eklund L.
      • Alitalo K.
      Therapeutic targeting of the angiopoietin-TIE pathway.
      ,
      • An Y.A.
      • Sun K.
      • Joffin N.
      • Zhang F.
      • Deng Y.
      • Donze O.
      • Kusminski C.M.
      • Scherer P.E.
      Angiopoietin-2 in white adipose tissue improves metabolic homeostasis through enhanced angiogenesis.
      ,
      • Falcón B.L.
      • Hashizume H.
      • Koumoutsakos P.
      • Chou J.
      • Bready J.V.
      • Coxon A.
      • Oliner J.D.
      • McDonald D.M.
      Contrasting actions of selective inhibitors of angiopoietin-1 and angiopoietin-2 on the normalization of tumor blood vessels.
      ,
      • Coxon A.
      • Bready J.
      • Min H.
      • Kaufman S.
      • Leal J.
      • Yu D.
      • Lee T.A.
      • Sun J.R.
      • Estrada J.
      • Bolon B.
      • et al.
      Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody.
      ,
      • Woo K.V.
      • Qu X.
      • Babaev V.R.
      • Linton M.F.
      • Guzman R.J.
      • Fazio S.
      • Baldwin H.S.
      Tie1 attenuation reduces murine atherosclerosis in a dose-dependent and shear stress-specific manner.
      ,
      • Oliner J.
      • Min H.
      • Leal J.
      • Yu D.
      • Rao S.
      • You E.
      • Tang X.
      • Kim H.
      • Meyer S.
      • Han S.J.
      • et al.
      Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2.
      ,
      • Daly C.
      • Pasnikowski E.
      • Burova E.
      • Wong V.
      • Aldrich T.H.
      • Griffiths J.
      • Ioffe E.
      • Daly T.J.
      • Fandl J.P.
      • Papadopoulos N.
      • et al.
      Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells.
      ,
      • Fiedler U.
      • Reiss Y.
      • Scharpfenecker M.
      • Grunow V.
      • Koidl S.
      • Thurston G.
      • Gale N.W.
      • Witzenrath M.
      • Rosseau S.
      • Suttorp N.
      • et al.
      Angiopoietin-2 sensitizes endothelial cells to TNF-alpha and has a crucial role in the induction of inflammation.
      ,
      • Felcht M.
      • Luck R.
      • Schering A.
      • Seidel P.
      • Srivastava K.
      • Hu J.
      • Bartol A.
      • Kienast Y.
      • Vettel C.
      • Loos E.K.
      • et al.
      Angiopoietin-2 differentially regulates angiogenesis through TIE2 and integrin signaling.
      ,
      • Lee H.S.
      • Oh S.J.
      • Lee K.H.
      • Lee Y.S.
      • Ko E.
      • Kim K.E.
      • Kim H.C.
      • Kim S.
      • Song P.H.
      • Kim Y.I.
      • et al.
      Gln-362 of angiopoietin-2 mediates migration of tumor and endothelial cells through association with alpha5beta1 integrin.
      ,
      • Park S.W.
      • Yun J.H.
      • Kim J.H.
      • Kim K.W.
      • Cho C.H.
      • Kim J.H.
      Angiopoietin 2 induces pericyte apoptosis via alpha3beta1 integrin signaling in diabetic retinopathy.
      ,
      • Hakanpaa L.
      • Sipila T.
      • Leppanen V.M.
      • Gautam P.
      • Nurmi H.
      • Jacquemet G.
      • Eklund L.
      • Ivaska J.
      • Alitalo K.
      • Saharinen P.
      Endothelial destabilization by angiopoietin-2 via integrin beta1 activation.
      ,
      • Theelen T.L.
      • Lappalainen J.P.
      • Sluimer J.C.
      • Gurzeler E.
      • Cleutjens J.P.
      • Gijbels M.J.
      • Biessen E.A.
      • Daemen M.J.
      • Alitalo K.
      • Yla-Herttuala S.
      Angiopoietin-2 blocking antibodies reduce early atherosclerotic plaque development in mice.
      )
      Signals through TIE2, integrin α3β1, and integrin α5β1
      Improves glucose tolerance and lipid metabolism
      Regulates atherosclerosis
      Regulates cancer growth and metastasis
      Regulates inflammation
      Regulates vascular development and functions
      Increases angiogenesis
      Increases lymphangiogenesis
      Decreases fibrosis
      ProteinsAngiopoietin-like protein 2 (ANGPTL2)Intracellular and extracellular, secreted(
      • Kadomatsu T.
      • Endo M.
      • Miyata K.
      • Oike Y.
      Diverse roles of ANGPTL2 in physiology and pathophysiology.
      ,
      • Tabata M.
      • Kadomatsu T.
      • Fukuhara S.
      • Miyata K.
      • Ito Y.
      • Endo M.
      • Urano T.
      • Zhu H.J.
      • Tsukano H.
      • Tazume H.
      • et al.
      Angiopoietin-like protein 2 promotes chronic adipose tissue inflammation and obesity-related systemic insulin resistance.
      ,
      • Horio E.
      • Kadomatsu T.
      • Miyata K.
      • Arai Y.
      • Hosokawa K.
      • Doi Y.
      • Ninomiya T.
      • Horiguchi H.
      • Endo M.
      • Tabata M.
      • et al.
      Role of endothelial cell-derived angptl2 in vascular inflammation leading to endothelial dysfunction and atherosclerosis progression.
      ,
      • Yu C.
      • Luo X.
      • Farhat N.
      • Daneault C.
      • Duquette N.
      • Martel C.
      • Lambert J.
      • Thorin-Trescases N.
      • Rosiers C.D.
      • Thorin E.
      Lack of angiopoietin-like-2 expression limits the metabolic stress induced by a high-fat diet and maintains endothelial function in mice.
      ,
      • Kim I.
      • Moon S.O.
      • Koh K.N.
      • Kim H.
      • Uhm C.S.
      • Kwak H.J.
      • Kim N.G.
      • Koh G.Y.
      Molecular cloning, expression, and characterization of angiopoietin-related protein. angiopoietin-related protein induces endothelial cell sprouting.
      ,
      • Guo D.F.
      • Chenier I.
      • Tardif V.
      • Orlov S.N.
      • Inagami T.
      Type 1 angiotensin II receptor-associated protein ARAP1 binds and recycles the receptor to the plasma membrane.
      ,
      • Zhang C.C.
      • Kaba M.
      • Ge G.
      • Xie K.
      • Tong W.
      • Hug C.
      • Lodish H.F.
      Angiopoietin-like proteins stimulate ex vivo expansion of hematopoietic stem cells.
      ,
      • Aoi J.
      • Endo M.
      • Kadomatsu T.
      • Miyata K.
      • Nakano M.
      • Horiguchi H.
      • Ogata A.
      • Odagiri H.
      • Yano M.
      • Araki K.
      • et al.
      Angiopoietin-like protein 2 is an important facilitator of inflammatory carcinogenesis and metastasis.
      ,
      • Endo M.
      • Nakano M.
      • Kadomatsu T.
      • Fukuhara S.
      • Kuroda H.
      • Mikami S.
      • Hato T.
      • Aoi J.
      • Horiguchi H.
      • Miyata K.
      • et al.
      Tumor cell-derived angiopoietin-like protein ANGPTL2 is a critical driver of metastasis.
      ,
      • Tazume H.
      • Miyata K.
      • Tian Z.
      • Endo M.
      • Horiguchi H.
      • Takahashi O.
      • Horio E.
      • Tsukano H.
      • Kadomatsu T.
      • Nakashima Y.
      • et al.
      Macrophage-derived angiopoietin-like protein 2 accelerates development of abdominal aortic aneurysm.
      ,
      • Farhat N.
      • Thorin-Trescases N.
      • Mamarbachi M.
      • Villeneuve L.
      • Yu C.
      • Martel C.
      • Duquette N.
      • Gayda M.
      • Nigam A.
      • Juneau M.
      • et al.
      Angiopoietin-like 2 promotes atherogenesis in mice.
      ,
      • Tian Z.
      • Miyata K.
      • Tazume H.
      • Sakaguchi H.
      • Kadomatsu T.
      • Horio E.
      • Takahashi O.
      • Komohara Y.
      • Araki K.
      • Hirata Y.
      • et al.
      Perivascular adipose tissue-secreted angiopoietin-like protein 2 (Angptl2) accelerates neointimal hyperplasia after endovascular injury.
      ,
      • Odagiri H.
      • Kadomatsu T.
      • Endo M.
      • Masuda T.
      • Morioka M.S.
      • Fukuhara S.
      • Miyamoto T.
      • Kobayashi E.
      • Miyata K.
      • Aoi J.
      • et al.
      The secreted protein ANGPTL2 promotes metastasis of osteosarcoma cells through integrin alpha5beta1, p38 MAPK, and matrix metalloproteinases.
      )
      Signals through LILRB2 and integrin α5β1
      Binds the G protein-coupled angiotensin receptor 1 (AGTR1) (intracellular)
      Furthers glucose intolerance and insulin resistance (chronic exposure)
      Regulates vascular functions
      Regulates hematopoiesis
      Increases atherosclerosis (chronic exposure)
      Increases cancer development, growth, and metastasis
      Increases inflammation
      Increases tissue integrity (acute exposure)
      Decreases tissue integrity (chronic exposure)
      ProteinsAngiopoietin-like protein 4 (ANGPTL4)Extracellular, secreted(
      • Zhang R.
      The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking.
      ,
      • Lei X.
      • Shi F.
      • Basu D.
      • Huq A.
      • Routhier S.
      • Day R.
      • Jin W.
      Proteolytic processing of angiopoietin-like protein 4 by proprotein convertases modulates its inhibitory effects on lipoprotein lipase activity.
      ,
      • McQueen A.E.
      • Kanamaluru D.
      • Yan K.
      • Gray N.E.
      • Wu L.
      • Li M.L.
      • Chang A.
      • Hasan A.
      • Stifler D.
      • Koliwad S.K.
      • et al.
      The C-terminal fibrinogen-like domain of angiopoietin-like 4 stimulates adipose tissue lipolysis and promotes energy expenditure.
      ,
      • Aryal B.
      • Singh A.K.
      • Zhang X.
      • Varela L.
      • Rotllan N.
      • Goedeke L.
      • Chaube B.
      • Camporez J.P.
      • Vatner D.F.
      • Horvath T.L.
      • et al.
      Absence of ANGPTL4 in adipose tissue improves glucose tolerance and attenuates atherogenesis.
      ,
      • Mandard S.
      • Zandbergen F.
      • van Straten E.
      • Wahli W.
      • Kuipers F.
      • Muller M.
      • Kersten S.
      The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity.
      )
      Inhibits LPL and pancreatic lipase
      Cleavage fragments may have signaling functions
      May further glucose intolerance and insulin resistance
      Regulates lipid trafficking
      May increase atherosclerosis
      May increase inflammation
      Decreases lipoprotein breakdown in adipose tissue during fasting
      ProteinsAngiopoietin-like protein 8 (ANGPTL8)Extracellular, secreted(
      • Zhang R.
      The ANGPTL3-4-8 model, a molecular mechanism for triglyceride trafficking.
      ,
      • Banfi S.
      • Gusarova V.
      • Gromada J.
      • Cohen J.C.
      • Hobbs H.H.
      Increased thermogenesis by a noncanonical pathway in ANGPTL3/8-deficient mice.
      ,
      • Wang Y.
      • Quagliarini F.
      • Gusarova V.
      • Gromada J.
      • Valenzuela D.M.
      • Cohen J.C.
      • Hobbs H.H.
      Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis.
      ,
      • Gusarova V.
      • Alexa C.A.
      • Na E.
      • Stevis P.E.
      • Xin Y.
      • Bonner-Weir S.
      • Cohen J.C.
      • Hobbs H.H.
      • Murphy A.J.
      • Yancopoulos G.D.
      • et al.
      ANGPTL8/betatrophin does not control pancreatic beta cell expansion.
      )
      Acts in concert with ANGPTL3
      Inhibits LPL and endothelial lipase
      May further insulin resistance
      Regulates lipid trafficking
      Decreases lipoprotein breakdown in nonadipose tissues during feeding
      ProteinsApelin (APLN)Extracellular, secreted(
      • Castan-Laurell I.
      • Dray C.
      • Knauf C.
      • Kunduzova O.
      • Valet P.
      Apelin, a promising target for type 2 diabetes treatment?.
      ,
      • O'Carroll A.M.
      • Lolait S.J.
      • Harris L.E.
      • Pope G.R.
      The apelin receptor APJ: journey from an orphan to a multifaceted regulator of homeostasis.
      ,
      • Antushevich H.
      • Wojcik M.
      Review: apelin in disease.
      ,
      • Dray C.
      • Knauf C.
      • Daviaud D.
      • Waget A.
      • Boucher J.
      • Buleon M.
      • Cani P.D.
      • Attane C.
      • Guigne C.
      • Carpene C.
      • et al.
      Apelin stimulates glucose utilization in normal and obese insulin-resistant mice.
      ,
      • Kunduzova O.
      • Alet N.
      • Delesque-Touchard N.
      • Millet L.
      • Castan-Laurell I.
      • Muller C.
      • Dray C.
      • Schaeffer P.
      • Herault J.P.
      • Savi P.
      • et al.
      Apelin/APJ signaling system: a potential link between adipose tissue and endothelial angiogenic processes.
      ,
      • Yue P.
      • Jin H.
      • Aillaud M.
      • Deng A.C.
      • Azuma J.
      • Asagami T.
      • Kundu R.K.
      • Reaven G.M.
      • Quertermous T.
      • Tsao P.S.
      Apelin is necessary for the maintenance of insulin sensitivity.
      ,
      • Zhu S.
      • Sun F.
      • Li W.
      • Cao Y.
      • Wang C.
      • Wang Y.
      • Liang D.
      • Zhang R.
      • Zhang S.
      • Wang H.
      • et al.
      Apelin stimulates glucose uptake through the PI3K/Akt pathway and improves insulin resistance in 3T3-L1 adipocytes.
      ,
      • Attané C.
      • Foussal C.
      • Le Gonidec S.
      • Benani A.
      • Daviaud D.
      • Wanecq E.
      • Guzman-Ruiz R.
      • Dray C.
      • Bezaire V.
      • Rancoule C.
      • et al.
      Apelin treatment increases complete fatty acid oxidation, mitochondrial oxidative capacity, and biogenesis in muscle of insulin-resistant mice.
      ,
      • Than A.
      • Cheng Y.
      • Foh L.C.
      • Leow M.K.
      • Lim S.C.
      • Chuah Y.J.
      • Kang Y.
      • Chen P.
      Apelin inhibits adipogenesis and lipolysis through distinct molecular pathways.
      ,
      • Sato T.
      • Suzuki T.
      • Watanabe H.
      • Kadowaki A.
      • Fukamizu A.
      • Liu P.P.
      • Kimura A.
      • Ito H.
      • Penninger J.M.
      • Imai Y.
      • et al.
      Apelin is a positive regulator of ACE2 in failing hearts.
      ,
      • Wattanachanya L.
      • Lu W.D.
      • Kundu R.K.
      • Wang L.
      • Abbott M.J.
      • O'Carroll D.
      • Quertermous T.
      • Nissenson R.A.
      Increased bone mass in mice lacking the adipokine apelin.
      ,
      • Han S.
      • Englander E.W.
      • Gomez G.A.
      • Rastellini C.
      • Quertermous T.
      • Kundu R.K.
      • Greeley Jr., G.H.
      Pancreatic islet APJ deletion reduces islet density and glucose tolerance in mice.
      ,
      • Than A.
      • He H.L.
      • Chua S.H.
      • Xu D.
      • Sun L.
      • Leow M.K.
      • Chen P.
      Apelin enhances brown adipogenesis and browning of white adipocytes.
      ,
      • Hwangbo C.
      • Wu J.
      • Papangeli I.
      • Adachi T.
      • Sharma B.
      • Park S.
      • Zhao L.
      • Ju H.
      • Go G.W.
      • Cui G.
      • et al.
      Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin's glucose-lowering effects.
      ,
      • Bertrand C.
      • Pradere J.P.
      • Geoffre N.
      • Deleruyelle S.
      • Masri B.
      • Personnaz J.
      • Le Gonidec S.
      • Batut A.
      • Louche K.
      • Moro C.
      • et al.
      Chronic apelin treatment improves hepatic lipid metabolism in obese and insulin-resistant mice by an indirect mechanism.
      )
      Signals through G protein-coupled APLN receptor (APLNR)
      Improves glucose tolerance and insulin sensitivity
      Maintains cardiac functions
      Regulates fluid homeostasis
      May regulate bone mass
      Increases adipocyte and skeletal muscle cell glucose uptake
      Increases adipose tissue thermogenesis
      Increases angiogenesis
      Increases energy expenditure
      Increases lymphangiogenesis
      Increases skeletal muscle cell mitochondrial biogenesis and fatty acid oxidation
      Increases white adipocyte browning
      Decreases adipose tissue stromal cell adipogenesis
      Decreases blood pressure
      Decreases body weight
      May decrease adipocyte lipolysis
      May decrease inflammation
      May decrease liver steatosis
      ProteinsAutotaxin (ATX)Extracellular, secreted(
      • Ferry G.
      • Tellier E.
      • Try A.
      • Gres S.
      • Naime I.
      • Simon M.F.
      • Rodriguez M.
      • Boucher J.
      • Tack I.
      • Gesta S.
      • et al.
      Autotaxin is released from adipocytes, catalyzes lysophosphatidic acid synthesis, and activates preadipocyte proliferation. Up-regulated expression with adipocyte differentiation and obesity.
      ,
      • Federico L.
      • Ren H.
      • Mueller P.A.
      • Wu T.
      • Liu S.
      • Popovic J.
      • Blalock E.M.
      • Sunkara M.
      • Ovaa H.
      • Albers H.M.
      • et al.
      Autotaxin and its product lysophosphatidic acid suppress brown adipose differentiation and promote diet-induced obesity in mice.
      ,
      • Tanaka M.
      • Okudaira S.
      • Kishi Y.
      • Ohkawa R.
      • Iseki S.
      • Ota M.
      • Noji S.
      • Yatomi Y.
      • Aoki J.
      • Arai H.
      Autotaxin stabilizes blood vessels and is required for embryonic vasculature by producing lysophosphatidic acid.
      ,
      • van Meeteren L.A.
      • Ruurs P.
      • Stortelers C.
      • Bouwman P.
      • van Rooijen M.A.
      • Pradere J.P.
      • Pettit T.R.
      • Wakelam M.J.
      • Saulnier-Blache J.S.
      • Mummery C.L.
      • et al.
      Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development.
      ,
      • Fotopoulou S.
      • Oikonomou N.
      • Grigorieva E.
      • Nikitopoulou I.
      • Paparountas T.
      • Thanassopoulou A.
      • Zhao Z.
      • Xu Y.
      • Kontoyiannis D.L.
      • Remboutsika E.
      • et al.
      ATX expression and LPA signalling are vital for the development of the nervous system.
      ,
      • Gesta S.
      • Simon M.F.
      • Rey A.
      • Sibrac D.
      • Girard A.
      • Lafontan M.
      • Valet P.
      • Saulnier-Blache J.S.
      Secretion of a lysophospholipase D activity by adipocytes: involvement in lysophosphatidic acid synthesis.
      ,
      • Dusaulcy R.
      • Rancoule C.
      • Gres S.
      • Wanecq E.
      • Colom A.
      • Guigne C.
      • van Meeteren L.A.
      • Moolenaar W.H.
      • Valet P.
      • Saulnier-Blache J.S.
      Adipose-specific disruption of autotaxin enhances nutritional fattening and reduces plasma lysophosphatidic acid.
      ,
      • Boucher J.
      • Quilliot D.
      • Praderes J.P.
      • Simon M.F.
      • Gres S.
      • Guigne C.
      • Prevot D.
      • Ferry G.
      • Boutin J.A.
      • Carpene C.
      • et al.
      Potential involvement of adipocyte insulin resistance in obesity-associated up-regulation of adipocyte lysophospholipase D/autotaxin expression.
      )
      Exhibits PLD activity
      Generates most extracellular LPAs
      ProteinsBone morphogenic protein 2 (BMP2)Extracellular, secreted(
      • Modica S.
      • Wolfrum C.
      Bone morphogenic proteins signaling in adipogenesis and energy homeostasis.
      ,
      • Yadin D.
      • Knaus P.
      • Mueller T.D.
      Structural insights into BMP receptors: Specificity, activation and inhibition.
      ,
      • Gustafson B.
      • Hammarstedt A.
      • Hedjazifar S.
      • Hoffmann J.M.
      • Svensson P.A.
      • Grimsby J.
      • Rondinone C.
      • Smith U.
      BMP4 and BMP antagonists regulate human white and beige adipogenesis.
      ,
      • Zhang H.
      • Bradley A.
      Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development.
      ,
      • Schlange T.
      • Andree B.
      • Arnold H.H.
      • Brand T.
      BMP2 is required for early heart development during a distinct time period.
      ,
      • Ma L.
      • Lu M.F.
      • Schwartz R.J.
      • Martin J.F.
      Bmp2 is essential for cardiac cushion epithelial-mesenchymal transition and myocardial patterning.
      ,
      • Tsuji K.
      • Bandyopadhyay A.
      • Harfe B.D.
      • Cox K.
      • Kakar S.
      • Gerstenfeld L.
      • Einhorn T.
      • Tabin C.J.
      • Rosen V.
      BMP2 activity, although dispensable for bone formation, is required for the initiation of fracture healing.
      ,
      • Persano L.
      • Pistollato F.
      • Rampazzo E.
      • Della Puppa A.
      • Abbadi S.
      • Frasson C.
      • Volpin F.
      • Indraccolo S.
      • Scienza R.
      • Basso G.
      BMP2 sensitizes glioblastoma stem-like cells to Temozolomide by affecting HIF-1alpha stability and MGMT expression.
      ,
      • Du M.
      • Su X.M.
      • Zhang T.
      • Xing Y.J.
      Aberrant promoter DNA methylation inhibits bone morphogenetic protein 2 expression and contributes to drug resistance in breast cancer.
      ,
      • Choi Y.J.
      • Ingram P.N.
      • Yang K.
      • Coffman L.
      • Iyengar M.
      • Bai S.
      • Thomas D.G.
      • Yoon E.
      • Buckanovich R.J.
      Identifying an ovarian cancer cell hierarchy regulated by bone morphogenetic protein 2.
      ,
      • Wang M.H.
      • Zhou X.M.
      • Zhang M.Y.
      • Shi L.
      • Xiao R.W.
      • Zeng L.S.
      • Yang X.Z.
      • Zheng X.F.S.
      • Wang H.Y.
      • Mai S.J.
      BMP2 promotes proliferation and invasion of nasopharyngeal carcinoma cells via mTORC1 pathway.
      )
      Signals through ALK3 or ALK6 in complex with BMPR2, ACVR2a, or ACVR2b
      Maintains bone functions
      Regulates embryonic development
      May regulate cancer development, growth, metastasis, and chemoresistance
      May skew adipogenesis toward either white or brown phenotype
      Increases adipose tissue stromal cell adipogenesis
      ProteinsBone morphogenic protein 3B (BMP3B)Extracellular, secreted(
      • Yadin D.
      • Knaus P.
      • Mueller T.D.
      Structural insights into BMP receptors: Specificity, activation and inhibition.
      ,
      • Hino J.
      • Miyazawa T.
      • Miyazato M.
      • Kangawa K.
      Bone morphogenetic protein-3b (BMP-3b) is expressed in adipocytes and inhibits adipogenesis as a unique complex.
      ,
      • Hino J.
      • Nakatani M.
      • Arai Y.
      • Tsuchida K.
      • Shirai M.
      • Miyazato M.
      • Kangawa K.
      Overexpression of bone morphogenetic protein-3b (BMP-3b) in adipose tissues protects against high-fat diet-induced obesity.
      ,
      • Daluiski A.
      • Engstrand T.
      • Bahamonde M.E.
      • Gamer L.W.
      • Agius E.
      • Stevenson S.L.
      • Cox K.
      • Rosen V.
      • Lyons K.M.
      Bone morphogenetic protein-3 is a negative regulator of bone density.
      ,
      • Matsumoto Y.
      • Otsuka F.
      • Hino J.
      • Miyoshi T.
      • Takano M.
      • Miyazato M.
      • Makino H.
      • Kangawa K.
      Bone morphogenetic protein-3b (BMP-3b) inhibits osteoblast differentiation via Smad2/3 pathway by counteracting Smad1/5/8 signaling.
      ,
      • Li S.
      • Nie E.H.
      • Yin Y.
      • Benowitz L.I.
      • Tung S.
      • Vinters H.V.
      • Bahjat F.R.
      • Stenzel-Poore M.P.
      • Kawaguchi R.
      • Coppola G.
      • et al.
      GDF10 is a signal for axonal sprouting and functional recovery after stroke.
      )
      Signals through ALK4 in complex with ACVR2a or ACVR2b
      Improves glucose tolerance and insulin sensitivity
      Maintains neural functions
      Regulates bone development
      Increases activity
      Increases BAT activity
      Increases energy expenditure
      Increases food intake
      Decreases adipose tissue stromal cell adipogenesis
      Decreases body weight gain
      May decrease bone mass
      ProteinsBone morphogenic protein 4 (BMP4)Extracellular, secreted(
      • Modica S.
      • Wolfrum C.
      Bone morphogenic proteins signaling in adipogenesis and energy homeostasis.
      ,
      • Yadin D.
      • Knaus P.
      • Mueller T.D.
      Structural insights into BMP receptors: Specificity, activation and inhibition.
      ,
      • Gustafson B.
      • Hammarstedt A.
      • Hedjazifar S.
      • Hoffmann J.M.
      • Svensson P.A.
      • Grimsby J.
      • Rondinone C.
      • Smith U.
      BMP4 and BMP antagonists regulate human white and beige adipogenesis.
      ,
      • Modica S.
      • Straub L.G.
      • Balaz M.
      • Sun W.
      • Varga L.
      • Stefanicka P.
      • Profant M.
      • Simon E.
      • Neubauer H.
      • Ukropcova B.
      • et al.
      Bmp4 promotes a brown to white-like adipocyte shift.
      ,
      • Xue R.
      • Wan Y.
      • Zhang S.
      • Zhang Q.
      • Ye H.
      • Li Y.
      Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes.
      ,
      • Hoffmann J.M.
      • Grunberg J.R.
      • Church C.
      • Elias I.
      • Palsdottir V.
      • Jansson J.O.
      • Bosch F.
      • Hammarstedt A.
      • Hedjazifar S.
      • Smith U.
      BMP4 gene therapy in mature mice reduces BAT activation but protects from obesity by browning subcutaneous adipose tissue.
      ,
      • Tang Y.
      • Qian S.W.
      • Wu M.Y.
      • Wang J.
      • Lu P.
      • Li X.
      • Huang H.Y.
      • Guo L.
      • Sun X.
      • Xu C.J.
      • et al.
      BMP4 mediates the interplay between adipogenesis and angiogenesis during expansion of subcutaneous white adipose tissue.
      ,
      • Winnier G.
      • Blessing M.
      • Labosky P.A.
      • Hogan B.L.
      Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse.
      ,
      • Paez-Pereda M.
      • Giacomini D.
      • Refojo D.
      • Nagashima A.C.
      • Hopfner U.
      • Grubler Y.
      • Chervin A.
      • Goldberg V.
      • Goya R.
      • Hentges S.T.
      • et al.
      Involvement of bone morphogenetic protein 4 (BMP-4) in pituitary prolactinoma pathogenesis through a Smad/estrogen receptor crosstalk.
      ,
      • Guo D.
      • Huang J.
      • Gong J.
      Bone morphogenetic protein 4 (BMP4) is required for migration and invasion of breast cancer.
      ,
      • Cao Y.
      • Slaney C.Y.
      • Bidwell B.N.
      • Parker B.S.
      • Johnstone C.N.
      • Rautela J.
      • Eckhardt B.L.
      • Anderson R.L.
      BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity.
      ,
      • Coffman L.G.
      • Choi Y.J.
      • McLean K.
      • Allen B.L.
      • di Magliano M.P.
      • Buckanovich R.J.
      Human carcinoma-associated mesenchymal stem cells promote ovarian cancer chemotherapy resistance via a BMP4/HH signaling loop.
      )
      Signals through ALK3 or ALK6 in complex with BMPR2, ACVR2a, or ACVR2b
      Improves glucose tolerance and insulin sensitivity
      Regulates embryonic development
      May regulate cancer development, growth, metastasis, and chemoresistance
      May skew adipose tissue stromal cell adipogenesis toward either white or brown phenotype
      Increase adipose tissue stromal cell adipogenesis
      Increases angiogenesis
      Increases BAT whitening
      Increases energy expenditure
      Increases food intake
      Increases WAT browning
      Increases WAT thermogenesis
      Decreases body weight gain
      Decreases brown adipocyte lipolysis
      Decreases BAT thermogenesis
      ProteinsBone morphogenic protein 8B (BMP8B)Extracellular, secreted(
      • Yadin D.
      • Knaus P.
      • Mueller T.D.
      Structural insights into BMP receptors: Specificity, activation and inhibition.
      ,
      • Whittle A.J.
      • Carobbio S.
      • Martins L.
      • Slawik M.
      • Hondares E.
      • Vazquez M.J.
      • Morgan D.
      • Csikasz R.I.
      • Gallego R.
      • Rodriguez-Cuenca S.
      • et al.
      BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions.
      ,
      • Pellegrinelli V.
      • Peirce V.J.
      • Howard L.
      • Virtue S.
      • Turei D.
      • Senzacqua M.
      • Frontini A.
      • Dalley J.W.
      • Horton A.R.
      • Bidault G.
      • et al.
      Adipocyte-secreted BMP8b mediates adrenergic-induced remodeling of the neuro-vascular network in adipose tissue.
      ,
      • Zhao G.Q.
      • Deng K.
      • Labosky P.A.
      • Liaw L.
      • Hogan B.L.
      The gene encoding bone morphogenetic protein 8B is required for the initiation and maintenance of spermatogenesis in the mouse.
      ,
      • Cheng Z.
      • Cui W.
      • Ding Y.
      • Liu T.
      • Liu W.
      • Qin Y.
      • Xia W.
      • Xu J.
      • Zhang Y.
      • Zou X.
      BMP8B mediates the survival of pancreatic cancer cells and regulates the progression of pancreatic cancer.