Advertisement

Plasma proteome correlates of lipid and lipoprotein: biomarkers of metabolic diversity and inflammation in children of rural Nepal[S]

Open AccessPublished:November 25, 2018DOI:https://doi.org/10.1194/jlr.P088542
      Proteins involved in lipoprotein metabolism can modulate cardiovascular health. While often measured to assess adult metabolic diseases, little is known about the proteomes of lipoproteins and their relation to metabolic dysregulation and underlying inflammation in undernourished child populations. The objective of this population study was to globally characterize plasma proteins systemically associated with HDL, LDL, and triglycerides in 500 Nepalese children. Abnormal lipid profiles characterized by elevated plasma triglycerides and low HDL-cholesterol (HDL-C) concentrations were common, especially in children with subclinical inflammation. Among 982 proteins analyzed, the relative abundance of 11, 12, and 52 plasma proteins was correlated with LDL-cholesterol (r = −0.43∼0.70), triglycerides (r = −0.39∼0.53), and HDL-C (r = −0.49∼0.79) concentrations, respectively. These proteins included apolipoproteins and numerous unexpected intracellular and extracellular matrix binding proteins, likely originating in hepatic and peripheral tissues. Relative abundance of two-thirds of the HDL proteome varied with inflammation, with acute phase reactants higher by 4∼40#x0025;, and proteins involved in HDL biosynthesis, cholesterol efflux, vitamin transport, angiogenesis, and tissue repair lower by 3∼20#x0025;. Untargeted plasma proteomics detects comprehensive sets of both known and novel lipoprotein-associated proteins likely reflecting systemic regulation of lipoprotein metabolism and vascular homeostasis. Inflammation-altered distributions of the HDL proteome may be predisposing undernourished populations to early chronic disease.
      Lipoproteins, circulating complexes of lipid-bound proteins, play central roles in the transport and metabolism of lipids. They support energy metabolism, cholesterol and phospholipids supply to cell membranes, and fat-soluble vitamin transport. Apolipoproteins are integral constituents that determine the physical properties and the metabolic fate of lipoproteins, stabilizing their structure, shuttling cholesterol and triglycerides throughout the body, acting as ligands for cell surface receptors, and regulating enzymatic activities (
      • Dominiczak M.H.
      • Caslake M.J.
      Apolipoproteins: metabolic role and clinical biochemistry applications.
      ). For example, apoA-I provides major structural support for HDL, activates LCAT, and acts as a ligand for HDL receptors, facilitating HDL-cholesterol (HDL-C) efflux capacity (
      • Davidson W.S.
      • Thompson T.B.
      The structure of apolipoprotein A-I in high density lipoproteins.
      ). apoB, the major scaffold for LDL and a ligand for LDL receptors, plays an essential role in the delivery of cholesterol to peripheral tissues (
      • Brown M.S.
      • Goldstein J.L.
      The receptor model for transport of cholesterol in plasma.
      ). apoCs and apoE, highly enriched in VLDL and chylomicrons, deliver fatty acids to tissues for energy metabolism and regulate the clearance of triglyceride-rich particles from the plasma (
      • Dominiczak M.H.
      • Caslake M.J.
      Apolipoproteins: metabolic role and clinical biochemistry applications.
      ). Except for apoB, other apolipoproteins are exchangeable between different lipoprotein complexes, while the core structural apolipoproteins confer the unique properties of different classes of lipoproteins (
      • Hoofnagle A.N.
      • Heinecke J.W.
      Lipoproteomics: using mass spectrometry-based proteomics to explore the assembly, structure, and function of lipoproteins.
      ).
      Over the past decade, a more complete, if complex, picture of the roles of lipoproteins has been revealed in proteomics studies, expanding knowledge of the size, diversity, and heterogeneity of protein constituents associated with HDL (
      • Hoofnagle A.N.
      • Heinecke J.W.
      Lipoproteomics: using mass spectrometry-based proteomics to explore the assembly, structure, and function of lipoproteins.
      ,
      • von Zychlinski A.
      • Williams M.
      • McCormick S.
      • Kleffmann T.
      Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins.
      ,
      • Gordon S.M.
      • Hofmann S.
      • Askew D.S.
      • Davidson W.S.
      High density lipoprotein: it's not just about lipid transport anymore.
      ,
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Shah A.S.
      • Tan L.
      • Long J.L.
      • Davidson W.S.
      Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond.
      ,
      • Davidsson P.
      • Hulthe J.
      • Fagerberg B.
      • Camejo G.
      Proteomics of apolipoproteins and associated proteins from plasma high-density lipoproteins.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Gordon S.M.
      • Deng J.
      • Lu L.J.
      • Davidson W.S.
      Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography.
      ,
      • Rezaee F.
      • Casetta B.
      • Levels J.H.
      • Speijer D.
      • Meijers J.C.
      Proteomic analysis of high-density lipoprotein.
      ), LDL (
      • Hoofnagle A.N.
      • Heinecke J.W.
      Lipoproteomics: using mass spectrometry-based proteomics to explore the assembly, structure, and function of lipoproteins.
      ,
      • von Zychlinski A.
      • Williams M.
      • McCormick S.
      • Kleffmann T.
      Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins.
      ,
      • Bancells C.
      • Canals F.
      • Benitez S.
      • Colome N.
      • Julve J.
      • Ordonez-Llanos J.
      • Sanchez-Quesada J.L.
      Proteomic analysis of electronegative low-density lipoprotein.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics I: mapping of proteins in low-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ), and VLDL (
      • Hoofnagle A.N.
      • Heinecke J.W.
      Lipoproteomics: using mass spectrometry-based proteomics to explore the assembly, structure, and function of lipoproteins.
      ,
      • von Zychlinski A.
      • Williams M.
      • McCormick S.
      • Kleffmann T.
      Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins.
      ,
      • Mancone C.
      • Amicone L.
      • Fimia G.M.
      • Bravo E.
      • Piacentini M.
      • Tripodi M.
      • Alonzi T.
      Proteomic analysis of human very low-density lipoprotein by two-dimensional gel electrophoresis and MALDI-TOF/TOF.
      ). The HDL proteome, in particular, includes proteins involved not only in lipid transport and metabolism but also in inflammation, the complement system, protease inhibitors, and wound healing, elucidating broader roles in anti-inflammatory, anti-oxidative, immune-regulatory, and anti-apoptotic capacities (
      • Gordon S.M.
      • Hofmann S.
      • Askew D.S.
      • Davidson W.S.
      High density lipoprotein: it's not just about lipid transport anymore.
      ). Although newly discovered cotransported members of lipoprotein assemblies are less abundant and more transient than apolipoproteins (
      • Shah A.S.
      • Tan L.
      • Long J.L.
      • Davidson W.S.
      Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond.
      ), these minor proteins are important for lipoprotein metabolism and function, serving to modulate the atherogenic or cardioprotective properties of lipoproteins (
      • Chait A.
      • Han C.Y.
      • Oram J.F.
      • Heinecke J.W.
      Lipoprotein-associated inflammatory proteins: markers or mediators of cardiovascular disease?.
      ). Beyond proteins physically carried by lipoproteins, plasma proteomics can identify intracellular or extracellular matrix proteins involved either directly or indirectly in lipoprotein production, secretion, clearance, and a wide range of metabolic actions (
      • Geyer P.E.
      • Wewer Albrechtsen N.J.
      • Tyanova S.
      • Grassl N.
      • Iepsen E.W.
      • Lundgren J.
      • Madsbad S.
      • Holst J.J.
      • Torekov S.S.
      • Mann M.
      Proteomics reveals the effects of sustained weight loss on the human plasma proteome.
      ), as lipoproteins constantly interact with cells in hepatic and peripheral tissues, including the immune system.
      As proteins are important cargoes of lipoproteins, changes in the composition of proteins can modify the metabolism and function of lipoproteins. For example, inflammation and infections induce multiple alterations in lipid and lipoprotein metabolism (
      • Khovidhunkit W.
      • Kim M.S.
      • Memon R.A.
      • Shigenaga J.K.
      • Moser A.H.
      • Feingold K.R.
      • Grunfeld C.
      Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host.
      ). Chronic inflammatory diseases and infections are associated with hypertriglyceridemia and low HDL-C, as well as atherosclerosis (
      • Haque S.
      • Mirjafari H.
      • Bruce I.N.
      Atherosclerosis in rheumatoid arthritis and systemic lupus erythematosus.
      ,
      • Samarasekera E.J.
      • Neilson J.M.
      • Warren R.B.
      • Parnham J.
      • Smith C.H.
      Incidence of cardiovascular disease in individuals with psoriasis: a systematic review and meta-analysis.
      ,
      • Becker A.E.
      • de Boer O.J.
      • van Der Wal A.C.
      The role of inflammation and infection in coronary artery disease.
      ,
      • Feingold K.R.
      • Grunfeld C.
      The Effect of Inflammation and Infection on Lipids and Lipoproteins.
      ), likely affecting the innate immune response, which protects a host from pathogenesis. However, prolonged and unresolved inflammation can impair normal lipoprotein metabolism, partly due to changes in the protein components of lipoproteins, especially in protein-rich HDL particles (
      • Khovidhunkit W.
      • Kim M.S.
      • Memon R.A.
      • Shigenaga J.K.
      • Moser A.H.
      • Feingold K.R.
      • Grunfeld C.
      Effects of infection and inflammation on lipid and lipoprotein metabolism: mechanisms and consequences to the host.
      ). For example, chronic inflammation may induce marked redistribution of HDL protein subpopulations, including enzymes and lipid transfer proteins, compromising HDL functions (
      • Vaisar T.
      • Tang C.
      • Babenko I.
      • Hutchins P.
      • Wimberger J.
      • Suffredini A.F.
      • Heinecke J.W.
      Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity.
      ). Systemic analysis of inflammation-induced changes in proteins metabolically linked to lipoproteins may offer insights into the mechanisms and causes of dysregulated lipid metabolism and dysfunctional lipoproteins that may compromise vascular health.
      Compelling epidemiologic and clinical evidence suggests that the metabolic risk factors for cardiovascular disease can be detected and observed to progress throughout childhood (
      • Newman 3rd, W.P.
      • Freedman D.S.
      • Voors A.W.
      • Gard P.D.
      • Srinivasan S.R.
      • Cresanta J.L.
      • Williamson G.D.
      • Webber L.S.
      • Berenson G.S.
      Relation of serum lipoprotein levels and systolic blood pressure to early atherosclerosis. The Bogalusa Heart Study.
      ). However, the family of plasma proteomes of lipoproteins [e.g., direct or indirect correlates of HDL-C and LDL-cholesterol (LDL-C)] in childhood, especially in low-resource societies where subclinical inflammation is common, has rarely been explored. In 2006–2008, we conducted a multipronged health and nutrition assessment of a large population cohort of 6–8-year-old children in the southern rural plains (Terai) of Nepal (
      • Stewart C.P.
      • Christian P.
      • Schulze K.J.
      • Leclerq S.C.
      • West Jr., K.P.
      • Khatry S.K.
      Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal.
      ,
      • Christian P.
      • Khatry S.K.
      • Katz J.
      • Pradhan E.K.
      • LeClerq S.C.
      • Shrestha S.R.
      • Adhikari R.K.
      • Sommer A.
      • West Jr., K.P.
      Effects of alternative maternal micronutrient supplements on low birth weight in rural Nepal: double blind randomised community trial.
      ). Typical of the region, the studied children were generally undernourished compared with the World Health Organization reference, but nearly 40#x0025; were dyslipidemic, characterized by high triglycerides (≥100 mg/dl) and low HDL-C (<40 mg/dl) (
      • Stewart C.P.
      • Christian P.
      • LeClerq S.C.
      • West Jr., K.P.
      • Khatry S.K.
      Antenatal supplementation with folic acid + iron + zinc improves linear growth and reduces peripheral adiposity in school-age children in rural Nepal.
      ). In a representative subset of these children, more than 25#x0025; showed elevated α-1-acid glycoprotein (AGP), a biomarker of chronic systemic inflammation (
      • Schulze K.J.
      • Christian P.
      • Wu L.S.
      • Arguello M.
      • Cui H.
      • Nanayakkara-Bind A.
      • Stewart C.P.
      • Khatry S.K.
      • LeClerq S.
      • West Jr., K.P.
      Micronutrient deficiencies are common in 6- to 8-year-old children of rural Nepal, with prevalence estimates modestly affected by inflammation.
      ). In the current study of 500 children, we globally characterized plasma proteins correlated with plasma HDL-C, LDL-C, and triglyceride concentrations and evaluated their association with inflammation applying a quantitative proteomics approach.

      MATERIALS AND METHODS

      Study population and field assessments

      Children in this proteomics study are a subset of a large child follow-up cohort in the southeastern plains district of Sarlahi, Nepal. Briefly, a community-based cluster-randomized controlled trial of antenatal micronutrient supplementation was conducted between 1999 and 2001 (
      • Christian P.
      • Khatry S.K.
      • Katz J.
      • Pradhan E.K.
      • LeClerq S.C.
      • Shrestha S.R.
      • Adhikari R.K.
      • Sommer A.
      • West Jr., K.P.
      Effects of alternative maternal micronutrient supplements on low birth weight in rural Nepal: double blind randomised community trial.
      ). Among more than 4,000 liveborn infants during the trial, we revisited about 3,500 children when they were 6–8 years of age, from 2006 to 2008, to assess their health and nutritional status (
      • Stewart C.P.
      • Christian P.
      • LeClerq S.C.
      • West Jr., K.P.
      • Khatry S.K.
      Antenatal supplementation with folic acid + iron + zinc improves linear growth and reduces peripheral adiposity in school-age children in rural Nepal.
      ). Field workers collected data on child demographic and anthropometric characteristics, education, dietary and morbidity history in the past week, and household socioeconomic status during home visits. Phlebotomists visited households of children early in the morning and collected venous blood samples in 10 ml sodium heparin vacutainers to prevent blood clots. Collected blood samples were transported on ice to the project's field laboratory in Sarlahi where plasma samples were separated by centrifugation (1,720 g for 15 min). Plasma samples were used for lipid assessments and remaining plasma was aliquoted into cryovials that were stored and shipped in liquid nitrogen tanks to the Center for Human Nutrition laboratory at Johns Hopkins University in Baltimore, MD where they were stored at −80°C until thawed for biochemical assessments and/or proteomics analysis (
      • Stewart C.P.
      • Christian P.
      • Schulze K.J.
      • Leclerq S.C.
      • West Jr., K.P.
      • Khatry S.K.
      Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal.
      ). Among 2,130 children who met inclusion criteria of having available plasma samples and complete epidemiological data from the original maternal micronutrient supplementation trial and follow-up study, samples from 1,000 children, balanced across the five original maternal intervention groups (n = 200 in each) were randomly selected for micronutrient and inflammation status assessments (
      • Schulze K.J.
      • Christian P.
      • Wu L.S.
      • Arguello M.
      • Cui H.
      • Nanayakkara-Bind A.
      • Stewart C.P.
      • Khatry S.K.
      • LeClerq S.
      • West Jr., K.P.
      Micronutrient deficiencies are common in 6- to 8-year-old children of rural Nepal, with prevalence estimates modestly affected by inflammation.
      ). Of these, 50#x0025; of the samples (n = 100 from each maternal intervention group) were randomly selected for proteomics analysis (
      • Cole R.N.
      • Ruczinski I.
      • Schulze K.
      • Christian P.
      • Herbrich S.
      • Wu L.
      • Devine L.R.
      • O'Meally R.N.
      • Shrestha S.
      • Boronina T.N.
      • et al.
      The plasma proteome identifies expected and novel proteins correlated with micronutrient status in undernourished Nepalese children.
      ). The original antenatal micronutrient supplementation trial was registered at ClinicalTrials.gov as NCT00115271. Oral informed consent was obtained from the parents of eligible children during the child follow-up due to high illiteracy in the study population. Ethical approval for the original maternal trial and child follow-up study was obtained from the institutional review board at the Johns Hopkins Bloomberg School of Public Health, Baltimore, MD and the Nepal Health Research Council in Kathmandu, Nepal. All methods were carried out in accordance with the principles of the Declaration of Helsinki.

      Lipid and inflammation marker assessments

      Assessments of lipid profiles and inflammation markers were previously described in detail (
      • Stewart C.P.
      • Christian P.
      • Schulze K.J.
      • Leclerq S.C.
      • West Jr., K.P.
      • Khatry S.K.
      Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal.
      ,
      • Schulze K.J.
      • Christian P.
      • Wu L.S.
      • Arguello M.
      • Cui H.
      • Nanayakkara-Bind A.
      • Stewart C.P.
      • Khatry S.K.
      • LeClerq S.
      • West Jr., K.P.
      Micronutrient deficiencies are common in 6- to 8-year-old children of rural Nepal, with prevalence estimates modestly affected by inflammation.
      ). Plasma concentrations of total cholesterol, HDL-C, and triglycerides were measured using a Cholestech LDX analyzer (Alere Inc.) by enzymatic colorimetric methods. This instrument has been certified for clinical application by the US Center for Disease Control's Lipid Standardization Program (Atlanta, GA). The instrument is also robust and thus has been used for point-of-care diagnostic testing of lipid levels in remote areas of rural Nepal. The detectable ranges for total cholesterol, HDL-C, and triglycerides were 100–500, 15–100, and 45–650 mg/dl, respectively. Estimates of plasma LDL-C concentrations were calculated using the Friedewald formula (
      • Bachorik P.S.
      • Ross J.W.
      National Cholesterol Education Program recommendations for measurement of low-density lipoprotein cholesterol: executive summary. The National Cholesterol Education Program Working Group on Lipoprotein Measurement.
      ). Quality control materials provided by the manufacturer were tested weekly and with the arrival of each new lot of cassette supplies for quality assurance. Plasma AGP was chosen as a biomarker of subclinical inflammation over C-reactive protein (CRP) because AGP is more likely to detect chronic inflammation. For example, in Nepal, AGP identified five times more children with systemic low-grade inflammation than CRP using conventional clinical thresholds (30#x0025; of children exhibited AGP >1.0 g/l and 6#x0025; of children showed CRP >5 mg/l) (
      • Lee S.E.
      • West Jr., K.P.
      • Cole R.N.
      • Schulze K.J.
      • Christian P.
      • Wu L.S.
      • Yager J.D.
      • Groopman J.
      • Ruczinski I.
      Plasma proteome biomarkers of inflammation in school aged children in Nepal.
      ). AGP was measured using a radial immunodiffusion assay (Kent Laboratories; 0.90 ± 0.1 g/l, CV = 10.0#x0025;).

      Proteomics analysis

      The processes of immune-depletion of high abundant proteins and MS-based proteomics analysis have been previously described (
      • Cole R.N.
      • Ruczinski I.
      • Schulze K.
      • Christian P.
      • Herbrich S.
      • Wu L.
      • Devine L.R.
      • O'Meally R.N.
      • Shrestha S.
      • Boronina T.N.
      • et al.
      The plasma proteome identifies expected and novel proteins correlated with micronutrient status in undernourished Nepalese children.
      ). Plasma specimens were depleted of six high abundance proteins (albumin, transferrin, immunoglobulin G, immunoglobulin A, anti-trypsin, and haptoglobin) using a Human-6 Multiple Affinity Removal System LC column (Agilent Technologies). Seven depleted samples randomly chosen from the plasma samples of 500 participants and one masterpool sample, which served as an internal standard (
      • Herbrich S.M.
      • Cole R.N.
      • West Jr., K.P.
      • Schulze K.
      • Yager J.D.
      • Groopman J.D.
      • Christian P.
      • Wu L.
      • O'Meally R.N.
      • May D.H.
      • et al.
      Statistical inference from multiple iTRAQ experiments without using common reference standards.
      ), were digested at 37°C overnight with trypsin using a 1:10 enzyme to protein ratio. Samples were randomly labeled with eight different isobaric tags for relative and absolute quantification (iTRAQ) reagents, which have reporter ions to be detected for relative quantification, and were incubated at room temperature for 2 h. All labeled samples were combined and 90 μl of the combined peptide sample was dissolved in 4 ml of strong cation exchange loading buffer [25#x0025; v/v acetonitrile and 10 mK KH2PO4 (pH 2.8)]. The sample was fractionated into 24 fractions by strong cation exchange chromatography on an Agilent 1200 capillary HPLC system using a PolySulfoethyl A column. Peptides were loaded on to a reverse-phase nanobore column and eluted using a 2–50#x0025; acetonitrile and 0.1#x0025; formic acid gradient for 110 min at 300 nl/min. Eluting peptides were sprayed into an LTQ Orbitrap Velos mass spectrometer (Thermo Scientific) and interfaced with a NanoAcquity ultra-HPLC (Waters). Precursors and the fragment ions were analyzed at resolutions of 30,000 and 15,000, respectively. Spectra from full MS scans and fragmented MS/MS scans were extracted with and without deconvolution using Thermo Scientific Xtract software and searched against the RefSeq 40 protein database. Peptides were identified from Mascot (Matrix Science v2.3) searches through the Proteome Discoverer software (v1.3; Thermo Scientific) with a confidence threshold of 5#x0025; false discovery rate (FDR). A total of 4,705 nonredundant proteins were detected at least one time among 72 iTRAQ experiments conducted to assess plasma samples of the 500 study children (supplemental Table S1). We included 982 proteins quantified in >10#x0025; of all 500 plasma proteins of children (n > 50) in the proteomics analysis.

      Statistical analyses

      Standard cut-offs for low or high plasma lipid levels for children were derived from the National Cholesterol Education Program Expert Panel on Cholesterol Levels in Children (
      • Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents; National Heart, Lung, and Blood Institute
      Expert panel on integrated guidelines for cardiovascular health and risk reduction in children and adolescents: summary report.
      ). Estimation of relative abundance of proteins from reporter ion intensities across all obtained spectra have been previously described (
      • Herbrich S.M.
      • Cole R.N.
      • West Jr., K.P.
      • Schulze K.
      • Yager J.D.
      • Groopman J.D.
      • Christian P.
      • Wu L.
      • O'Meally R.N.
      • May D.H.
      • et al.
      Statistical inference from multiple iTRAQ experiments without using common reference standards.
      ). Linear mixed effects (LME) models were employed to estimate linear associations between each log2 transformed-lipid or lipoprotein concentration as dependent variables and relative abundance of individual plasma proteins as a fixed effect, and each iTRAQ experiment as a random effect. Lipid values below the lower limit of detection were excluded from these analyses. We also adjusted for fasting status of children in all statistical models, as more than one-third of the children in the study were not fasted at the time of blood draw (
      • Stewart C.P.
      • Christian P.
      • Schulze K.J.
      • Leclerq S.C.
      • West Jr., K.P.
      • Khatry S.K.
      Antenatal micronutrient supplementation reduces metabolic syndrome in 6- to 8-year-old children in rural Nepal.
      ). We report summary statistics from the LME models, including number of child plasma samples in which a protein was detected, percent change (#x0025;) in lipid or lipoprotein concentration per 2-fold (100#x0025;) increase in relative abundance of a protein, P value calculated by using a two-sided test of a null hypothesis that there is no association between an individual protein and lipid or lipoprotein, q as FDR-adjusted P value to correct multiple comparisons (
      • Storey J.D.
      A direct approach to false discovery rates.
      ), and r as a correlation coefficient between measured plasma lipid or lipoprotein concentration and its respective best linear unbiased prediction from the LME models (
      • Robinson G.K.
      That BLUP is a good thing: the estimation of random effects.
      ). Proteins were considered significantly correlated with an outcome when passing a FDR threshold of 5#x0025; (q < 0.05). Because of their large number, we explored correlations between proteins associated with HDL-C concentration by calculating pairwise protein:protein correlation coefficients for proteins quantified in relative abundance within each iTRAQ experiment and averaged values across iTRAQ experiments.
      Among proteins correlated with HDL-C, LDL-C, and triglyceride concentrations, we estimated and compared mean differences in relative protein abundance in plasma samples between children with and without inflammation (plasma AGP concentration >1.0 g/l or ≤1.0 g/l), adjusting for potential confounders, including child sex, age, ethnicity, fasting status, and stunting and underweight status (based on height-for-age and weight-for-age z-scores less than −2, respectively, derived from the World Health Organization growth reference for children) (
      • de Onis M.
      • Onyango A.W.
      • Borghi E.
      • Siyam A.
      • Nishida C.
      • Siekmann J.
      Development of a WHO growth reference for school-aged children and adolescents.
      ). P values were adjusted to control FDR using the Benjamini-Hochberg method (
      • Benjamini Y.
      • Hochberg Y.
      Controlling the false discovery rate: a practical and powerful approach to multiple testing.
      ). Gene symbols of protein GenInfo identifier (gi) numbers were derived from the Human Genome Organization (HUGO) gene annotation and used in the tables and figures (
      • Gray K.A.
      • Yates B.
      • Seal R.L.
      • Wright M.W.
      • Bruford E.A.
      Genenames.org: the HGNC resources in 2015.
      ). General descriptions of proteins were extracted from the NCBI protein database, UniProt, and in-depth review of literature (
      • UniProt Consortium T
      UniProt: the universal protein knowledgebase.
      ,
      • NCBI Resource Coordinators
      Database resources of the National Center for Biotechnology Information.
      ). Data visualization was performed using the Cytoscape (
      • Shannon P.
      • Markiel A.
      • Ozier O.
      • Baliga N.S.
      • Wang J.T.
      • Ramage D.
      • Amin N.
      • Schwikowski B.
      • Ideker T.
      Cytoscape: a software environment for integrated models of biomolecular interaction networks.
      ). The data­sets of lipid profiles and relative abundance of reported proteins in this study are available in (supplemental Table S2. All analyses were performed using the R Environment for Statistical Computing (version 3.1.2; R Foundation for Statistical Computing, Vienna, Austria).

      RESULTS

      Lipid profiles and inflammation of children

      In this cohort of 500 Nepalese children, median (interquartile range) values of plasma concentrations for total cholesterol, HDL-C, and LDL-C (n = 324) were 111 (100, 127), 27 (21, 33), and 71 (62, 83) mg/dl, respectively, and 89 (66, 118) mg/dl for triglycerides. These medians approximate plasma values less than fifth percentiles for total cholesterol and HDL-C, less than tenth percentile for LDL-C, and greater than ninetieth percentile for triglycerides of distributions among child populations between the ages of 6 and 9 in the United States (
      • Tamir I.
      • Heiss G.
      • Glueck C.J.
      • Christensen B.
      • Kwiterovich P.
      • Rifkind B.M.
      Lipid and lipoprotein distributions in white children ages 6-19 yr. The Lipid Research Clinics Program Prevalence Study.
      ,
      • Hickman T.B.
      • Briefel R.R.
      • Carroll M.D.
      • Rifkind B.M.
      • Cleeman J.I.
      • Maurer K.R.
      • Johnson C.L.
      Distributions and trends of serum lipid levels among United States children and adolescents ages 4–19 years: data from the Third National Health and Nutrition Examination Survey.
      ). The prevalence of high total cholesterol (≥200 mg/dl) and high LDL-C (≥130 mg/dl) was 0.4#x0025; and 0.6#x0025;, while the prevalence of high triglycerides (≥100 mg/dl) and low HDL-C (<40 mg/dl) was 40#x0025; and 90#x0025;, respectively. About 30#x0025; of children had inflammation indicated by elevated plasma AGP (>1.0 g/l). Child characteristics including lipid and lipoprotein profiles are compared by inflammation status in Table 1. Children with inflammation had lower plasma HDL-C (25 vs. 28 mg/dl; P = 0.005) and higher plasma triglyceride (97 vs. 87 mg/dl; P = 0.032) concentrations than children without inflammation, while there were no significant differences in plasma concentrations of total cholesterol and LDL-C. Stunting (48#x0025; vs. 36#x0025;; P = 0.015), underweight (57#x0025; vs. 45#x0025;; P = 0.017), and reported episodes of fever (16.8#x0025; vs. 4.6#x0025;; P < 0.001) and diarrhea (7.4#x0025; vs. 1.4#x0025;; P = 0.001) in the past week were more common in children with inflammation than without inflammation. No differences were observed in child demographic and educational characteristics, economics of household, and dietary history between the two groups.
      TABLE 1.Characteristics of 6- to 8-year-old children in rural Nepal by inflammation status (n = 500)
      Child CharacteristicsInflammation
      Values are mean (SD), percentages, or median (interquartile range).
      (n = 149)
      No Inflammation
      Values are mean (SD), percentages, or median (interquartile range).
      (n = 351)
      P values were calculated using t-test for continuous variables with normal distributions, Mann-Whitney test for continuous variables with skewed distributions, and chi-square test for categorical variables.
      Demographic
      Male, %52.348.70.519
      Age, years7.5 (0.4)7.4 (0.4)0.109
      Ethnicity
      Pahadi (vs. Madheshi),
      Pahadi pertains to ethnic groups that originated in the Hills of Nepal; Madheshi pertains to groups whose origin is the southern plains (Tarai) of Nepal.
      #x0025;
      29.532.80.545
      Anthropometry
      One outlier in weight (>45 kg) and two outliers in height (>140 cm) and BMI (>20 or <10 kg/m2) were excluded.
      Height, cm113.6 (6.0)114.1 (5.4)0.372
      Weight, kg18.0 (2.3)18.4 (2.2)0.209
      BMI, kg/m213.9 (1.0)14.0 (1.0)0.315
      Stunting,
      The z-scores were calculated based on the World Health Organization reference for 5–19 years (36). Stunting, height-for-age z-score less than −2; underweight, weight-for-age z-score less than −2; and low BMI, BMI-for-age z-score less than −2.
      #x0025;
      47.735.50.015
      Underweight,
      The z-scores were calculated based on the World Health Organization reference for 5–19 years (36). Stunting, height-for-age z-score less than −2; underweight, weight-for-age z-score less than −2; and low BMI, BMI-for-age z-score less than −2.
      #x0025;
      57.044.90.017
      Low BMI,
      The z-scores were calculated based on the World Health Organization reference for 5–19 years (36). Stunting, height-for-age z-score less than −2; underweight, weight-for-age z-score less than −2; and low BMI, BMI-for-age z-score less than −2.
      #x0025;
      14.816.90.646
      Education, #x0025;
      Ever sent to school67.866.40.841
      Literacy14.818.50.377
      Economics of household, #x0025;
      Electricity51.051.01.000
      Land ownership77.276.91.000
      Diet in the past 7 days (≥3 times),
      Data are missing for rice (n = 1), milk and curd (n = 2), and fruit (n = 23).
      #x0025;
      Bhat (rice)98.9100.00.451
      Corn and wheat61.867.10.307
      Milk and curd60.453.30.173
      Fish, chicken, and other meat14.820.20.190
      Fruit
      Fruit includes mango, papaya, jackfruit, guava, and orange.
      40.339.91.000
      Dark green leafy vegetables34.931.30.500
      Oil and ghyu (butter)10099.71.000
      Morbidity in the past 7 days (≥1 time), #x0025;
      Fever16.84.6<0.001
      Diarrhea7.41.40.001
      Productive cough4.03.71.000
      Rapid breathing and grunting3.42.60.846
      Lipid or lipoprotein concentrations
      The lowest detectable values were used for values of HDL-C (n = 36), triglycerides (n = 28), and total cholesterol (n = 146) below detection limits. Data are missing for LDL-C (n = 176).
      Total cholesterol, mg/dl107 (100, 124)112 (100, 128)0.165
      HDL-C, mg/dl25 (20, 31)28 (22, 34)0.005
      LDL-C, mg/dl71 (64, 81)72 (62, 83)0.835
      Triglycerides, mg/dl97 (69, 120)87 (65, 114)0.032
      Inflammation was defined as plasma AGP concentration >1.0 g/l.
      a Values are mean (SD), percentages, or median (interquartile range).
      b P values were calculated using t-test for continuous variables with normal distributions, Mann-Whitney test for continuous variables with skewed distributions, and chi-square test for categorical variables.
      c Pahadi pertains to ethnic groups that originated in the Hills of Nepal; Madheshi pertains to groups whose origin is the southern plains (Tarai) of Nepal.
      d One outlier in weight (>45 kg) and two outliers in height (>140 cm) and BMI (>20 or <10 kg/m2) were excluded.
      e The z-scores were calculated based on the World Health Organization reference for 5–19 years (
      • de Onis M.
      • Onyango A.W.
      • Borghi E.
      • Siyam A.
      • Nishida C.
      • Siekmann J.
      Development of a WHO growth reference for school-aged children and adolescents.
      ). Stunting, height-for-age z-score less than −2; underweight, weight-for-age z-score less than −2; and low BMI, BMI-for-age z-score less than −2.
      f Data are missing for rice (n = 1), milk and curd (n = 2), and fruit (n = 23).
      g Fruit includes mango, papaya, jackfruit, guava, and orange.
      h The lowest detectable values were used for values of HDL-C (n = 36), triglycerides (n = 28), and total cholesterol (n = 146) below detection limits. Data are missing for LDL-C (n = 176).

      Plasma proteins correlated with LDL-C concentrations

      Eleven proteins were positively correlated with LDL-C (Table 2). apoB was most strongly correlated with plasma LDL-C (r = 0.69; q = 8.84 × 10−47). LDL-C concentrations increased by 121#x0025; per 100#x0025; increase in relative abundance of apoB. The rest of the proteins were mostly positive associates (r = 0.18∼0.58; q = 3.74 × 10−2 to 4.41 × 10−7), including kinesin family member 20B, platelet activating factor acetylhydrolase (also known as LDL-C-associated phospholipase 2), cholesteryl ester transfer protein (CETP), proteoglycan 4, and apoM, and four intracellular proteins observed in <100 children. Chondroadherin, which regulates chondrocyte growth, was the only protein negatively associated with LDL-C (r = −0.42; q = 2.77 × 10−2).
      TABLE 2.Proteins correlated with plasma LDL-C concentrations in children of rural Nepal aged 6–8 years (n = 324)
      Protein Namen
      Number of child plasma samples in which each protein was detected and quantified by MS. Children with no LDL-C data due to under the detectable range of HDL-C (<15 mg/dl), total cholesterol (<100 mg/dl), or triglyceride (<45 mg/dl) were excluded (n = 176).
      rR2PqPercent Change
      Percent change in LDL-C concentrations of children per 100#x0025; (two times) increase in relative abundance of a protein.
      Accession
      GenInfo sequence number as assigned to all protein sequences by the NCBI at the National Library of Medicine, National Institutes of Health.
      Reference
      Proteins have been previously reported to be physically associated with LDL particles (79).
      apoB3240.690.486.39 × 10−508.84 × 10−47120.8105990532(
      • von Zychlinski A.
      • Williams M.
      • McCormick S.
      • Kleffmann T.
      Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins.
      ,
      • Bancells C.
      • Canals F.
      • Benitez S.
      • Colome N.
      • Julve J.
      • Ordonez-Llanos J.
      • Sanchez-Quesada J.L.
      Proteomic analysis of electronegative low-density lipoprotein.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics I: mapping of proteins in low-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Dashty M.
      • Motazacker M.M.
      • Levels J.
      • de Vries M.
      • Mahmoudi M.
      • Peppelenbosch M.P.
      • Rezaee F.
      Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.
      ,
      • Banfi C.
      • Brioschi M.
      • Barcella S.
      • Wait R.
      • Begum S.
      • Galli S.
      • Rizzi A.
      • Tremoli E.
      Proteomic analysis of human low-density lipoprotein reveals the presence of prenylcysteine lyase, a hydrogen peroxide-generating enzyme.
      ,
      • Karlsson H.
      • Mortstedt H.
      • Lindqvist H.
      • Tagesson C.
      • Lindahl M.
      Protein profiling of low-density lipoprotein from obese subjects.
      ,
      • Ståhlman M.
      • Davidsson P.
      • Kanmert I.
      • Rosengren B.
      • Borén J.
      • Fagerberg B.
      • Camejo G.
      Proteomics and lipids of lipoproteins isolated at low salt concentrations in D2O/sucrose or in KBr.
      )
      Kinesin family member 20B (KIF20B)2080.470.226.38 × 10−104.41 × 10−737.246049114
      Platelet-activating factor acetylhydrolase (PAF-AH)2660.300.094.49 × 10−71.55 × 10−425.7189095271(
      • von Zychlinski A.
      • Williams M.
      • McCormick S.
      • Kleffmann T.
      Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins.
      ,
      • Bancells C.
      • Canals F.
      • Benitez S.
      • Colome N.
      • Julve J.
      • Ordonez-Llanos J.
      • Sanchez-Quesada J.L.
      Proteomic analysis of electronegative low-density lipoprotein.
      )
      G2/mitotic-specific cyclin B3 (CCNB3)830.580.341.59 × 10−63.14 × 10−434.590669307
      Zinc finger and BTB domain containing 1 (ZBTB1)740.580.334.29 × 10−66.70 × 10−450.8182509178
      Netrin receptor UNC5C (UNC5C)910.460.214.36 × 10−66.70 × 10−438.316933525
      CETP, plasma3190.210.051.24 × 10−41.01 × 10−219.7169636439
      Proteoglycan 4 (PRG4)2600.230.052.50 × 10−41.79 × 10−227.0189181724
      Chondroadherin (CHAD)86−0.420.184.61 × 10−42.77 × 10−2−23.4153251229
      Poly (ADP-ribose) glycohydrolase (PARG)920.360.135.50 × 10−42.99 × 10−225.170610136
      apoM3240.180.038.38 × 10−43.74 × 10−224.722091452(
      • von Zychlinski A.
      • Williams M.
      • McCormick S.
      • Kleffmann T.
      Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics I: mapping of proteins in low-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Dashty M.
      • Motazacker M.M.
      • Levels J.
      • de Vries M.
      • Mahmoudi M.
      • Peppelenbosch M.P.
      • Rezaee F.
      Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.
      ,
      • Banfi C.
      • Brioschi M.
      • Barcella S.
      • Wait R.
      • Begum S.
      • Galli S.
      • Rizzi A.
      • Tremoli E.
      Proteomic analysis of human low-density lipoprotein reveals the presence of prenylcysteine lyase, a hydrogen peroxide-generating enzyme.
      ,
      • Karlsson H.
      • Mortstedt H.
      • Lindqvist H.
      • Tagesson C.
      • Lindahl M.
      Protein profiling of low-density lipoprotein from obese subjects.
      )
      Eleven proteins quantified by MS and estimated by LME modeling in >10#x0025; of the samples that were positively and negatively correlated with LDL-C adjusting for fasting status (q < 0.05), listed by the strength of association (in increasing order of q).
      a Number of child plasma samples in which each protein was detected and quantified by MS. Children with no LDL-C data due to under the detectable range of HDL-C (<15 mg/dl), total cholesterol (<100 mg/dl), or triglyceride (<45 mg/dl) were excluded (n = 176).
      b Percent change in LDL-C concentrations of children per 100#x0025; (two times) increase in relative abundance of a protein.
      c GenInfo sequence number as assigned to all protein sequences by the NCBI at the National Library of Medicine, National Institutes of Health.
      d Proteins have been previously reported to be physically associated with LDL particles (

      The Davidson/Shah Lab. 2015. LDL and HDL Proteome Watch. Accessed September 7, 2018, at http://homepages.uc.edu/~davidswm/Labpage.html, .

      ).

      Plasma proteins correlated with triglyceride concentrations

      Three apoC proteins were most highly correlated with triglycerides (apoC-II/C-III/C-IV) (r = 0.51∼0.54; q = 8.24 × 10−13 to 7.22 × 10−17) (Table 3). Other positive correlates included cathelicidin antimicrobial peptide, proteoglycan 4, retinol-binding protein 4 (RBP4), and apoE. Five negatively associated proteins included extracellular matrix-related proteins, such as anthrax toxin receptor (ANTXR)2, neuropilin 1, and insulin-like growth factor binding protein 1, and lipid transfer proteins such as CETP and phospholipid transfer protein (PLTP).
      TABLE 3.Proteins correlated with plasma triglyceride concentrations in children of rural Nepal aged 6–8 years (n = 472)
      Protein Namen
      Number of child plasma samples in which each protein was detected and quantified by MS. Children with triglyceride concentrations below a detection limit (<45 mg/dl) were excluded (n = 28).
      rR2PqPercent Change
      Percent change in plasma triglycerides of children per 100#x0025; (two times) increase in relative abundance of a protein.
      Accession
      GenInfo sequence number as assigned to all protein sequences by the NCBI at the National Library of Medicine, National Institutes of Health.
      Reference
      Proteins have been previously reported to be physically associated with VLDL particles.
      apoC-II4720.540.294.20 × 10−207.22 × 10−1747.232130518(
      • von Zychlinski A.
      • Williams M.
      • McCormick S.
      • Kleffmann T.
      Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins.
      ,
      • Dashty M.
      • Motazacker M.M.
      • Levels J.
      • de Vries M.
      • Mahmoudi M.
      • Peppelenbosch M.P.
      • Rezaee F.
      Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.
      )
      apoC-III4720.530.293.31 × 10−192.84 × 10−1648.84557323(
      • von Zychlinski A.
      • Williams M.
      • McCormick S.
      • Kleffmann T.
      Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins.
      ,
      • Mancone C.
      • Amicone L.
      • Fimia G.M.
      • Bravo E.
      • Piacentini M.
      • Tripodi M.
      • Alonzi T.
      Proteomic analysis of human very low-density lipoprotein by two-dimensional gel electrophoresis and MALDI-TOF/TOF.
      ,
      • Dashty M.
      • Motazacker M.M.
      • Levels J.
      • de Vries M.
      • Mahmoudi M.
      • Peppelenbosch M.P.
      • Rezaee F.
      Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.
      )
      apoC-IV4720.510.261.44 × 10−158.24 × 10−1337.84502161(
      • von Zychlinski A.
      • Williams M.
      • McCormick S.
      • Kleffmann T.
      Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins.
      ,
      • Mancone C.
      • Amicone L.
      • Fimia G.M.
      • Bravo E.
      • Piacentini M.
      • Tripodi M.
      • Alonzi T.
      Proteomic analysis of human very low-density lipoprotein by two-dimensional gel electrophoresis and MALDI-TOF/TOF.
      ,
      • Dashty M.
      • Motazacker M.M.
      • Levels J.
      • de Vries M.
      • Mahmoudi M.
      • Peppelenbosch M.P.
      • Rezaee F.
      Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.
      )
      Cathelicidin antimicrobial peptide (CAMP)3940.440.191.18 × 10−65.07 × 10−425.139753970(
      • Dashty M.
      • Motazacker M.M.
      • Levels J.
      • de Vries M.
      • Mahmoudi M.
      • Peppelenbosch M.P.
      • Rezaee F.
      Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.
      )
      Proteoglycan 4 (PRG4)3800.400.167.07 × 10−62.43 × 10−349.3189181724
      ANTXR2346−0.400.161.85 × 10−55.28 × 10−3−28.350513243(
      • Dashty M.
      • Motazacker M.M.
      • Levels J.
      • de Vries M.
      • Mahmoudi M.
      • Peppelenbosch M.P.
      • Rezaee F.
      Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.
      )
      CETP, plasma465−0.400.162.33 × 10−55.71 × 10−3−23.9169636439(
      • Dashty M.
      • Motazacker M.M.
      • Levels J.
      • de Vries M.
      • Mahmoudi M.
      • Peppelenbosch M.P.
      • Rezaee F.
      Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.
      )
      Neuropilin 1 (NRP1)432−0.390.155.14 × 10−51.10 × 10−2−25.466864913
      RBP44720.400.162.45 × 10−43.91 × 10−230.155743122
      apoE4720.400.162.45 × 10−43.91 × 10−230.94557325(
      • Dashty M.
      • Motazacker M.M.
      • Levels J.
      • de Vries M.
      • Mahmoudi M.
      • Peppelenbosch M.P.
      • Rezaee F.
      Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.
      )
      PLTP445−0.390.152.73 × 10−43.91 × 10−2−27.95453914(
      • von Zychlinski A.
      • Williams M.
      • McCormick S.
      • Kleffmann T.
      Absolute quantification of apolipoproteins and associated proteins on human plasma lipoproteins.
      ,
      • Mancone C.
      • Amicone L.
      • Fimia G.M.
      • Bravo E.
      • Piacentini M.
      • Tripodi M.
      • Alonzi T.
      Proteomic analysis of human very low-density lipoprotein by two-dimensional gel electrophoresis and MALDI-TOF/TOF.
      ,
      • Dashty M.
      • Motazacker M.M.
      • Levels J.
      • de Vries M.
      • Mahmoudi M.
      • Peppelenbosch M.P.
      • Rezaee F.
      Proteome of human plasma very low-density lipoprotein and low-density lipoprotein exhibits a link with coagulation and lipid metabolism.
      )
      Insulin-like growth factor binding protein 1 (IGFBP1)417−0.330.113.16 × 10−44.17 × 10−2−13.24504615
      Twelve proteins quantified by MS and estimated by LME modeling in >10#x0025; of the samples that were positively and negatively associated with plasma triglycerides adjusting for fasting status (q < 0.05), listed by the strength of association (in increasing order of q).
      a Number of child plasma samples in which each protein was detected and quantified by MS. Children with triglyceride concentrations below a detection limit (<45 mg/dl) were excluded (n = 28).
      b Percent change in plasma triglycerides of children per 100#x0025; (two times) increase in relative abundance of a protein.
      c GenInfo sequence number as assigned to all protein sequences by the NCBI at the National Library of Medicine, National Institutes of Health.
      d Proteins have been previously reported to be physically associated with VLDL particles.

      Plasma proteins correlated with HDL-C concentrations

      Thirty-six proteins were positively correlated with HDL-C (Table 4). apoA-I (r = 0.79; q = 1.06 × 10−91) and apoA-II (r = 0.58; q = 4.16 × 10−21) were two of the three most strongly associated proteins followed by seven other apolipoproteins [apoA-IV/apoC-I/apoC-III/apoD/apoM/apoF/serum amyloid A4 (SAA4)] (r = 0.45∼0.56; q = 4.23 × 10−3 to 2.72 × 10−16). Proteins with well-defined roles in HDL metabolism and function included PLTP and enzymes, such as LCAT and paraoxonase (PON)1 and PON3. Interestingly, intracellular proteins, such as interferon-related developmental regulator 2 (IFRD2), eukaryotic translation initiation factor 2D (EIF2D), Kruppel-like factor 17 (KLF17), and TATA element modulatory factor 1 (TMF1), were also strongly correlated with HDL-C. Proteins mediating cell-cell and cell-extracellular matrix interaction, such ANTXR1 and ANTXR2, were also among positive correlates. Associated fat-soluble vitamin transporters included retinol binding protein 4, transthyretin, and afamin. Sixteen proteins (Table 5), moderately negatively correlated with HDL-C (r = −0.33 ∼−0.49; q = 2.05 × 10−2 to 7.59 × 10−4), are primarily involved in the acute phase response (i.e., orosomucoid 1 or AGP and leucine-rich α-2-glycoprotein 1) and the complement system (i.e., complement component 9 and complement factor I). Protein-protein correlations as well as molecular network and functional clusters of the plasma HDL-C proteome are visualized in Fig. 1A and B. Prominent correlations among proteins positively associated with HDL-C (Fig. 1A) were found between apoA-I and apoA-II (r = 0.75, colored in orange) and apoA-I with other intracellular proteins, such as IFRD2, EIF2D, KLF17, and TMF1 (r = 0.53∼0.91, colored in blue). Among negative HDL-C correlates (Fig. 1B), proteins involved in the acute phase response proteolytic inhibition were strongly correlated with each other (r = 0.36∼0.90, colored in red). Correlates of HDL-C appear to be involved in a wide range of functions that extend beyond known functions of HDL, such as regulation of gene transcription and translation and extracellular matrix homeostasis.
      TABLE 4.Proteins positively correlated with plasma HDL-C concentrations in children of rural Nepal aged 6–8 years (n = 464)
      Protein Namen
      Number of child plasma samples in which each protein was detected and quantified by MS. Children with plasma HDL-C concentrations below a detection limit (<15 mg/dl) were excluded (n = 36).
      rR2PqPercent Change
      Percent change in plasma HDL-C of children per 100#x0025; (two times) increase in relative abundance of a protein.
      Accession
      GenInfo sequence number as assigned to all protein sequences by the NCBI at the National Library of Medicine, National Institutes of Health.
      Reference
      Proteins have been previously reported to be physically associated with HDL particles (79).
      apoA-I4640.790.627.68 × 10−951.06 × 10−91183.84557321(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Gordon S.M.
      • Deng J.
      • Lu L.J.
      • Davidson W.S.
      Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography.
      ,
      • Rezaee F.
      • Casetta B.
      • Levels J.H.
      • Speijer D.
      • Meijers J.C.
      Proteomic analysis of high-density lipoprotein.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Davidson W.S.
      • Silva R.A.
      • Chantepie S.
      • Lagor W.R.
      • Chapman M.J.
      • Kontush A.
      Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Heller M.
      • Stalder D.
      • Schlappritzi E.
      • Hayn G.
      • Matter U.
      • Haeberli A.
      Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins.
      ,
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Hortin G.L.
      • Shen R.F.
      • Martin B.M.
      • Remaley A.T.
      Diverse range of small peptides associated with high-density lipoprotein.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      IFRD24500.640.413.59 × 10−332.47 × 10−3063.9197333755
      apoA-II4640.580.349.04 × 10−244.16 × 10−2176.94502149(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Gordon S.M.
      • Deng J.
      • Lu L.J.
      • Davidson W.S.
      Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography.
      ,
      • Rezaee F.
      • Casetta B.
      • Levels J.H.
      • Speijer D.
      • Meijers J.C.
      Proteomic analysis of high-density lipoprotein.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Davidson W.S.
      • Silva R.A.
      • Chantepie S.
      • Lagor W.R.
      • Chapman M.J.
      • Kontush A.
      Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Heller M.
      • Stalder D.
      • Schlappritzi E.
      • Hayn G.
      • Matter U.
      • Haeberli A.
      Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins.
      ,
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      apoD4640.560.318.22 × 10−192.72 × 10−1653.24502163(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Rezaee F.
      • Casetta B.
      • Levels J.H.
      • Speijer D.
      • Meijers J.C.
      Proteomic analysis of high-density lipoprotein.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      EIF2D2380.570.339.85 × 10−192.72 × 10−1661.056699485
      apoC-I4640.510.261.44 × 10−132.83 × 10−1118.64502157(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Gordon S.M.
      • Deng J.
      • Lu L.J.
      • Davidson W.S.
      Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Davidson W.S.
      • Silva R.A.
      • Chantepie S.
      • Lagor W.R.
      • Chapman M.J.
      • Kontush A.
      Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Heller M.
      • Stalder D.
      • Schlappritzi E.
      • Hayn G.
      • Matter U.
      • Haeberli A.
      Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins.
      ,
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      apoM4640.510.267.09 × 10−131.22 × 10−1054.822091452(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Gordon S.M.
      • Deng J.
      • Lu L.J.
      • Davidson W.S.
      Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography.
      ,
      • Rezaee F.
      • Casetta B.
      • Levels J.H.
      • Speijer D.
      • Meijers J.C.
      Proteomic analysis of high-density lipoprotein.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      PLTP4380.510.261.40 × 10−102.15 × 10−850.35453914(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Davidson W.S.
      • Silva R.A.
      • Chantepie S.
      • Lagor W.R.
      • Chapman M.J.
      • Kontush A.
      Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      ANTXR23370.510.261.71 × 10−102.36 × 10−842.850513243(
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      )
      TMF12280.540.294.74 × 10−95.95 × 10−733.0110347443
      KLF172580.500.256.99 × 10−98.04 × 10−726.4104294874
      PON14640.490.248.81 × 10−99.35 × 10−727.319923106(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Gordon S.M.
      • Deng J.
      • Lu L.J.
      • Davidson W.S.
      Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography.
      ,
      • Rezaee F.
      • Casetta B.
      • Levels J.H.
      • Speijer D.
      • Meijers J.C.
      Proteomic analysis of high-density lipoprotein.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Davidson W.S.
      • Silva R.A.
      • Chantepie S.
      • Lagor W.R.
      • Chapman M.J.
      • Kontush A.
      Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Heller M.
      • Stalder D.
      • Schlappritzi E.
      • Hayn G.
      • Matter U.
      • Haeberli A.
      Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins.
      ,
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      ANTXR13150.450.212.39 × 10−72.36 × 10−530.014149904(
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      )
      SAA44590.470.227.79 × 10−77.17 × 10−523.910835095(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Davidson W.S.
      • Silva R.A.
      • Chantepie S.
      • Lagor W.R.
      • Chapman M.J.
      • Kontush A.
      Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.
      ,
      • Heller M.
      • Stalder D.
      • Schlappritzi E.
      • Hayn G.
      • Matter U.
      • Haeberli A.
      Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins.
      ,
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      PON34570.460.211.23 × 10−61.06 × 10−428.129788996(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Davidson W.S.
      • Silva R.A.
      • Chantepie S.
      • Lagor W.R.
      • Chapman M.J.
      • Kontush A.
      Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      BPI fold containing family B member 1 (BPIFB1)1890.520.271.91 × 10−61.55 × 10−426.640807482(
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      )
      apoF4640.470.223.96 × 10−63.03 × 10−424.94502165(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Heller M.
      • Stalder D.
      • Schlappritzi E.
      • Hayn G.
      • Matter U.
      • Haeberli A.
      Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      Glycosylphosphatidylinositol specific phospholipase D1 (GPLD1)4640.460.219.82 × 10−66.73 × 10−431.629171717(
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      )
      Secretoglobin, family 3A member 1 (SCGB3A1)2790.540.291.02 × 10−56.73 × 10−414.750363226(
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      LCAT4640.450.202.94 × 10−51.69 × 10−352.34557892(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      apoC-III4640.450.203.16 × 10−51.74 × 10−315.54557323(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Gordon S.M.
      • Deng J.
      • Lu L.J.
      • Davidson W.S.
      Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography.
      ,
      • Rezaee F.
      • Casetta B.
      • Levels J.H.
      • Speijer D.
      • Meijers J.C.
      Proteomic analysis of high-density lipoprotein.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Davidson W.S.
      • Silva R.A.
      • Chantepie S.
      • Lagor W.R.
      • Chapman M.J.
      • Kontush A.
      Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Heller M.
      • Stalder D.
      • Schlappritzi E.
      • Hayn G.
      • Matter U.
      • Haeberli A.
      Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins.
      ,
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Hortin G.L.
      • Shen R.F.
      • Martin B.M.
      • Remaley A.T.
      Diverse range of small peptides associated with high-density lipoprotein.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      RBP44640.450.214.47 × 10−52.37 × 10−323.455743122(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      )
      CD99 molecule (CD99)4440.410.174.78 × 10−52.39 × 10−317.1171543879
      DNA repair and recombination protein RAD54B (RAD54B)980.540.297.95 × 10−53.66 × 10−341.26912622
      apoA-IV4640.450.209.49 × 10−54.23 × 10−318.471773110(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Gordon S.M.
      • Deng J.
      • Lu L.J.
      • Davidson W.S.
      Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography.
      ,
      • Rezaee F.
      • Casetta B.
      • Levels J.H.
      • Speijer D.
      • Meijers J.C.
      Proteomic analysis of high-density lipoprotein.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Davidson W.S.
      • Silva R.A.
      • Chantepie S.
      • Lagor W.R.
      • Chapman M.J.
      • Kontush A.
      Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Heller M.
      • Stalder D.
      • Schlappritzi E.
      • Hayn G.
      • Matter U.
      • Haeberli A.
      Mass spectrometry-based analytical tools for the molecular protein characterization of human plasma lipoproteins.
      ,
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Hortin G.L.
      • Shen R.F.
      • Martin B.M.
      • Remaley A.T.
      Diverse range of small peptides associated with high-density lipoprotein.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      Transthyretin (TTR)4640.450.201.02 × 10−44.42 × 10−332.34507725(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Karlsson H.
      • Leanderson P.
      • Tagesson C.
      • Lindahl M.
      Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.
      ,
      • Gordon S.M.
      • Deng J.
      • Lu L.J.
      • Davidson W.S.
      Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography.
      ,
      • Rezaee F.
      • Casetta B.
      • Levels J.H.
      • Speijer D.
      • Meijers J.C.
      Proteomic analysis of high-density lipoprotein.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Davidson W.S.
      • Silva R.A.
      • Chantepie S.
      • Lagor W.R.
      • Chapman M.J.
      • Kontush A.
      Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Hortin G.L.
      • Shen R.F.
      • Martin B.M.
      • Remaley A.T.
      Diverse range of small peptides associated with high-density lipoprotein.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      Integrin α2 (ITGA2)1750.500.251.32 × 10−45.51 × 10−331.1116295258(
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      )
      Exostosin-like glycosyltransferase 2 (EXTL2)3010.450.212.10 × 10−47.82 × 10−321.014149609
      Golgin B1 (GOLGB1)3220.440.202.28 × 10−48.28 × 10−319.5148596984
      Attractin (ATRN)4640.450.202.94 × 10−41.04 × 10−234.721450863
      Heat shock 70 kDa protein 12A (HSPA12A)1070.470.226.29 × 10−42.01 × 10−243.2119874213
      Afamin (AFM)4640.440.197.23 × 10−42.17 × 10−221.24501987(
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      )
      Sushi, von Willebrand factor type A, EGF and pentraxin domain-containing protein 1 (SVEP1)690.610.377.86 × 10−42.31 × 10−246.4148886654
      Aldehyde dehydrogenase 9 family member A1 (ALDH9A1)850.530.281.11 × 10−32.99 × 10−219.9115387104
      Suprabasin (SBSN)1210.530.281.88 × 10−34.42 × 10−239.538348366
      Plexin domain-containing protein 1 (PLXDC1)940.590.352.26 × 10−34.91 × 10−229.45011862
      Thirty-six proteins quantified by MS and estimated by LME modeling in >10#x0025; of the samples that were positively associated with HDL-C adjusting for fasting status (q < 0.05), listed by the strength of association (in increasing order of q).
      a Number of child plasma samples in which each protein was detected and quantified by MS. Children with plasma HDL-C concentrations below a detection limit (<15 mg/dl) were excluded (n = 36).
      b Percent change in plasma HDL-C of children per 100#x0025; (two times) increase in relative abundance of a protein.
      c GenInfo sequence number as assigned to all protein sequences by the NCBI at the National Library of Medicine, National Institutes of Health.
      d Proteins have been previously reported to be physically associated with HDL particles (

      The Davidson/Shah Lab. 2015. LDL and HDL Proteome Watch. Accessed September 7, 2018, at http://homepages.uc.edu/~davidswm/Labpage.html, .

      ).
      TABLE 5.Proteins negatively correlated with plasma HDL-C concentrations in children of rural Nepal aged 6–8 years (n = 464)
      Protein Namen
      Number of child plasma samples in which each protein was detected and quantified by MS. Children with plasma HDL-C concentrations below a detection limit (<15 mg/dl) were excluded (n = 36).
      rR2PqPercent Change
      Percent change in plasma HDL-C of children per 100#x0025; (two times) increase in relative abundance of a protein.
      Accession
      GenInfo sequence number as assigned to all protein sequences by the NCBI at the National Library of Medicine, National Institutes of Health.
      Reference
      Proteins have been previously reported to be physically associated with HDL particles (79).
      Complement component 9 (C9)464−0.450.201.28 × 10−57.59 × 10−4−20.74502511(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      )
      Orosomucoid 1 (ORM1)464−0.450.206.89 × 10−64.50 × 10−4−15.7167857790(
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Holzer M.
      • Wolf P.
      • Curcic S.
      • Birner-Gruenberger R.
      • Weger W.
      • Inzinger M.
      • El-Gamal D.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Psoriasis alters HDL composition and cholesterol efflux capacity.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      ,
      • Sreckovic I.
      • Birner-Gruenberger R.
      • Obrist B.
      • Stojakovic T.
      • Scharnagl H.
      • Holzer M.
      • Scholler M.
      • Philipose S.
      • Marsche G.
      • Lang U.
      • et al.
      Distinct composition of human fetal HDL attenuates its anti-oxidative capacity.
      ,
      • Watanabe J.
      • Charles-Schoeman C.
      • Miao Y.
      • Elashoff D.
      • Lee Y.Y.
      • Katselis G.
      • Lee T.D.
      • Reddy S.T.
      Proteomic profiling following immunoaffinity capture of high-density lipoprotein: association of acute-phase proteins and complement factors with proinflammatory high-density lipoprotein in rheumatoid arthritis.
      ,
      • Weichhart T.
      • Kopecky C.
      • Kubicek M.
      • Haidinger M.
      • Doller D.
      • Katholnig K.
      • Suarna C.
      • Eller P.
      • Tolle M.
      • Gerner C.
      • et al.
      Serum amyloid A in uremic HDL promotes inflammation.
      )
      Galectin 10 (CLC)377−0.480.233.85 × 10−52.09 × 10−3−7.020357559
      Complement factor I (CFI)464−0.440.201.92 × 10−46.96 × 10−3−25.3119392081(
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      )
      Leucine-rich α-2-glycoprotein 1 (LRG1)464−0.440.198.98 × 10−54.04 × 10−3−15.516418467(
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      )
      Beta-2-microglobulin (B2M)457−0.430.187.81 × 10−42.22 × 10−2−13.14757826(
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      ,
      • Shao B.
      • de Boer I.
      • Tang C.
      • Mayer P.S.
      • Zelnick L.
      • Afkarian M.
      • Heinecke J.W.
      • Himmelfarb J.
      A cluster of proteins implicated in kidney disease is increased in high-density lipoprotein isolated from hemodialysis subjects.
      )
      Fatty acid binding protein 12 (FABP12)77−0.370.141.18 × 10−33.14 × 10−2−9.2157427691
      Thymidine phosphorylase (TYMP)315−0.440.191.81 × 10−34.03 × 10−2−13.04503445
      Tubulin tyrosine ligase-like family member 8 (TTLL8)272−0.330.112.15 × 10−47.40 × 10−3−19.3122937293
      TNFAIP3 interacting protein 1 (TNIP1)356−0.450.208.82 × 10−42.45 × 10−2−13.6116256481
      Lysozyme (LYZ)457−0.440.191.07 × 10−32.92 × 10−2−15.04557894(
      • Holzer M.
      • Birner-Gruenberger R.
      • Stojakovic T.
      • El-Gamal D.
      • Binder V.
      • Wadsack C.
      • Heinemann A.
      • Marsche G.
      Uremia alters HDL composition and function.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      )
      Inter-α-trypsin inhibitor heavy chain family member 4 (ITIH4)464−0.450.201.25 × 10−33.19 × 10−2−27.231542984(
      • Vaisar T.
      • Pennathur S.
      • Green P.S.
      • Gharib S.A.
      • Hoofnagle A.N.
      • Cheung M.C.
      • Byun J.
      • Vuletic S.
      • Kassim S.
      • Singh P.
      • et al.
      Shotgun proteomics implicates protease inhibition and complement activation in the antiinflammatory properties of HDL.
      ,
      • Gordon S.M.
      • Deng J.
      • Lu L.J.
      • Davidson W.S.
      Proteomic characterization of human plasma high density lipoprotein fractionated by gel filtration chromatography.
      ,
      • Riwanto M.
      • Rohrer L.
      • Roschitzki B.
      • Besler C.
      • Mocharla P.
      • Mueller M.
      • Perisa D.
      • Heinrich K.
      • Altwegg L.
      • von Eckardstein A.
      • et al.
      Altered activation of endothelial anti- and proapoptotic pathways by high-density lipoprotein from patients with coronary artery disease: role of high-density lipoprotein-proteome remodeling.
      ,
      • Alwaili K.
      • Bailey D.
      • Awan Z.
      • Bailey S.D.
      • Ruel I.
      • Hafiane A.
      • Krimbou L.
      • Laboissiere S.
      • Genest J.
      The HDL proteome in acute coronary syndromes shifts to an inflammatory profile.
      ,
      • Gordon S.M.
      • Deng J.
      • Tomann A.B.
      • Shah A.S.
      • Lu L.J.
      • Davidson W.S.
      Multi-dimensional co-separation analysis reveals protein-protein interactions defining plasma lipoprotein subspecies.
      ,
      • Hortin G.L.
      • Shen R.F.
      • Martin B.M.
      • Remaley A.T.
      Diverse range of small peptides associated with high-density lipoprotein.
      ,
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      )
      Conserved oligomeric Golgi complex subunit 3 (COG3)202−0.490.241.69 × 10−34.02 × 10−2−12.413899251
      Heat shock 70 kDa protein 5 (glucose-regulated protein, 78 kDa) (HSPA5)458−0.420.172.01 × 10−34.30 × 10−2−19.116507237
      Thyroxine-binding globulin (SERPINA7)464−0.440.191.70 × 10−34.02 × 10−2−19.5205277441(
      • Mangé A.
      • Goux A.
      • Badiou S.
      • Patrier L.
      • Canaud B.
      • Maudelonde T.
      • Cristol J.P.
      • Solassol J.
      HDL proteome in hemodialysis patients: a quantitative nanoflow liquid chromatography-tandem mass spectrometry approach.
      )
      Actin-related protein 5 (ACTR5)233−0.420.177.08 × 10−42.05 × 10−2−13.7151301041
      aSixteen proteins quantified by MS and estimated by LME modeling in >10#x0025; of the samples that were negatively associated with HDL-C adjusting for fasting status (q < 0.05), listed by the strength of association (in increasing order of q).
      a Number of child plasma samples in which each protein was detected and quantified by MS. Children with plasma HDL-C concentrations below a detection limit (<15 mg/dl) were excluded (n = 36).
      b Percent change in plasma HDL-C of children per 100#x0025; (two times) increase in relative abundance of a protein.
      c GenInfo sequence number as assigned to all protein sequences by the NCBI at the National Library of Medicine, National Institutes of Health.
      d Proteins have been previously reported to be physically associated with HDL particles (

      The Davidson/Shah Lab. 2015. LDL and HDL Proteome Watch. Accessed September 7, 2018, at http://homepages.uc.edu/~davidswm/Labpage.html, .

      ).
      Figure thumbnail gr1
      Fig. 1Correlations among plasma proteins positively correlated (A) and negatively correlated (B) with plasma HDL-C concentrations (q < 0.05 and n > 100) in children of rural Nepal aged 6–8 years. The thickness of the lines reflects the strength of positive correlation coefficients between proteins (r ≥ 0.3 are presented). Circles and squares represent individual extracellular and intracellular proteins, respectively, indicated as their HUGO gene symbols. Dashed lines indicate molecular or functional clusters. Proteins with colors are mentioned in the text.

      Changes in relative abundance of proteins correlated with LDL-C, triglyceride, and HDL-C concentrations by inflammation status

      The relative abundance of proteins associated with the investigated lipids and lipoproteins was compared in children with inflammation (plasma AGP >1.0 g/l) to children without inflammation (AGP ≤1.0 g/l) (Fig. 2). Among proteins correlated with HDL-C, 10 were 4∼40#x0025; more abundant and 23 proteins were 3∼20#x0025; less abundant in children with inflammation, after adjusting for child sex, age, ethnicity, stunting, and underweight status and fasting status. Most proteins with higher and lower relative abundance in the presence of inflammation are negative and positive correlates of HDL-C, respectively. Thus, major structural proteins of HDL (apoA-I and apoA-II) and proteins involved in HDL biosynthesis (i.e., LCAT), vitamin transport (i.e., RBP4), protection against oxidative stress (i.e., PON1), and angiogenesis and tissue repair (i.e., ANTXR1 and ANTXR2), among others, were less abundant in children with inflammation than those without inflammation. An exception was SAA4, an apolipoprotein that was positively correlated with HDL-C (Table 4), but also a positive acute phase reactant, that was 12#x0025; higher in inflamed children. Among LDL and triglyceride proteomes, relative abundance of one (apoM) and four proteins (i.e., ANTXR2, RBP4, apoC-III, and PLTP), respectively, were reduced in children with inflammation compared with children without inflammation.
      Figure thumbnail gr2
      Fig. 2Percent difference in relative abundance of plasma proteins correlated with plasma LDL-C (white), triglyceride (gray), and HDL-C (black) concentrations in children with inflammation (plasma AGP concentration >1.0 g/l) compared with children without inflammation (AGP ≤1.0 g/l), adjusted for child sex, age, ethnicity, stunting, and underweight and fasting status (Benjamini-Hochberg corrected P value <0.05).

      DISCUSSION

      In this southern plains district of Nepal, reflecting undernourished living conditions for about 60#x0025; of the country's population and that typify a wider rural region of Gangetic South Asia, abnormal lipid and lipoprotein profiles were common in young school-aged children, characterized by elevated plasma triglycerides, low HDL-C concentrations, and subclinical inflammation. Our untargeted plasma proteomics approach revealed distinct distributions of 11, 12, and 52 plasma proteins systemically associated with LDL-C, triglyceride, and HDL-C concentrations, respectively, whose functions extend beyond canonical lipid transport and metabolism. Inflammation was associated with remarkable differences in relative protein abundance, especially among biomarkers linked to HDL-C. These results collectively suggest that the family of plasma proteomes correlated with circulating lipoprotein concentrations in children comprise heterogeneous sets of proteins of known and novel biological function, and which are likely affected along a gradient of subclinical inflammation. The results of this large population study also suggest that many proteins not necessarily carried by lipoproteins reflect systemic regulation of lipoprotein metabolism.
      The proteome of LDL-C in Nepalese children reveals a unique protein composition dominated by apoB. The strong positive correlation of apoB with LDL-C is consistent with evidence that apoB accounts for about 95#x0025; of the total protein mass in a LDL particle (
      • Segrest J.P.
      • Jones M.K.
      • De Loof H.
      • Dashti N.
      Structure of apolipoprotein B-100 in low density lipoproteins.
      ). Among the remaining proteins, kinesin family member 20B was the second strongest correlate of LDL-C, a motor protein known to transport intracellular vesicles along microtubules (