- Gu X.
- Trigatti B.
- Xu S.
- Acton S.
- Babitt J.
- Krieger M.
- Navab M.
- Imes S.S.
- Hama S.Y.
- Hough G.P.
- Ross L.A.
- Bork R.W.
- Valente A.J.
- Berliner J.A.
- Drinkwater D.C.
- Laks H.
MATERIALS AND METHODS
APOA1 expression/purification
14N/15N APOA1 preparation
Generation and characterization of 9.6 nm rHDL
Cys-proximity assay
Circular dichroism
Cholesterol efflux
LCAT activity assay (8.)
Surface plasmon resonance
Cross-linking rHDL to LCAT
Sample preparation for MS
MS analysis of the rHDL:LCAT complex
Identification and analysis of cross-linked peptides
- Melchior J.T.
- Walker R.G.
- Morris J.
- Jones M.K.
- Segrest J.P.
- Lima D.B.
- Carvalho P.C.
- Gozzo F.C.
- Castleberry M.
- Thompson T.B.
- et al.
Statistical methods
RESULTS
Cys-proximity assay, an independent test of APOA1 helical registry hypothesis


Generation and characterization of Cys-mutant rHDL particles

rHDL | POPC | FC | APOA1 | Particle Diameter (nm) | Particle Diameter (nm) EM | Helicity (%) |
---|---|---|---|---|---|---|
WT | 102.1 ± 3.9 | 7.7 ± 3.8 | 1.0 | 9.6 | 10.3 ± 1.6 | 82.5 ± 2.2 |
K133C | 92.6 ± 5.2 | 6.9 ± 2.6 | 1.0 | 9.6 | 10.5 ± 1.2 | 82.6 ± 2.0 |
K206C | 94.7 ± 8.4 | 6.9 ± 1.8 | 1.0 | 9.5 | 10.2 ± 1.4 | 81.6 ± 3.0 |
K195C | 94.4 ± 4.9 | 7.5 ± 1.7 | 1.0 | 9.6 | 9.1 ± 1.4 | 83.4 ± 4.1 |
Effect of helical registry on HDL function
Cholesterol efflux.

LCAT activation.

Effect of APOA1 helical registry on LCAT binding affinity
- Gu X.
- Wu Z.
- Huang Y.
- Wagner M.A.
- Baleanu-Gogonea C.
- Mehl R.A.
- Buffa J.A.
- DiDonato A.J.
- Hazen L.B.
- Fox P.L.
- et al.

Cross-linking LCAT to rHDL

Cross-link | Identified Peptide Cross-links | Modification | Peptide Mass (Da) | Number of Identifications | Experiment | ||
---|---|---|---|---|---|---|---|
ApoA1 | LCAT | ApoA1 | LCAT | ||||
K182 | K240 | 178-LEALKENGGAR-188 | 239-LKEEQR-244 | XL | 2,097.5 ± 0.5 | 28 | 1,2,3 |
K140 | K240 | 134-LHELQEKLSPLGEEMR-149 | 239-LKEEQR-244 | XL, H | 2,859.2 ± 41.1 | 15 | 1,2,3 |
K118 | K240 | 117-QKVEPLR-123 | 239-LKEEQR-244 | XL | 1,809.0 ± 0.0 | 13 | 1,2 |
K118 | S108 | 117-QKVEPLR-123 | 106-TYSVEYLDSSK-116 | XL | 2,298.4 ± 0.4 | 6 | 1,2 |
DISCUSSION
APOA1 helical registry in HDL
Functional impact of registry shifts
- Chroni A.
- Kan H.Y.
- Kypreos K.E.
- Gorshkova I.N.
- Shkodrani A.
- Zannis V.I.
- Gu X.
- Wu Z.
- Huang Y.
- Wagner M.A.
- Baleanu-Gogonea C.
- Mehl R.A.
- Buffa J.A.
- DiDonato A.J.
- Hazen L.B.
- Fox P.L.
- et al.
- Emmanuel F.
- Steinmetz A.
- Rosseneu M.
- Brasseur R.
- Gosselet N.
- Attenot F.
- Cuine S.
- Seguret S.
- Latta M.
- Fruchart J.C.

Acknowledgments
Supplementary Material
REFERENCES
- High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study.Am. J. Med. 1977; 62: 707-714
- Proteomic diversity of high density lipoproteins: our emerging understanding of its importance in lipid transport and beyond.J. Lipid Res. 2013; 54: 2575-2585
- The efficient cellular uptake of high density lipoprotein lipids via scavenger receptor class B type I requires not only receptor-mediated surface binding but also receptor-specific lipid transfer mediated by its extracellular domain.J. Biol. Chem. 1998; 273: 26338-26348
- Low dose apolipoprotein A-I rescues carotid arteries from inflammation in vivo.Atherosclerosis. 2008; 196: 240-247
- Monocyte transmigration induced by modification of low density lipoprotein in cocultures of human aortic wall cells is due to induction of monocyte chemotactic protein 1 synthesis and is abolished by high density lipoprotein.J. Clin. Invest. 1991; 88: 2039-2046
- Effect of the human plasma apolipoproteins and phosphatidylcholine acyl donor on the activity of lecithin: cholesterol acyltransferase.Biochemistry. 1975; 14: 3057-3064
- Lecithin-cholesterol acyltransferase in the metabolism of high-density lipoproteins.Biochim. Biophys. Acta. 1991; 1084: 205-220
- Discoidal complexes of A and C apolipoproteins with lipids and their reactions with lecithin: cholesterol acyltransferase.J. Biol. Chem. 1984; 259: 6369-6375
- Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL.J. Mol. Med. (Berl.). 2006; 84: 276-294
- The effect of natural LCAT mutations on the biogenesis of HDL.Biochemistry. 2015; 54: 3348-3359
- Point mutations in apolipoprotein A-I mimic the phenotype observed in patients with classical lecithin:cholesterol acyltransferase deficiency.Biochemistry. 2005; 44: 14353-14366
- Identification of a sequence of apolipoprotein A-I associated with the activation of lecithin:cholesterol acyltransferase.J. Biol. Chem. 2000; 275: 19707-19712
- Role of individual amino acids of apolipoprotein A-I in the activation of lecithin:cholesterol acyltransferase and in HDL rearrangements.J. Lipid Res. 2001; 42: 379-389
- Apolipoprotein A-I helix 6 negatively charged residues attenuate lecithin-cholesterol acyltransferase (LCAT) reactivity.Biochemistry. 2005; 44: 5409-5419
- The refined structure of nascent HDL reveals a key functional domain for particle maturation and dysfunction.Nat. Struct. Mol. Biol. 2007; 14: 861-868
- A consensus model of human apolipoprotein A-I in its monomeric and lipid-free state.Nat. Struct. Mol. Biol. 2017; 24: 1093-1099
- Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation.Proc. Natl. Acad. Sci. USA. 1997; 94: 12291-12296
- Apolipoprotein A-I structure and lipid properties in homogeneous, reconstituted spherical and discoidal high density lipoproteins.J. Biol. Chem. 1990; 265: 22123-22129
- A detailed molecular belt model for apolipoprotein A-I in discoidal high density lipoprotein.J. Biol. Chem. 1999; 274: 31755-31758
- Apolipoprotein A-I adopts a belt-like orientation in reconstituted high density lipoproteins.J. Biol. Chem. 2001; 276: 42965-42970
- The structure of human lipoprotein A-I. Evidence for the “belt” model.J. Biol. Chem. 1999; 274: 14541-14544
- Detailed molecular model of apolipoprotein A-I on the surface of high-density lipoproteins and its functional implications.Trends Cardiovasc. Med. 2000; 10: 246-252
- Conformational adaptation of apolipoprotein A-I to discretely sized phospholipid complexes.Biochemistry. 2007; 46: 7811-7821
- Intermolecular contact between globular N-terminal fold and C-terminal domain of ApoA-I stabilizes its lipid-bound conformation: studies employing chemical cross-linking and mass spectrometry.J. Biol. Chem. 2005; 280: 33015-33025
- Double superhelix model of high density lipoprotein.J. Biol. Chem. 2009; 284: 36605-36619
- Solution structure of discoidal high-density lipoprotein particles with a shortened apolipoprotein A-I.Nat. Struct. Mol. Biol. 2017; 24: 187-193
- A mass spectrometric determination of the conformation of dimeric apolipoprotein A-I in discoidal high density lipoproteins.Biochemistry. 2005; 44: 8600-8607
- Structure of apolipoprotein A-I in spherical high density lipoproteins of different sizes.Proc. Natl. Acad. Sci. USA. 2008; 105: 12176-12181
- Apolipoprotein A-I structural organization in high-density lipoproteins isolated from human plasma.Nat. Struct. Mol. Biol. 2011; 18: 416-422
- Structural determination of lipid-bound ApoA-I using fluorescence resonance energy transfer.J. Biol. Chem. 2000; 275: 37048-37054
- Purification of recombinant apolipoproteins A-I and A-IV and efficient affinity tag cleavage by tobacco etch virus protease.J. Lipid Res. 2009; 50: 1497-1504
- The structure of human apolipoprotein A-IV as revealed by stable isotope-assisted cross-linking, molecular dynamics, and small angle x-ray scattering.J. Biol. Chem. 2014; 289: 5596-5608
- A rapid method for the synthesis of protein-lipid complexes using adsorption chromatography.J. Lipid Res. 1988; 29: 380-384
- Protein measurement with the Folin phenol reagent.J. Biol. Chem. 1951; 193: 265-275
- Estimation of protein secondary structure from circular dichroism spectra: comparison of CONTIN, SELCON, and CDSSTR methods with an expanded reference set.Anal. Biochem. 2000; 287: 252-260
- DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data.Nucleic Acids Res. 2004; 32: W668-W673
- The role of hydrophobic and negatively charged surface patches of lipid-free apolipoprotein A-I in lipid binding and ABCA1-mediated cholesterol efflux.Biochim. Biophys. Acta. 2010; 1801: 64-69
- Effect of recombinant human lecithin cholesterol acyltransferase infusion on lipoprotein metabolism in mice.J. Pharmacol. Exp. Ther. 2010; 335: 140-148
- The amphipathic alpha-helical repeats of apolipoprotein A-I are responsible for binding of high density lipoproteins to HepG2 cells.J. Biol. Chem. 1991; 266: 6058-6067
- The spatial organization of apolipoprotein A-I on the edge of discoidal high density lipoprotein particles: a mass specrometry study.J. Biol. Chem. 2003; 278: 27199-27207
- An evaluation of the crystal structure of C-terminal truncated apolipoprotein A-I in solution reveals structural dynamics related to lipid binding.J. Biol. Chem. 2016; 291: 5439-5451
- Apolipoprotein A-I domains involved in lecithin-cholesterol acyltransferase activation. Structure:function relationships.J. Biol. Chem. 1993; 268: 21403-21409
- ABCA1 is the cAMP-inducible apolipoprotein receptor that mediates cholesterol secretion from macrophages.J. Biol. Chem. 2000; 275: 34508-34511
- Human plasma lecithin-cholesterol acyltransferase. An elucidation of the catalytic mechanism.J. Biol. Chem. 1986; 261: 7032-7043
- Assay for lecithin: cholesterol acyltransferase.Methods Enzymol. 1981; 72: 375-384
- A systematic investigation of structure/function requirements for the apolipoprotein A-I/lecithin cholesterol acyltransferase interaction loop of high-density lipoprotein.J. Biol. Chem. 2016; 291: 6386-6395
- Exchange of apolipoprotein A-I between lipid-associated and lipid-free states: a potential target for oxidative generation of dysfunctional high density lipoproteins.J. Biol. Chem. 2010; 285: 18847-18857
- The high-resolution crystal structure of human LCAT.J. Lipid Res. 2015; 56: 1711-1719
- Rotational and hinge dynamics of discoidal high density lipoproteins probed by interchain disulfide bond formation.Biochim. Biophys. Acta. 2012; 1821: 481-489
- The role of apolipoprotein AI domains in lipid binding.Proc. Natl. Acad. Sci. USA. 1996; 93: 13605-13610
- Structural insights into high density lipoprotein: old models and new facts.Front. Pharmacol. 2016; 6: 318
- Localization of an apolipoprotein A-I epitope critical for activation of lecithin-cholesterol acyltransferase.J. Biol. Chem. 1991; 266: 23886-23892
- Assignment of the binding site for haptoglobin on apolipoprotein A-I.J. Biol. Chem. 2005; 280: 1193-1198
- Apolipoprotein A-II-mediated conformational changes of apolipoprotein A-I in discoidal high density lipoproteins.J. Biol. Chem. 2012; 287: 7615-7625
- Tyrosine 192 in apolipoprotein A-I is the major site of nitration and chlorination by myeloperoxidase, but only chlorination markedly impairs ABCA1-dependent cholesterol transport.J. Biol. Chem. 2005; 280: 5983-5993
- The orientation of helix 4 in apolipoprotein A-I-containing reconstituted high density lipoproteins.J. Biol. Chem. 2000; 275: 17374-17380
- Effect of apoA-I mutations in the capacity of reconstituted HDL to promote ABCG1-mediated cholesterol efflux.PLoS One. 2013; 8: e67993
- Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice.Biochemistry. 2004; 43: 10442-10457
- The central type Y amphipathic alpha-helices of apolipoprotein AI are involved in the mobilization of intracellular cholesterol depots.Arch. Biochem. Biophys. 2008; 473: 34-41
- Sequence conservation of apolipoprotein A-I affords novel insights into HDL structure-function.J. Lipid Res. 2011; 52: 435-450
- Binding affinity and reactivity of lecithin cholesterol acyltransferase with native lipoproteins.Biochem. Biophys. Res. Commun. 1999; 258: 548-551
- Crystal structure of C-terminal truncated apolipoprotein A-I reveals the assembly of high density lipoprotein (HDL) by dimerization.J. Biol. Chem. 2011; 286: 38570-38582
- Identification of specific amphipathic alpha-helical sequence of human apolipoprotein A-IV involved in lecithin:cholesterol acyltransferase activation.J. Biol. Chem. 1994; 269: 29883-29890
Article info
Publication history
Footnotes
This work was supported by American Heart Association Grant 15PRE25220021 (predoctoral fellowship to A.L.C.) and National Institutes of Health Grants R01 HL127649 (to W.S.D.) and P01 HL12803 (to W.S.D. and J.P.S.). The mass spectrometry data was acquired in the University of Cincinnati Proteomics Laboratory under the direction of Ken Greis on a mass spectrometer funded in part through National Institutes of Health Grant RR027015 (S10 shared instrumentation grant; Gries). Electron microscopy image collection was performed in part through the use of the VUCell Imaging Shared Resource, which is supported by National Institutes of Health Grants CA68485, DK20593, DK58404, DK59637, and EY08126. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors declare no financial conflicts of interest.
The online version of this article (available at http://www.jlr.org) contains a supplement.
Abbreviations:
β-MEIdentification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy