- Perk J.
- De Backer G.
- Gohlke H.
- Graham I.
- Reiner Z.
- Verschuren M.
- Albus C.
- Benlian P.
- Boysen G.
- Cifkova R.
- et al.
- Singaraja R.R.
- Sivapalaratnam S.
- Hovingh K.
- Dube M.P.
- Castro-Perez J.
- Collins H.L.
- Adelman S.J.
- Riwanto M.
- Manz J.
- Hubbard B.
- et al.
- Holleboom A.G.
- Kuivenhoven J.A.
- Peelman F.
- Schimmel A.W.
- Peter J.
- Defesche J.C.
- Kastelein J.J.
- Hovingh G.K.
- Stroes E.S.
- Motazacker M.M.
- Candini C.
- Schimmel A.W.
- Peter J.
- Bochem A.E.
- Holleboom A.G.
- Vergeer M.
- Dullaart R.P.
- Dallinga-Thie G.M.
- Hovingh G.K.
- Khoo K.L.
- et al.
MATERIALS AND METHODS
Study subjects
DNA processing and sequencing
Annotation of genetic variants
Identification of rare large-effect variants
Polygenic trait score
Statistical analysis
RESULTS
Subject characteristics
Lipid Genetics Clinic | Montréal Heart Institute Biobank | University of Pennsylvania | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Low HDL-C | High HDL-C | Low HDL-C | High HDL-C | Low HDL-C | High HDL-C | |||||||
Males | Females | Males | Females | Males | Females | Males | Females | Males | Females | Males | Females | |
N | 90 | 46 | 60 | 59 | 131 | 70 | 280 | 67 | 202 | 147 | 217 | 482 |
Age | 48.1 ± 16.8 | 45.4 ± 12.5 | 58.5 ± 14.2 | 58.6 ± 10.5 | 64.4 ± 10.4 | 68.9 ± 8.4 | 65.6 ± 10.1 | 71.2 ± 7.2 | 56.0 ± 12.2 | 53.2 ± 15.0 | 58.7 ± 14.9 | 58.2 ± 11.7 |
BMI | 29.0 ± 5.6 | 28.8 ± 6.0 | 26.5 ± 3.7 | 25.3 ± 3.5 | 31.0 ± 5.2 | 31.4 ± 6.4 | 26.9 ± 4.5 | 26.4 ± 6.0 | 32.4 ± 5.0 | 34.5 ± 7.4 | 29.0 ± 5.0 | 27.2 ± 7.0 |
TC | 4.2 ± 1.4 | 5.8 ± 2.3 | 5.7 ± 1.4 | 6.9 ± 1.5 | 3.4 ± 1.1 | 3.7 ± 1.0 | 4.5 ± 1.0 | 5.2 ± 1.1 | 4.0 ± 1.1 | 4.5 ± 1.3 | 6.5 ± 1.6 | 6.4 ± 1.2 |
HDL-C | 0.6 ± 0.2 | 0.8 ± 0.2 | 2.1 ± 0.5 | 2.7 ± 0.7 | 0.7 ± 0.1 | 0.9 ± 0.1 | 1.7 ± 0.2 | 2.1 ± 0.3 | 0.8 ± 0.2 | 0.9 ± 0.2 | 2.5 ± 0.5 | 2.9 ± 0.5 |
LDL-C | 2.7 ± 1.3 | 4.0 ± 2.3 | 3.2 ± 1.4 | 3.7 ± 1.5 | 2.2 ± 1.0 | 2.2 ± 0.9 | 2.4 ± 0.9 | 2.5 ± 0.9 | 2.7 ± 1.3 | 3.2 ± 1.7 | 3.0 ± 1.2 | 3.6 ± 2.0 |
TG | 2.2 ± 1.3 | 2.0 ± 1.1 | 1.0 ± 0.5 | 1.2 ± 0.6 | 2.2 ± 0.7 | 2.3 ± 0.7 | 1.4 ± 0.6 | 1.3 ± 0.5 | 1.8 ± 0.7 | 1.6 ± 0.6 | 0.9 ± 0.4 | 0.9 ± 0.4 |
CVD Hx (%) | 45.2 | 21.9 | 29.8 | 16.7 | 60.3 | 67.1 | 40.7 | 31.3 | 11.9 | 12.9 | 6.0 | 4.1 |
Rare large-effect variants in HDL-C-altering genes

Measuring accumulation of common small-effect variants using a polygenic trait score
Chr:Position | rsID | Gene | High HDL-C-Associated Allele | Effect Size | Relation with HDL-C or HDL Metabolism |
---|---|---|---|---|---|
1:182199750 | rs1689800 | ZNF648 | A | 0.034 | Mechanism underlying association is poorly characterized. |
1:230159944 | rs4846914 | GALNT2 | A | 0.048 | Recently confirmed as an important determinant of HDL-C ( 43 ) |
9:104902020 | rs1883025 | ABCA1 | C | 0.07 | Causative gene for Tangier disease ( 6 ) |
12:109562388 | rs7134594 | MVK | T | 0.035 | MVK encodes mevalonate kinase, which is involved in biosynthesis of cholesterol and isoprenoids ( 44 ), although the closely linked MMAB gene encoding cob(I)alamin adenosyltransferase may actually underlie the HDL-C association at this locus (45 ). |
12:124777047 | rs838880 | SCARB1 | C | 0.048 | Causative gene for scavenger receptor B1 deficiency |
15:58391167 | rs1532085 | LIPC | A | 0.107 | Causative gene for hepatic lipase deficiency |
16:56959412 | rs3764261 | CETP | A | 0.241 | Causative gene for cholesteryl ester transfer protein deficiency |
16:81501185 | rs2925979 | CMIP | C | 0.035 | Mechanism underlying association is poorly characterized. |
19:8368312 | rs7255436 | ANGPTL4 | A | 0.032 | Regulates LPL with reciprocal effects on triglycerides and HDL-C ( 46 ) |


External validation of polygenic trait score
Top 10th Percentile of PTS | Bottom 10th Percentile of PTS | |||||||
---|---|---|---|---|---|---|---|---|
Control | M+ | M− | OR (95% CI, P) | Control | M+ | M− | OR (95% CI, P) | |
Lipid Genetics Clinic | 52/503 | 4/41 | 4/95 | M+: 0.94 (0.27–2.90, 0.583) | 51/503 | 8/41 | 24/95 | M+: 2.15 (0.86–5.19, 0.063) |
M−: 0.38 (0.11–1.13, 0.038) | M−: 3.00 (1.67–5.35, <0.0001) | |||||||
MHI Biobank | 119/1,198 | 3/22 | 14/179 | M+: 1.43 (0.33–5.21, 0.380) | 120/1,198 | 1/22 | 24/179 | M+: 0.43 (0.02–3.03, 0.341) |
M−: 0.77 (0.41–1.41, 0.228) | M−: 1.39 (0.85–2.27, 0.107) | |||||||
UPenn | 52/503 | NA | 31/349 | M+: NA | 51/503 | NA | 40/349 | M+: NA |
M−: 0.85 (0.52–1.38, 0.280) | M−: 1.15 (0.72–1.82, 0.307) | |||||||
Overall | 171/1,701 | 7/63 | 49/623 | M+: 1.12 (0.46–2.60, 0.455) | 171/1,701 | 9/63 | 88/623 | M+: 1.49 (0.67–3.20, 0.186) |
M−: 0.76 (0.54–1.08, 0.063) | M−: 1.47 (1.11–1.96, <0.01) |
Top 10th Percentile of PTS | Bottom 10th Percentile of PTS | |||||||
---|---|---|---|---|---|---|---|---|
Control | M+ | M− | OR (95% CI, P) | Control | M+ | M− | OR (95% CI, P) | |
Lipid Genetics Clinic | 52/503 | 2/15 | 21/104 | M+: 1.33 (0.20–6.47, 0.476) | 51/503 | 0/15 | 6/104 | M+: 0 (0–3.11, 0.207) |
M−: 2.19 (1.21–3.96, <0.01) | M−: 0.54 (0.20–1.36, 0.110) | |||||||
MHI Biobank | 119/1,198 | 4/36 | 59/311 | M+: 1.13 (0.33–3.44, 0.490) | 120/1,198 | 2/36 | 19/311 | M+: 0.53 (0.09–2.29, 0.291) |
M−: 2.12 (1.49–3.03, <0.0001) | M−: 0.59 (0.34–0.99, 0.019) | |||||||
UPenn | 52/503 | NA | 145/699 | M+: NA | 51/503 | NA | 32/699 | M+: NA |
M−: 2.27 (1.59–3.24, <0.0001) | M−: 0.43 (0.26–0.69, <0.0001) | |||||||
Overall | 171/1,701 | 6/51 | 225/1,114 | M+: 1.19 (0.45–2.97, 0.412) | 171/1,701 | 2/51 | 57/1,114 | M+: 0.37 (0.6–1.55, 0.106) |
M−: 2.27 (1.82–2.83, <0.0001) | M−: 0.48 (0.35–0.67, <0.0001) |
DISCUSSION
- Santos R.D.
- Gidding S.S.
- Hegele R.A.
- Cuchel M.A.
- Barter P.J.
- Watts G.F.
- Baum S.J.
- Catapano A.L.
- Chapman M.J.
- Defesche J.C.
- et al.
Supplementary Material
REFERENCES
- The high-density lipoprotein puzzle: why classic epidemiology, genetic epidemiology, and clinical trials conflict?.Arterioscler. Thromb. Vasc. Biol. 2016; 36: 777-782
- Lipid-related markers and cardiovascular disease prediction.JAMA. 2012; 307: 2499-2506
- European guidelines on cardiovascular disease prevention in clinical practice (version 2012). The fifth joint task force of the European Society of Cardiology and other societies on cardiovascular disease prevention in clinical practice (constituted by representatives of nine societies and by invited experts).Eur. Heart J. 2012; 33 ([Erratum. 2012. Eur. Heart J. 33: 2126.]): 1635-1701
- Lipids and lipoproteins and risk of different vascular events in the MRC/BHF heart protection study.Circulation. 2012; 125: 2469-2478
- Impact of HDL genetic risk scores on coronary artery calcified plaque and mortality in individuals with type 2 diabetes from the diabetes heart study.Cardiovasc. Diabetol. 2013; 12: 95
- HDL re-examined.Curr. Opin. Lipidol. 2015; 26: 127-132
- Plasma lipoproteins: genetic influences and clinical implications.Nat. Rev. Genet. 2009; 10: 109-121
- Multiple rare alleles contribute to low plasma levels of HDL cholesterol.Science. 2004; 305: 869-872
- Evidence of a polygenic origin of extreme high-density lipoprotein cholesterol levels.Arterioscler. Thromb. Vasc. Biol. 2013; 33: 1521-1528
- Genetic causes of high and low serum HDL-cholesterol.J. Lipid Res. 2010; 51: 2032-2057
- Genetics of lipid and lipoprotein disorders and traits.Curr. Genet. Med. Rep. 2016; 4: 130-141
- Mutations in ABC1 in Tangier disease and familial high-density lipoprotein deficiency.Nat. Genet. 1999; 22: 336-345
- Two novel molecular defects in the lcat gene are associated with fish eye disease.Arterioscler. Thromb. Vasc. Biol. 1996; 16: 294-303
- Apolipoprotein A-I Q[-2]x causing isolated apolipoprotein A-I deficiency in a family with analphalipoproteinemia.J. Clin. Invest. 1994; 93: 223-229
- Diagnosis and treatment of high density lipoprotein deficiency.Prog. Cardiovasc. Dis. 2016; 59: 97-106
- Hepatic lipase deficiency. Clinical, biochemical, and molecular genetic characteristics.Arterioscler. Thromb. 1993; 13: 720-728
- Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gene mutation.N. Engl. J. Med. 1990; 323: 1234-1238
- Rare variant in scavenger receptor BI raises HDL cholesterol and increases risk of coronary heart disease.Science. 2016; 351: 1166-1171
- Genetics of coronary artery disease.Circ. Res. 2016; 118: 564-578
- Rare and common genetic events in type 2 diabetes: what should biologists know?.Cell Metab. 2015; 21: 357-368
- Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case-control study.Lancet. 2013; 381: 1293-1301
- Polygenic versus monogenic causes of hypercholesterolemia ascertained clinically.Arterioscler. Thromb. Vasc. Biol. 2016; 36: 2439-2445
- The impact of partial and complete loss-of-function mutations in endothelial lipase on high-density lipoprotein levels and functionality in humans.Circ Cardiovasc Genet. 2013; 6: 54-62
- Segregation of LIPG, CETP, and GALNT2 mutations in Caucasian families with extremely high HDL cholesterol.PLoS One. 2012; 7: e37437
- Genetic etiology of isolated low HDL syndrome: incidence and heterogeneity of efflux defects.Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1139-1145
- High prevalence of mutations in LCAT in patients with low HDL cholesterol levels in the Netherlands: identification and characterization of eight novel mutations.Hum. Mutat. 2011; 32: 1290-1298
- Identification and characterization of novel loss of function mutations in ATP-binding cassette transporter a1 in patients with low plasma high-density lipoprotein cholesterol.Atherosclerosis. 2010; 213: 492-498
- Targeted next-generation sequencing to diagnose disorders of HDL cholesterol.J. Lipid Res. 2015; 56: 1993-2001
- Lipid research clinics program reference values for hyperlipidemia and hypolipidemia.JAMA. 1983; 250: 1869-1872
- Whole-genome sequencing in French Canadians from Quebec.Hum. Genet. 2016; 135: 1213-1221
- Loss-of-function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans.J. Clin. Invest. 2009; 119: 1042-1050
- Lipidseq: a next-generation clinical resequencing panel for monogenic dyslipidemias.J. Lipid Res. 2014; 55: 765-772
- ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.Nucleic Acids Res. 2010; 38: e164
- The human gene mutation database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine.Hum. Genet. 2014; 133: 1-9
- A global reference for human genetic variation.Nature. 2015; 526: 68-74
- Analysis of protein-coding genetic variation in 60,706 humans.Nature. 2016; 536: 285-291
- Predicting functional effect of human missense mutations using PolyPhen-2.Curr. Protoc. Hum. Genet. 2013; 7: 7.20.1-7.20.41
- Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.Nat. Protoc. 2009; 4: 1073-1081
- A general framework for estimating the relative pathogenicity of human genetic variants.Nat. Genet. 2014; 46: 310-315
- RNA splicing. The human splicing code reveals new insights into the genetic determinants of disease.Science. 2015; 347: 1254806
- Prediction of mutant mRNA splice isoforms by information theory-based exon definition.Hum. Mutat. 2013; 34: 557-565
- Discovery and refinement of loci associated with lipid levels.Nat. Genet. 2013; 45: 1274-1283
- Loss of function of GALNT2 lowers high-density lipoproteins in humans, nonhuman primates, and rodents.Cell Metab. 2016; 24: 234-245
- In silico prediction of the effects of mutations in the human mevalonate kinase gene: towards a predictive framework for mevalonate kinase deficiency.Ann. Hum. Genet. 2015; 79: 451-459
- Allelic expression imbalance at high-density lipoprotein cholesterol locus MMAB-MVK.Hum. Mol. Genet. 2010; 19: 1921-1929
- Regulation of lipoprotein lipase by ANGPTL4.Trends Endocrinol. Metab. 2014; 25: 146-155
- Whole-genome sequence-based analysis of high-density lipoprotein cholesterol.Nat. Genet. 2013; 45: 899-901
- Current applications of genetic risk scores to cardiovascular outcomes and subclinical phenotypes.Curr. Epidemiol. Rep. 2015; 2: 180-190
- Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study.Lancet. 2012; 380: 572-580
- Diagnostic yield of sequencing familial hypercholesterolemia genes in patients with severe hypercholesterolemia.J. Am. Coll. Cardiol. 2016; 67: 2578-2589
- Defining severe familial hypercholesterolaemia and the implications for clinical management: a consensus statement from the International Atherosclerosis Society Severe Familial Hypercholesterolemia Panel.Lancet Diabetes Endocrinol. 2016; 4: 850-861
- HDL mimetic cer-001 targets atherosclerotic plaques in patients.Atherosclerosis. 2016; 251: 381-388
Article info
Publication history
Footnotes
Abbreviations:
1KGThis work was supported by the Jacob J. Wolfe Distinguished Medical Research Chair, the Edith Schulich Vinet Research Chair in Human Genetics, and the Martha G. Blackburn Chair in Cardiovascular Research, as well as operating grants from the Canadian Institutes of Health Research (Foundation Award), the Heart and Stroke Foundation of Ontario (G-15-0009214), and Genome Canada, through Genome Quebec (award 4530) (R.A.H.). This work was also supported by the Montréal Heart Institute foundations and the Desmarais family, in support of Genome Quebec/Genome Canada. R.A.H. is a consultant and speakers' bureau member for Aegerion, Amgen, Boston Heart Diagnostics, Cerenis, Eli Lilly, Gemphire, Pfizer, and Sanofi. The other authors have no disclosures.
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy