- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
MATERIALS AND METHODS
Study population
Postprandial phenotypes
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
Epigenome analysis
Genome-wide genotyping
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
- Aslibekyan S.
- Kabagambe E.K.
- Irvin M.R.
- Straka R.J.
- Borecki I.B.
- Tiwari H.K.
- Tsai M.Y.
- Hopkins P.N.
- Shen J.
- Lai C.Q.
- et al.
Statistical methods
Data analysis design.
Epigenome-wide association.
Estimation of genetic and epigenetic variance contribution
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
Relationship between epigenetic markers and genetic variants
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
RESULTS
Demographic and clinical characteristics
Discovery Sample (n = 653) | Replication Sample (n = 326) | |||||
---|---|---|---|---|---|---|
Men | Women | Both | Men | Women | Both | |
n | 313 | 340 | 653 | 156 | 170 | 326 |
Age, years | 48.1 (15.9) | 47.9 (16.4) | 48.0 (16.2) | 50.2 (17.3) | 47.6 (16.4) | 48.8 (16.9) |
BMI, kg/m2 | 28.3 (4.6) | 28.2 (6.4) | 28.2 (5.6) | 28.5 (5.0) | 28.2 (6.4) | 28.3 (5.8) |
Waist, inches | 100.0 (13.8) | 93.2 (17.8) | 96.5 (16.4) | 100.6 (13.6) | 93.1 (16.9) | 96.7 (15.8) |
TG at baseline, mg/dl | 149.1 (111.0) | 125.7 (82.2) | 136.9 (97.7) | 144.4 (90.1) | 127.2 (87.3) | 135.4 (89.0) |
TG uptake slope | 0.18 (0.03) | 0.17 (0.03) | 0.18 (0.03) | 0.18 (0.03) | 0.18 (0.03) | 0.18 (0.03) |
TG clearance slope | −0.06 (0.05) | −0.07 (0.05) | −0.07 (0.05) | −0.05 (0.05) | −0.07 (0.05) | −0.06 (0.05) |
TG AUC | 31.6 (3.4) | 30.4 (3.3) | 30.9 (3.4) | 31.6 (3.3) | 30.3 (3.3) | 30.9 (3.4) |
TG AUI | 2.5 (0.5) | 2.4 (0.5) | 2.4 (0.6) | 2.6 (0.6) | 2.4 (0.5) | 2.5 (0.6) |
Epigenome-wide association of PPL
Marker | Chr:Position | Gene | Discovery (n = 653) | Replication (n = 326) | ||
---|---|---|---|---|---|---|
β (SE) | P | β (SE) | P | |||
cg00574958 | 11:68607622 | CPT1A | −33.24 (4.91) | 3.02 × 10−11 | −50.84 (6.27) | 1.18 × 10−14 |
cg17058475 | 11:68607737 | CPT1A | −19.93 (3.57) | 3.58 × 10−8 | −33.53 (5.01) | 1.01 × 10−10 |
cg12556569 | 11:116664039 | APOA5 | 3.41 (0.63) | 9.52 × 10−8 | 2.61 (0.92) | 4.97 × 10−3 |
cg11024682 | 17:17730094 | SREBF1 | 25.41 (4.64) | 6.10 × 10−8 | 16.77 (6.03) | 5.74 × 10−3 |
Marker | Chr:Position | Gene | β (SE) | P | AUC Variance Explained |
---|---|---|---|---|---|
cg16464007 | 3:188002729 | LPP | 12.81 (2.32) | 4.50 × 10−8 | 0.030 |
cg00574958 | 11:68607622 | CPT1A | −38.50 (3.77) | 2.69 × 10−23 | 0.097 |
cg09737197 | 11:68607675 | CPT1A | −16.79 (2.75) | 1.39 × 10−9 | 0.037 |
cg17058475 | 11:68607737 | CPT1A | −23.86 (2.84) | 1.39 × 10−16 | 0.068 |
cg01082498 | 11:68608225 | CPT1A | −43.83 (7.34) | 3.33 × 10−9 | 0.036 |
cg12556569 | 11:116664039 | APOA5 | 2.94 (0.52) | 2.30 × 10−8 | 0.032 |
cg11024682 | 17:17730094 | SREBF1 | 20.64 (3.63) | 1.68 × 10−8 | 0.032 |
cg06500161 | 21:43656587 | ABCG1 | 16.59 (2.80) | 4.25 × 10−9 | 0.035 |

Phenotypic variation of PPL explained by the eight identified methylation sites
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
Correlation between identified methylation sites and PPL-associated variants
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.

DISCUSSION
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
- Demerath E.W.
- Guan W.
- Grove M.L.
- Aslibekyan S.
- Mendelson M.
- Zhou Y.H.
- Hedman A.K.
- Sandling J.K.
- Li L.A.
- Irvin M.R.
- et al.
- Demerath E.W.
- Guan W.
- Grove M.L.
- Aslibekyan S.
- Mendelson M.
- Zhou Y.H.
- Hedman A.K.
- Sandling J.K.
- Li L.A.
- Irvin M.R.
- et al.
- Demerath E.W.
- Guan W.
- Grove M.L.
- Aslibekyan S.
- Mendelson M.
- Zhou Y.H.
- Hedman A.K.
- Sandling J.K.
- Li L.A.
- Irvin M.R.
- et al.
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
- Diabetes Genetics Replication and Meta-analysis (DIAGRAM) Consortium
- Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium
- South Asian Type 2 Diabetes (SAT2D) Consortium
- Mexican American Type 2 Diabetes (MAT2D) Consortium
- Type 2 Diabetes Genetic Exploration by Nex-generation Sequencing in Multi-ethnic Samples (T2D-GENES) Consortium
- Mahajan A.
- Go M.J.
- Zhang W.
- Below J.E.
- Gaulton K.J.
- et al.
- Palmer N.D.
- Goodarzi M.O.
- Langefeld C.D.
- Wang N.
- Guo X.
- Taylor K.D.
- Fingerlin T.E.
- Norris J.M.
- Buchanan T.A.
- Xiang A.H.
- et al.
- Demerath E.W.
- Guan W.
- Grove M.L.
- Aslibekyan S.
- Mendelson M.
- Zhou Y.H.
- Hedman A.K.
- Sandling J.K.
- Li L.A.
- Irvin M.R.
- et al.
- Wojczynski M.K.
- Parnell L.D.
- Pollin T.I.
- Lai C.Q.
- Feitosa M.F.
- O'Connell J.R.
- Frazier-Wood A.C.
- Gibson Q.
- Aslibekyan S.
- Ryan K.A.
- et al.
REFERENCES
- Postprandial lipemia and coronary risk.Curr. Atheroscler. Rep. 2000; 2: 232-242
- Atherogenesis: a postprandial phenomenon.Circulation. 1979; 60: 473-485
- Postprandial lipemia as a cardiometabolic risk factor.Curr. Med. Res. Opin. 2014; 30: 1489-1503
- Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies.Circulation. 2007; 115: 450-458
- Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women.JAMA. 2007; 298: 299-308
- Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women.JAMA. 2007; 298: 309-316
- Association of fasting and nonfasting serum triglycerides with cardiovascular disease and the role of remnant-like lipoproteins and small dense LDL.Curr. Opin. Lipidol. 2008; 19: 355-361
- Biological, clinical and population relevance of 95 loci for blood lipids.Nature. 2010; 466: 707-713
- Hypertriglyceridemia in the genomic era: a new paradigm.Endocr. Rev. 2015; 36: 131-147
- Genome-wide association study of triglyceride response to a high-fat meal among participants of the NHLBI Genetics of Lipid Lowering Drugs and Diet Network (GOLDN).Metabolism. 2015; 64: 1359-1371
- A null mutation in human APOC3 confers a favorable plasma lipid profile and apparent cardioprotection.Science. 2008; 322: 1702-1705
- Fenofibrate effect on triglyceride and postprandial response of apolipoprotein A5 variants: the GOLDN study.Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1417-1425
- Genetics, postprandial lipemia and obesity.Nutr. Metab. Cardiovasc. Dis. 2001; 11: 118-133
- Epigenetics: the link between nature and nurture.Mol. Aspects Med. 2013; 34: 753-764
- Epigenetic germline inheritance of diet-induced obesity and insulin resistance.Nat. Genet. 2016; 48: 497-499
- Paternal B vitamin intake is a determinant of growth, hepatic lipid metabolism and intestinal tumor volume in female Apc1638N mouse offspring.PLoS One. 2016; 11: e0151579
- Epigenetics: a molecular link between environmental factors and type 2 diabetes.Diabetes. 2009; 58: 2718-2725
- Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation.J. Nutr. Biochem. 2012; 23: 853-859
- Physical inactivity interacts with an endothelial lipase polymorphism to modulate high density lipoprotein cholesterol in the GOLDN study.Atherosclerosis. 2009; 206: 500-504
- Postprandial lipemia and remnant lipoproteins.Clin. Lab. Med. 2006; 26: 773-786
- Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference.Obesity (Silver Spring). 2015; 23: 1493-1501
- Epigenome-wide association study of fasting blood lipids in the Genetics of Lipid-lowering Drugs and Diet Network study.Circulation. 2014; 130: 565-572
- Genome-wide DNA methylation analysis of systemic lupus erythematosus reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell populations.PLoS Genet. 2013; 9: e1003678
- Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods.PLoS One. 2011; 6: e17238
- Epigenome-wide association study of fasting measures of glucose, insulin, and HOMA-IR in the Genetics of Lipid Lowering Drugs and Diet Network study.Diabetes. 2014; 63: 801-807
- A genome-wide association study of inflammatory biomarker changes in response to fenofibrate treatment in the Genetics of Lipid Lowering Drug and Diet Network.Pharmacogenet. Genomics. 2012; 22: 191-197
- Genetic analysis of 16 NMR-lipoprotein fractions in humans, the GOLDN study.Lipids. 2013; 48: 155-165
- Variance component model to account for sample structure in genome-wide association studies.Nat. Genet. 2010; 42: 348-354
- Coefficients of inbreeding and relationship.Am. Nat. 1922; 56: 330-338
- The NHGRI GWAS catalog, a curated resource of SNP-trait associations.Nucleic Acids Res. 2014; 42: D1001-D1006
- CardioGxE, a catalog of gene-environment interactions for cardiometabolic traits.BioData Min. 2014; 7: 21
- DNA methylation of lipid-related genes affects blood lipid levels.Circ Cardiovasc Genet. 2015; 8: 334-342
- Methylation at CPT1A locus is associated with lipoprotein subfraction profiles.J. Lipid Res. 2014; 55: 1324-1330
- Association of DNA methylation at CPT1A locus with metabolic syndrome in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study.PLoS One. 2016; 11: e0145789
- Epigenome-wide association study (EWAS) of BMI, BMI change and waist circumference in African American adults identifies multiple replicated loci.Hum. Mol. Genet. 2015; 24: 4464-4479
- SNPs located at CpG sites modulate genome-epigenome interaction.Epigenetics. 2013; 8: 802-806
- SREBF1 gene variations modulate insulin sensitivity in response to a fish oil supplementation.Lipids Health Dis. 2014; 13: 152
- The epigenetic signature of subcutaneous fat cells is linked to altered expression of genes implicated in lipid metabolism in obese women.Clin. Epigenetics. 2015; 7: 93
- Plasma apolipoprotein B-48 transport in obese men: a new tracer kinetic study in the postprandial state.J. Clin. Endocrinol. Metab. 2014; 99: E122-E126
- Obesity and postprandial lipemia in adolescents: risk factors for cardiovascular disease.Endocrinol. Nutr. 2012; 59: 131-139
- Influence of the APOA5 locus on plasma triglyceride, lipoprotein subclasses, and CVD risk in the Framingham Heart Study.J. Lipid Res. 2004; 45: 2096-2105
- The functional interaction on in vitro gene expression of APOA5 SNPs, defining haplotype APOA52, and their paradoxical association with plasma triglyceride but not plasma apoAV levels.Biochim. Biophys. Acta. 2008; 1782: 447-452
- Epipolymorphisms within lipoprotein genes contribute independently to plasma lipid levels in familial hypercholesterolemia.Epigenetics. 2014; 9: 718-729
- SREBP-1, a basic-helix-loop-helix-leucine zipper protein that controls transcription of the low density lipoprotein receptor gene.Cell. 1993; 75: 187-197
- MicroRNAs in the onset and development of cardiovascular disease.Clin. Sci. (Lond.). 2014; 126: 183-194
- Non-coding RNAs and lipid metabolism.Int. J. Mol. Sci. 2014; 15: 13494-13513
- MicroRNA-33 and the SREBP host genes cooperate to control cholesterol homeostasis.Science. 2010; 328: 1566-1569
- miR-33a/b contribute to the regulation of fatty acid metabolism and insulin signaling.Proc. Natl. Acad. Sci. USA. 2011; 108: 9232-9237
- Associations of the SREBP-1c gene polymorphism with gender-specific changes in serum lipids induced by a high-carbohydrate diet in healthy Chinese youth.Appl. Physiol. Nutr. Metab. 2011; 36: 226-232
- miR-33 links SREBP-2 induction to repression of sterol transporters.Proc. Natl. Acad. Sci. USA. 2010; 107: 12228-12232
- Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility.Nat. Genet. 2014; 46: 234-244
- Genetic variants associated with quantitative glucose homeostasis traits translate to type 2 diabetes in Mexican Americans: The GUARDIAN (Genetics Underlying Diabetes in Hispanics) Consortium.Diabetes. 2015; 64: 1853-1866
- Linkage and genome-wide association analysis of obesity-related phenotypes: association of weight with the MGAT1 gene.Obesity (Silver Spring). 2010; 18: 803-808
- An epigenetic map of age-associated autosomal loci in northern European families at high risk for the metabolic syndrome.Clin. Epigenetics. 2015; 7: 12
- Pathway-based genome-wide association studies for plasma triglycerides in obese females and normal-weight controls.PLoS One. 2015; 10: e0134923
- Adaptive genetic variation and heart disease risk.Curr. Opin. Lipidol. 2010; 21: 116-122
- Postprandial lipoprotein metabolism in normal and obese subjects: comparison after the vitamin A fat-loading test.J. Clin. Endocrinol. Metab. 1990; 71: 1041-1050
- Postprandial triglyceride response in normolipidemic, hyperlipidemic and obese subjects - the influence of polydextrose, a non-digestible carbohydrate.Nutr. J. 2015; 14: 23
- Finding the missing heritability of complex diseases.Nature. 2009; 461: 747-753
- Blood lipids influence DNA methylation in circulating cells.Genome Biol. 2016; 17: 138
- Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes.Nat. Commun. 2016; 7: 11089
Article info
Publication history
Footnotes
This work was funded by the U.S. Department of Agriculture under agreement number 8050-51000-098-00D and by National Heart, Lung, and Blood Institute Grant U01-HL072524-04. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of the authors and do not necessarily reflect the view of the US Department of Agriculture. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. The USDA is an equal opportunity provider and employer.
Abbreviations: AUC
Identification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy