Advertisement

Lipid topogenesis

Open AccessPublished:March 01, 1981DOI:https://doi.org/10.1016/S0022-2275(20)34952-X
      This paper is only available as a PDF. To read, Please Download here.
      Investigations of the topography of glycerolipid synthetic enzymes within the transverse plane of microsomal vesicles indicated an exclusive cytoplasmic surface location of active sites. Evidence was derived from studies employing proteases and other impermeant inhibitors, from investigations of latency and substrate permeation, and from localization of products. These studies strongly suggest a total asymmetric synthesis of glycerolipids on the cytoplasmic surface of the endoplasmic reticulum. The data are critically reviewed, emphasizing the importance of appropriate controls for topographical studies of microsomal enzymes. The limited data on the location and topography of other enzymes of complex lipid metabolism in microsomes, peroxisomes, mitochondria, and other membranes are also reviewed. These new findings have important implications for the processes of "lipid topogenesis" which encompass complex lipid synthesis, the integration of lipids into membranes, and lipid translocation across membranes. Later events of lipid topogenesis involve lipid movement to other membranes and structures, the sorting of complex lipids from each other to assemble structures of distinct lipid composition, and the formation and maintenance of lipid asymmetry.

      REFERENCES

        • Milstein C.
        • Brownlee G.G.
        • Harrison T.M.
        • Matthews M.B.
        A possible precursor of immunoglobulin light chains.
        Nature (London) New Biol. 1972; 239: 117-120
        • Palade G.
        Intracellular aspects of the process of protein synthesis.
        Science. 1975; 189: 347-358
        • Rothman J.E.
        • Lenard J.
        Membrane asymmetry.
        Science. 1977; 195: 743-753
        • Lodish H.F.
        • Rothman J.E.
        The assembly of cell membranes.
        Sci. Am. 1979; 240: 48-63
        • Wickner W.
        The assembly of proteins into biological membranes: The membrane trigger hypothesis.
        Ann. Rev. Biochem. 1979; 48: 23-45
        • Blobel G.
        Intracellular protein topogenesis.
        Proc. Natl. Acad. Sci. USA. 1980; 77: 1496-1500
        • Wickner W.T.
        How do proteins assemble into membranes?.
        Science. 1980; 210: 861-868
        • Rothman J.E.
        • Fine R.E.
        Coated vesicles transport newly synthesized membrane glycoproteins from endoplasmic reticulum to plasma membrane in two successive stages.
        Proc. Natl. Acad. Sci. USA. 1980; 77: 780-784
        • Schmidt M.F.G.
        • Schlesinger M.J.
        Fatty acid binding to vesicular stomatitis virus glycoprotein: a new type of post-translational modification of the viral glycoprotein.
        Cell. 1979; 17: 813-819
        • Schmidt M.F.G.
        • Bracha M.
        • Schlesinger M.J.
        Evidence for covalent attachment of fatty acids to Sindbis virus glycoproteins.
        Proc. Natl. Acad. Sci. USA. 1979; 76: 1687-1691
        • Snyder F.
        Ether Lipids.
        Chemistry and Biology. Academic Press, New York1972
        • Wykle R.L.
        • Snyder F.
        Microsomal enzymes involved in the metabolism of ether-linked glycerolipids and their precursors in mammals.
        in: Martouosi A. Enzymes of Biological Membranes. 2. Plenum Press, New York1976: 87-117
        • Dawson G.
        Glycolipid biosynthesis.
        in: Horowitz M.I. Pigman W. The Glycoconjugates. 2. Academic Press, Inc., New York1978: 255
        • Fleischer B.
        Localization of some glycolipid glycosylating enzymes in the Golgi apparatus of rat kidney.
        J. Supramol. Struct. 1977; 7: 79-89
        • Siperstein M.D.
        Regulation of cholesterol biosynthesis in normal and malignant tissues.
        in: Horecker B.L. Stadtman E.R. Current Topics in Cellular Regulation. 2. Academic Press, New York1970: 65-100
        • van Zoelen E.J.J.
        • de Kruijff B.
        • van Deenen L.L.M.
        Protein-mediated transbilayer movement of lysophosphatidylcholine in glycophorin-containing vesicles.
        Biochim. Biophys. Acta. 1978; 508: 97-108
        • Shaw J.M.
        • Moore N.F.
        • Patzer E.J.
        • Correa-Freire M.C.
        • Wagner R.R.
        • Thompson T.E.
        Compositional asymmetry and transmembrane movement of phosphatidylcholine in vesicular stomatitis virus membranes.
        Biochemistry. 1979; 18: 538-543
        • Rothman J.E.
        • Dawidowicz E.A.
        Asymmetric exchange of vesicle phospholipids catalyzed by the phosphatidylcholine exchange protein. Measurement of inside-outside transitions.
        Biochemistry. 1975; 14: 2809-2816
        • Kornberg R.D.
        • McConnell H.M.
        Inside-outside transitions of phospholipids in vesicle membranes.
        Biochemistry. 1971; 10: 1111-1120
        • van Meer G.
        • Poorthuis J.H.M.
        • Wirtz K.W.A.
        • Op den Kamp J.A.F.
        • van Deenen L.L.M.
        Translayer distribution and mobility of phosphatidylcholine in intact erythrocyte membranes. A study with phosphatidylcholine exchange protein.
        Eur. J. Biochem. 1980; 103: 283-288
        • Renooij W.
        • van Golde L.M.G.
        • Zwall R.F.A.
        • Roelofsen B.
        • van Deenan L.L.M.
        Preferential incorporation of fatty acids at the inside of human erythrocyte membranes.
        Biochim. Biophys. Acta. 1974; 363: 287-292
        • Renooij W.
        • van Golde L.M.G.
        • Zwall R.F.A.
        • van Deenen L.L.M.
        Topological asymmetry of phospholipid metabolism in rat erythrocyte membranes. Evidence for flip-flop of lecithin.
        Eur. J. Biochem. 1976; 61: 53-58
        • Renooij W.
        • van Golde L.M.G.
        The transposition of molecular classes of phosphatidylcholine across the rat erythrocyte membrane and their exchange between the red cell membrane and plasma lipoproteins.
        Biochim. Biophys. Acta. 1977; 470: 465-474
        • Renooij W.
        • van Golde L.M.G.
        Asymmetry in the renewal of molecular classes of phosphatidylcholine in the rat erythrocyte membrane.
        Biochim. Biophys. Acta. 1979; 558: 314-319
        • Rothman J.E.
        • Kennedy E.P.
        Rapid transmembrane movement of newly synthesized phospholipids during membrane assembly.
        Proc. Natl. Acad. Sci. USA. 1977; 74: 1821-1825
        • Langley K.E.
        • Kennedy E.P.
        Energetics of rapid transmembrane movement and of compositional asymmetry of phosphatidylethanolamine in membranes of Bacillus megaterium.
        Proc. Natl. Acad. Sci. USA. 1979; 76: 6245-6249
        • Zilversmit D.B.
        • Hughes M.E.
        Phospholipid exchange between membranes.
        in: Korn E.D. Methods in Membrane Biology. 7. Plenum Press, New York1976: 211-259
        • Zilversmit D.B.
        • Hughes M.E.
        Extensive exchange of rat liver microsomal phospholipids.
        Biochim. Biophys. Acta. 1977; 469: 99-110
        • Brophy P.J.
        • van den Besselaar A.M.H.P.
        • Wirtz K.W.A.
        Phospholipid-exchange proteins for the topological distribution of microsomal phospholipids.
        Biochem. Soc. Trans. 1978; 6: 280-281
        • van den Besselaar A.M.H.P.
        • de Kruijff B.
        • van den Bosch H.
        • van Deenen L.L.M.
        Phosphatidylcholine mobility in liver microsomal membranes.
        Biochim. Biophys. Acta. 1978; 510: 242-255
        • Fahey P.F.
        • Koppel D.E.
        • Barak L.S.
        • Wolf D.E.
        • Elson E.L.
        • Webb W.W.
        Lateral diffusion in planar lipid bilayers.
        Science. 1977; 195: 305-306
        • Devaux P.
        • McConnell H.M.
        Lateral diffusion in spin-labeled phosphatidylcholine multilayers.
        J. Am. Chem. Soc. 1972; 94: 4475-4481
        • Goldstein J.L.
        • Anderson R.G.W.
        • Brown M.S.
        Coated pits, coated vesicles, and receptor-mediated endocytosis.
        Nature. 1979; 279: 679-685
        • Bretscher M.S.
        Directed lipid flow in cell membranes.
        Nature. 1976; 260: 21-23
        • Wirtz K.W.A.
        Transfer of phospholipids between membranes.
        Biochim. Biophys. Acta. 1974; 344: 95-117
        • Doody M.C.
        • Pownall H.J.
        • Kao Y.J.
        • Smith L.C.
        Mechanism and kinetics of transfer of a fluorescent fatty acid between single-walled phosphatidylcholine vesicles.
        Biochemistry. 1980; 19: 108-116
        • Op den Kamp J.A.F.
        Lipid asymmetry in membranes.
        Ann. Rev. Biochem. 1979; 48: 47-71
        • Higgins J.A.
        • Dawson R.M.C.
        Asymmetry of the phospholipid bilayer of rat liver endoplasmic reticulum.
        Biochim. Biophys. Acta. 1977; 470: 342-356
        • Nilsson O.S.
        • Dallner G.
        Transverse asymmetry of phospholipids in subcellular membranes of rat liver.
        Biochim. Biophys. Acta. 1977; 464: 453-458
        • Nilsson O.S.
        • Dallner G.
        Enzyme and phospholipid asymmetry in liver microsomal membranes.
        J. Cell Biol. 1977; 72: 568-583
        • Sundler R.
        • Sarcione S.L.
        • Alberts A.W.
        • Vagelos P.R.
        Evidence against phospholipid asymmetry in intracellular membranes from liver.
        Proc. Natl. Acad. Sci. USA. 1977; 74: 3350-3354
        • Jelsema C.L.
        • Morré D.J.
        Distribution of phospholipid biosynthetic enzymes among cell components of rat liver.
        J. Biol. Chem. 1978; 253: 7960-7971
        • Bell R.M.
        • Coleman R.A.
        Enzymes of glycerolipid synthesis in eukaryotes.
        Ann. Rev. Biochem. 1980; 49: 459-487
        • Hajra A.K.
        • Jones C.L.
        • Davis P.A.
        Studies on the biosynthesis of the O-alkyl bond in glycerol ether lipids.
        in: Gatt S. Freysz L. Mandel P. Enzymes of Lipid Metabolism. Plenum Press, New York1978: 369-378
        • Hajra A.K.
        • Burke C.L.
        • Jones C.L.
        Sub-cellular localization of acyl coenzyme A: dihydroxyacetone phosphate acyltransferase in rat liver peroxisomes (microbodies).
        J. Biol. Chem. 1979; 254: 10896-10900
        • Jones C.L.
        • Hajra A.K.
        Properties of guinea pig liver peroxisomal dihydroxyacetone phosphate acyltransferase.
        J. Biol. Chem. 1980; 255: 8289-8295
        • Krisans S.K.
        • Mortensen R.M.
        • Lazarow P.B.
        Acyl-CoA synthetase in rat liver peroxisomes: computer-assisted analysis of cell fractionation experiments.
        J. Biol. Chem. 1980; 255: 9599-9607
        • Lazarow P.B.
        Rat liver peroxisomes catalyze the $bT-oxidation of fatty acids.
        J. Biol. Chem. 1978; 253: 1522-1528
        • Tanaka T.
        • Hosaka K.
        • Hoshimru M.
        • Numa S.
        Purification and properties of long-chain acylcoenzyme-A synthetase from rat liver.
        Eur. J. Biochem. 1979; 98: 165-172
        • DePierre J.W.
        • Ernster L.
        Enzyme topology of intracellular membranes.
        Ann. Rev. Biochem. 1977; 46: 201-262
        • DePierre J.W.
        • Dallner G.
        Structural aspects of the membrane of the endoplasmic reticulum.
        Biochim. Biophys. Acta. 1975; 415: 411-472
        • de Kruijff B.
        • Cullis P.R.
        • Verkleij A.J.
        Non-bilayer lipid structures in model and biological membranes.
        TIBS. 1980; 5: 79-81
        • Palade G.E.
        • Siekevitz P.
        Liver microsomes. An integrated morphological and biochemical study.
        J. Biophys. Biochem. Cytol. 1956; 2: 171-200
        • Nilsson R.
        • Peterson E.
        • Dallner G.
        Permeability of microsomal membranes isolated from rat liver.
        J. Cell Biol. 1973; 56: 762-776
        • Ballas L.M.
        • Arion W.J.
        Measurement of glucose 6-phosphate penetration into liver microsomes. Confirmation of substrate transport in the glucose-6-phosphatase system.
        J. Biol. Chem. 1977; 252: 8512-8518
        • Bretscher M.S.
        Membrane structure: some general principles.
        Science. 1973; 181: 622-629
        • Bretscher M.S.
        Some general principles of membrane structure.
        in: Moscona A.A. The Cell Surface in Development. J. Wiley & Sons, Inc., New York1974: 17-27
        • Leskes A.
        • Siekevitz P.
        • Palade G.E.
        Differentiation of endoplasmic reticulum in hepatocytes II. Glucose 6-phosphatase in rough microsomes.
        J. Cell Biol. 1971; 49: 288-302
        • Leskes A.
        • Siekevitz P.
        • Palade G.E.
        Differentiation of endoplasmic reticulum in hepatocytes I. Glucose 6-phosphatase distribution in situ.
        J. Cell Biol. 1971; 49: 264-287
        • Arion W.J.
        • Wallin B.K.
        • Lange A.J.
        • Ballas L.M.
        On the involvement of glucose 6-phosphate transport system in the function of microsomal glucose 6-phosphatase.
        Mol. Cell. Biochem. 1975; 6: 75-83
        • Arion W.J.
        • Ballas L.M.
        • Lange A.J.
        • Wallin B.K.
        Microsomal membrane permeability and the hepatic glucose 6-phosphatase system. Interactions of the system with D-mannose 6-phosphate and D-mannose.
        J. Biol. Chem. 1976; 251: 4901-4907
        • Nilsson O.S.
        • DePierre J.W.
        • Dallner G.
        Investigations of the transverse topology of the microsomal membrane using combinations of proteases and the non-penetrating reagent diazobenzene sulfonate.
        Biochim. Biophys. Acta. 1978; 511: 93-104
        • Coleman R.
        • Bell R.M.
        Evidence that biosynthesis of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol occurs on the cytoplasmic side of microsomal vesicles.
        J. Cell Biol. 1978; 76: 245-253
        • Dawidowicz E.A.
        • Sawyer J.R.
        Asymmetry of phospholipid biosynthesis in rat liver microsomes.
        Biophys. J. 1979; 25: 292a
        • Vance D.E.
        • Choy P.C.
        • Blake Farren S.
        • Lim P.H.
        • Schneider W.J.
        Asymmetry of phospholipid biosynthesis.
        Nature. 1977; 270: 268-269
        • Brophy P.J.
        • Burbach P.
        • Ad Nelemans S.
        • Westerman J.
        • Wirtz K.W.A.
        • van Deenen L.L.M.
        The distribution of phosphatidylinositol in microsomal membranes from rat liver after biosynthesis de novo. Evidence for the existence of different pools of microsomal phosphatidylinositol by the use of phosphatidylinositol-exchange protein.
        Biochem. J. 1978; 174: 413-420
        • H$uUlsmann W.C.
        • Kurpershoek-Davidov
        Topographic distribution of enzymes involved in glycerolipid synthesis in rat small intestinal epithelium.
        Biochim. Biophys. Acta. 1976; 450: 288-300
        • Coleman R.A.
        • Bell R.M.
        Enzyme asymmetry in hepatic microsomal vesicles. Criteria for localization of lumenal enzymes with proteases.
        Biochim. Biophys. Acta. 1980; 595: 184-188
        • Moonen J.H.E.
        • van den Bosch H.
        Studies on the transverse localization of lysophospholipase in bovine liver microsomes using proteolytic enzymes.
        Biochim. Biophys. Acta. 1979; 573: 114-125
        • Ballas L.M.
        • Bell R.M.
        Topography of phosphatidylcholine, phosphatidylethanolamine and triacylglycerol biosynthetic enzymes in rat liver microsomes.
        Biochim. Biophys. Acta. 1980; 602: 578-590
        • Arion W.J.
        • Lange A.J.
        • Walls H.E.
        • Ballas L.M.
        Evidence for the participation of independent translocase for phosphate and glucose 6-phosphate in the microsomal glucose 6-phosphatase system. Interaction of the system with orthophosphate, inorganic pyrophosphate and carbamyl phosphate.
        J. Biol. Chem. 1980; 255: 10396-10406
        • Carey D.J.
        • Sommers L.W.
        • Hirshberg C.B.
        CMP-N-Acetylneuraminic acid: isolation from and penetration into mouse liver microsomes.
        Cell. 1980; 19: 597-605
        • Takahashi T.
        • Hori S.H.
        Intramembraneous localization of rat liver microsomal hexose-6-phosphate dehydrogenase and membrane permeability to its substrates.
        Biochim. Biophys. Acta. 1978; 524: 262-276
        • Allan D.
        • Thomas P.
        • Michell R.H.
        Rapid transbilayer diffusion of 1,2-diacylglycerol and its relevance to control of membrane curvature.
        Nature. 1978; 276: 289-290
        • Polokoff M.A.
        • Bell R.M.
        Limited palmitoyl-CoA penetration into microsomal vesicles as evidenced by a highly latent ethanol acyltransferase activity.
        J. Biol. Chem. 1978; 253: 7173-7178
        • Rothman J.E.
        • Kennedy E.P.
        Asymmetrical distribution of phospholipids in the membrane of Bacillus megaterium.
        J. Mol. Biol. 1977; 110: 603-618
        • Higgins J.A.
        Asymmetry of the site of choline incorporation into phosphatidylcholine of rat liver microsomes.
        Biochim. Biophys. Acta. 1979; 558: 48-57
        • Higgins J.A.
        Heterogeneity of phospholipid synthesis in rat liver endoplasmic reticulum during proliferation of smooth membranes.
        J. Cell Sci. 1976; 22: 173-197
        • Jambdar S.C.
        Hepatic lipid metabolism: effect of spermine, albumin and Z protein on microsomal lipid formation.
        Arch. Biochem. Biophys. 1979; 195: 81-94
        • Stanbury J.B.
        • Wyngaarden J.B.
        • Fredrickson D.A.
        The Metabolic Basis of Inherited Disease. McGraw-Hill, New York1972: 544-866 (Part 4)
        • Poorthius B.J.H.M.
        • Hostetler K.Y.
        Studies on the subcellular localization and properties of bis(monoacylglyceryl)phosphate biosynthesis in rat liver.
        J. Biol. Chem. 1976; 251: 4596-4602
        • Nimmo H.G.
        The location of glycerol phosphate acyltransferase and fatty acyl CoA synthase on the inner surface of the mitochondrial outer membrane.
        FEBS Lett. 1979; 101: 262-264
        • Hirata F.
        • Axelrod J.
        Enzymatic synthesis and rapid translocation of phosphatidylcholine by two methyltransferases in erythrocyte membranes.
        Proc. Natl. Acad. Sci. USA. 1978; 75: 2348-2352
        • Giacobino J.P.
        Esterification of extracellular α-glycerophosphate and palmitoyl CoA by isolated white adipocytes of rat.
        Arch. Biochem. Biophys. 1980; 202: 101-105
        • Rock C.O.
        • Snyder F.
        Asymmetric localization of alkyldihydroxyacetone-P synthase and acyldihydroxyacetone-P acyltransferase in microsomal vesicles.
        in: Gatt S. Freysz L.G. Mandel P. Enzymes of Lipid Metabolism. Plenum Press, New York1977: 379-385
        • Rock C.O.
        • Fitzgerald V.
        • Snyder F.
        Properties of dihydroxyacetone phosphate acyltransferase in the harderian gland.
        J. Biol. Chem. 1977; 252: 6363-6366
        • Rock C.O.
        • Fitzgerald V.
        • Snyder F.
        Activation of alkyldihydroxyacetone phosphate synthase by detergents.
        Arch. Biochem. Biophys. 1977; 181: 172-177
        • Gee R.
        • McCroarty E.
        • Hsieb B.
        • Wied D.M.
        • Tolbert N.E.
        Glycerol phosphate dehydrogenase in mammalian peroxisomes.
        Arch. Biochem. Biophys. 1974; 161: 187-193
        • Gee R.
        • Hasnain S.N.
        • Tolbert N.E.
        Isolation of NAD α-glycerolphosphate dehydrogenase from liver and purification of its heat stable chromophore.
        Federation Proc. 1975; 34: 599
        • Strittlatter P.
        • Rogers M.J.
        • Spatz L.
        The binding of cytochrome b5 to liver microsomes.
        J. Biol. Chem. 1972; 247: 7188-7194
        • Rogers M.J.
        • Strittmatter P.
        The binding of reduced nicotinamide adenine dinucleotide cytochrome b5 reductase to hepatic microsomes.
        J. Biol. Chem. 1974; 249: 5565-5569
        • Prasad M.R.
        • Sreekrishna K.
        • Joshi V.C.
        Topology of the A9 terminal desaturase in chicken liver microsomes and artificial micelles. Inhibition of the enzyme activity by the antibody and susceptibility of the enzyme to proteolysis.
        J. Biol. Chem. 1980; 255: 2583-2589
        • Heller R.A.
        • Shrewsbury M.A.
        3-Hydroxy-3-methylglutaryl coenzyme A reductase from rat liver. Its purification, properties, and immunochemical studies.
        J. Biol. Chem. 1976; 251: 3815-3822
        • Brown M.S.
        • Goldstein J.L.
        Multivalent feedback regulation of HMG CoA reductase, a control mechanism coordinating isoprenoid synthesis and cell growth.
        J. Lipid Res. 1980; 21: 505-517
        • Lichtenstein A.H.
        • Brecher P.
        Properties of acyl-CoA:cholesterol acyltransferase in rat liver microsomes. Topological localization and effects of detergents, albumin, and polar steroids.
        J. Biol. Chem. 1980; 255: 9098-9104
        • Danielsson H.
        Mechanisms of bile acid biosynthesis.
        in: Nair P.P. Kritchevsky D. The Bile Acids: Chemistry, Physiology and Metabolism. Vol. 2. Physiology and Metabolism. Plenum Press, New York1973: 1-32
        • Polokoff M.A.
        • Coleman R.A.
        • Bell R.M.
        Evidence that cholic acid CoA ligase is located asymmetrically on the cytoplasmic surface of hepatic microsomal vesicles.
        J. Lipid Res. 1979; 20: 17-21
        • Killenberg P.G.
        Measurement and subcellular distribution of choloyl-CoA synthetase and bile acid CoA: amino acid N-acyltransferase activities in rat liver.
        J. Lipid Res. 1978; 19: 24-31