- Alonso R.
- Andres E.
- Mata N.
- Fuentes-Jimenez F.
- Badimon L.
- Lopez-Miranda J.
- Padro T.
- Muniz O.
- Diaz-Diaz J.L.
- Mauri M.
- et al.
- Olsson A.G.
- Schwartz G.G.
- Szarek M.
- Sasiela W.J.
- Ezekowitz M.D.
- Ganz P.
- Oliver M.F.
- Waters D.
- Zeiher A.
- Duchateau P.N.
- Pullinger C.R.
- Orellana R.E.
- Kunitake S.T.
- Naya-Vigne J.
- O'Connor P.M.
- Malloy M.J.
- Kane J.P.
- Duchateau P.N.
- Pullinger C.R.
- Orellana R.E.
- Kunitake S.T.
- Naya-Vigne J.
- O'Connor P.M.
- Malloy M.J.
- Kane J.P.
MATERIALS AND METHODS
Study population characteristics
- Mata N.
- Alonso R.
- Badimon L.
- Padro T.
- Fuentes F.
- Muniz O.
- Perez-Jimenez F.
- Lopez-Miranda J.
- Diaz J.L.
- Vidal J.I.
- et al.
- Perez de Isla L.
- Alonso R.
- Watts G.F.
- Mata N.
- Saltijeral Cerezo A.
- Muniz O.
- Fuentes F.
- Diaz-Diaz J.L.
- de Andres R.
- Zambon D.
- et al.
FH Patients | Non-FH Relatives | P | |
---|---|---|---|
(N = 19) | (N = 11) | ||
Age | 57 ± 3 | 50 ± 3 | 0.144 |
Females/males | 6/13 | 6/5 | 0.432 |
Risk factors (%) | |||
Tobacco consumption | 53 | 45 | >0.999 |
Hypertension | 37 | 18 | 0.419 |
Diabetes | 0 | 0 | >0.999 |
BMI (kg/m2) | 28 ± 1.3 | 29 ± 1.1 | 0.644 |
Years of statin treatment | 9.6 ± 1.6 | 5.6 ± 3.4 | 0.281 |
Total cholesterol (mg/dl) | 235 ± 16 | 230 ± 14 | 0.851 |
LDL-C (mg/dl) | 164 ± 14 | 145 ± 10 | 0.367 |
HDL-C (mg/dl) | 50 ± 3 | 58 ± 4 | 0.085 |
TG (mg/dl) | 103 ± 11 | 141 ± 42 | 0.289 |
Non-HDL-C (mg/dl) | 184 ± 16 | 172 ± 14 | 0.588 |
ApoB (mg/dl) | 116 ± 9 | 106 ± 8 | 0.447 |
CRP (mg/l) | 4.3 ± 1.3 | 2.4 ± 0.6 | 0.282 |
Glc (mg/dl) | 89 ± 2 | 94 ± 3 | 0.172 |
Xanthomas (%) | 16 | 0 | 0.279 |
Corneal arcus (%) | 53 | 9 | 0.023 |
FH mutation (%) | |||
Null | 63 | 0 | 0.0006 |
Defective | 37 | 0 | 0.029 |
Indeterminate | 0 | 0 | >0.999 |
Treatment (%) | |||
Statins | 100 | 45 | 0.0008 |
ASA | 37 | 0 | 0.029 |
Clopi | 5 | 0 | >0.999 |
Beta-blockers | 5 | 0 | >0.999 |
Ca2+ antagonists | 11 | 0 | 0.520 |
ACEI | 21 | 0 | 0.268 |
A2RA | 11 | 0 | 0.520 |
OAD | 0 | 0 | >0.999 |
FH Patients | |||
---|---|---|---|
No CV | CV | P | |
(N = 19) | (N = 73) | ||
Age | 57 ± 3 | 57 ± 2 | 0.887 |
Females/males | 6/13 | 25/48 | 0.827 |
Risk factors (%) | |||
Tobacco consumption | 53 | 62 | 0.475 |
Hypertension | 37 | 37 | 0.991 |
Diabetes | 0 | 16 | 0.04 |
BMI (kg/m2) | 28 ± 1.3 | 29 ± 0.6 | 0.844 |
Years of statin treatment | 9.6 ± 1.6 | 10.3 ± 0.9 | 0.735 |
Total cholesterol (mg/dl) | 235 ± 16 | 278 ± 10 | 0.042 |
LDL-C (mg/dl) | 164 ± 14 | 207 ± 9 | 0.027 |
HDL-C (mg/dl) | 50 ± 3 | 43 ± 1 | 0.017 |
TG (mg/dl) | 103 ± 11 | 132 ± 9 | 0.119 |
Non-HDL-C (mg/dl) | 184 ± 16 | 235 ± 10 | 0.02 |
ApoB (mg/dl) | 116 ± 9 | 139 ± 6 | 0.07 |
CRP (mg/l) | 4.3 ± 1.3 | 3.3 ± 0.4 | 0.285 |
Glc (mg/dl) | 89 ± 2 | 98 ± 3 | 0.111 |
Xanthomas (%) | 16 | 26 | 0.351 |
Corneal arcus (%) | 53 | 47 | 0.638 |
FH mutation (%) | |||
Null | 63 | 48 | 0.237 |
Defective | 37 | 48 | 0.387 |
Indeterminate | 0 | 4 | 0.369 |
Treatment (%) | |||
Statins | 100 | 100 | >0.999 |
ASA | 37 | 38 | 0.904 |
Clopi | 5 | 12 | 0.378 |
Beta-blockers | 5 | 22 | 0.096 |
Ca2+ antagonists | 11 | 10 | 0.903 |
ACEI | 21 | 18 | 0.746 |
A2RA | 11 | 18 | 0.444 |
OAD | 0 | 8 | 0.196 |
FH-CV Patients | |||
---|---|---|---|
No Exitus | Exitus | P | |
(N = 41) | (N = 32) | ||
Age | 53 ± 2 | 62 ± 3 | 0.016 |
Females/males | 12/29 | 13/19 | 0.310 |
Risk factors (%) | |||
Tobacco consumption | 63 | 59 | 0.725 |
Hypertension | 29 | 47 | 0.122 |
Diabetes | 12 | 22 | 0.268 |
BMI (kg/m2) | 29 ± 0.7 | 29 ± 0.9 | 0.919 |
Years of statin treatment | 11.5 ± 1.2 | 8.8 ± 1.4 | 0.143 |
Total cholesterol (mg/dl) | 229 ± 14 | 265 ± 13 | 0.240 |
LDL-C (mg/dl) | 218 ± 13 | 194 ± 12 | 0.170 |
HDL-C (mg/dl) | 42 ± 2 | 45 ± 2 | 0.176 |
TG (mg/dl) | 130 ± 11 | 134 ± 13 | 0.831 |
Non-HDL-C (mg/dl) | 247 ± 14 | 220 ± 13 | 0.183 |
ApoB (mg/dl) | 142 ± 9 | 135 ± 7 | 0.557 |
CRP (mg/l) | 3.6 ± 0.6 | 2.8 ± 0.3 | 0.293 |
Glc (mg/dl) | 96 ± 4 | 99 ± 6 | 0.755 |
Xanthomas (%) | 27 | 34 | 0.860 |
Corneal arcus (%) | 25 | 63 | 0.016 |
FH mutation (%) | |||
Null | 49 | 47 | 0.872 |
Defective | 49 | 47 | 0.872 |
Indeterminate | 2 | 6 | 0.416 |
Treatment (%) | |||
Statins | 100 | 100 | >0.999 |
ASA | 41 | 34 | 0.537 |
Clopi | 10 | 16 | 0.449 |
Beta-blockers | 20 | 25 | 0.574 |
Ca2+ antagonists | 5 | 16 | 0.199 |
ACEI | 17 | 19 | 0.853 |
A2RA | 20 | 16 | 0.667 |
OAD | 7 | 9 | 0.751 |

- Alonso R.
- Andres E.
- Mata N.
- Fuentes-Jimenez F.
- Badimon L.
- Lopez-Miranda J.
- Padro T.
- Muniz O.
- Diaz-Diaz J.L.
- Mauri M.
- et al.
Blood collection, biochemical analysis, and sample preparation
Proteomic analysis
2DE.
MS analysis.
Quantification of apoL1 and apoA-IV serum levels
Western blot analysis
Statistical analysis
RESULTS
Differential HDL proteomic profile in FH patients

Validation of apoL1 and apoA-IV changes in serum samples in FH patients


HDL protein composition changes and survival analysis


Differential proteomic signature of HDL subclasses in FH patients: implication of outcomes


DISCUSSION
- Recalde D.
- Ostos M.A.
- Badell E.
- Garcia-Otin A.L.
- Pidoux J.
- Castro G.
- Zakin M.M.
- Scott-Algara D.
- Duchateau P.N.
- Pullinger C.R.
- Orellana R.E.
- Kunitake S.T.
- Naya-Vigne J.
- O'Connor P.M.
- Malloy M.J.
- Kane J.P.
- Duchateau P.N.
- Movsesyan I.
- Yamashita S.
- Sakai N.
- Hirano K.
- Schoenhaus S.A.
- O'Connor-Kearns P.M.
- Spencer S.J.
- Jaffe R.B.
- Redberg R.F.
- et al.
- Martin S.S.
- Khokhar A.A.
- May H.T.
- Kulkarni K.R.
- Blaha M.J.
- Joshi P.H.
- Toth P.P.
- Muhlestein J.B.
- Anderson J.L.
- Knight S.
- et al.
- Duchateau P.N.
- Movsesyan I.
- Yamashita S.
- Sakai N.
- Hirano K.
- Schoenhaus S.A.
- O'Connor-Kearns P.M.
- Spencer S.J.
- Jaffe R.B.
- Redberg R.F.
- et al.
- Martin S.S.
- Khokhar A.A.
- May H.T.
- Kulkarni K.R.
- Blaha M.J.
- Joshi P.H.
- Toth P.P.
- Muhlestein J.B.
- Anderson J.L.
- Knight S.
- et al.
Study limitations
CONCLUSIONS
Acknowledgments
Supplementary Material
REFERENCES
Goldstein, J. L., H. H. Hobbs, and M. S. Brown, . 2001. The metabolic and molecular basis of inherited disease. In Familial hypercholesterolemia. C. R. Scriver, A. L. Beaudet, W. S. Sly, and D. Valle, editors. McGraw-Hill, New York. 2863–2913.
Wierzbicki, A. S., S. E. Humphries, R. Minhas, ; Guideline Development Group. 2008. Familial hypercholesterolaemia: summary of NICE guidance. Br. Med. J. 337: a1095.
- The contribution of classical risk factors to cardiovascular disease in familial hypercholesterolaemia: data in 2400 patients.J. Intern. Med. 2004; 256: 482-490
- Severe heterozygous familial hypercholesterolemia and risk for cardiovascular disease: a study of a cohort of 14,000 mutation carriers.Atherosclerosis. 2014; 233: 219-223
- Lipoprotein(a) levels in familial hypercholesterolemia: an important predictor of cardiovascular disease independent of the type of LDL receptor mutation.J. Am. Coll. Cardiol. 2014; 63: 1982-1989
- High density lipoprotein cholesterol and mortality. The Framingham Heart Study.Arteriosclerosis. 1988; 8: 737-741
- High density lipoprotein plasma fractions inhibit aortic fatty streaks in cholesterol-fed rabbits.Lab. Invest. 1989; 60: 455-461
- Regression of atherosclerotic lesions by high density lipoprotein plasma fraction in the cholesterol-fed rabbit.J. Clin. Invest. 1990; 85: 1234-1241
- Recombinant HDL(Milano) exerts greater anti-inflammatory and plaque stabilizing properties than HDL(wild-type).Atherosclerosis. 2012; 220: 72-77
Badimón, J. J., C. G. Santos-Gallego, and L. Badimón, . 2010. Importance of HDL cholesterol in atherothrombosis: how did we get here? Where are we going? [Article in Spanish] Rev. Esp. Cardiol. 63 (Suppl. 2): 20–35.
- High-density lipoprotein cholesterol as a predictor of coronary heart disease risk. The PROCAM experience and pathophysiological implications for reverse cholesterol transport.Atherosclerosis. 1996; 124: S11-S20
- Isolated low HDL cholesterol as a risk factor for coronary heart disease mortality. A 21-year follow-up of 8000 men.Arterioscler. Thromb. Vasc. Biol. 1997; 17: 107-113
- High-density lipoprotein, but not low-density lipoprotein cholesterol levels influence short-term prognosis after acute coronary syndrome: results from the MIRACL trial.Eur. Heart J. 2005; 26: 890-896
- LDL-cholesterol versus HDL-cholesterol in the atherosclerotic plaque: inflammatory resolution versus thrombotic chaos.Ann. N. Y. Acad. Sci. 2012; 1254: 18-32
- High-density lipoprotein: vascular protective effects, dysfunction, and potential as therapeutic target.Circ. Res. 2014; 114: 171-182
- Dysfunctional HDL: from structure-function-relationships to biomarkers.Handb. Exp. Pharmacol. 2015; 224: 337-366
- Increasing high-density lipoprotein cholesterol by cholesteryl ester transfer protein-inhibition: a rocky road and lessons learned? The early demise of the dal-HEART programme.Eur. Heart J. 2012; 33: 1712-1715
- Biological activities of HDL subpopulations and their relevance to cardiovascular disease.Trends Mol. Med. 2011; 17: 594-603
- Atheroprotective reverse cholesterol transport pathway is defective in familial hypercholesterolemia.Arterioscler. Thromb. Vasc. Biol. 2011; 31: 1675-1681
- Differential proteomic distribution of TTR (pre-albumin) forms in serum and HDL of patients with high cardiovascular risk.Atherosclerosis. 2012; 222: 263-269
- Apolipoprotein L, a new human high density lipoprotein apolipoprotein expressed by the pancreas. Identification, cloning, characterization, and plasma distribution of apolipoprotein L.J. Biol. Chem. 1997; 272: 25576-25582
- Proteomic analysis of defined HDL subpopulations reveals particle-specific protein clusters: relevance to antioxidative function.Arterioscler. Thromb. Vasc. Biol. 2009; 29: 870-876
- The apolipoprotein L family of programmed cell death and immunity genes rapidly evolved in primates at discrete sites of host-pathogen interactions.Genome Res. 2009; 19: 850-858
- Apolipoprotein L gene family: tissue-specific expression, splicing, promoter regions; discovery of a new gene.J. Lipid Res. 2001; 42: 620-630
- The apolipoprotein L gene cluster has emerged recently in evolution and is expressed in human vascular tissue.Genomics. 2002; 79: 539-546
- The function of apolipoproteins L.Cell. Mol. Life Sci. 2006; 63: 1937-1944
- In vitro conversion of proapoprotein A-I to apoprotein A-I. Partial characterization of an extracellular enzyme activity.J. Biol. Chem. 1983; 258: 11430-11433
- Human apolipoprotein A-I isoprotein metabolism: proapoA-I conversion to mature apoA-I.J. Lipid Res. 1985; 26: 185-193
- Increased burden of cardiovascular disease in carriers of APOL1 genetic variants.Circ. Res. 2014; 114: 845-850
- APOL1 kidney risk alleles: population genetics and disease associations.Adv. Chronic Kidney Dis. 2014; 21: 426-433
- Apolipoprotein L1 gene variants in deceased organ donors are associated with renal allograft failure.Am. J. Transplant. 2015; 15: 1615-1622
- Apolipoprotein L1-associated nephropathy and the future of renal diagnostics.J. Am. Soc. Nephrol. 2015; 26: 1232-1235
- Apolipoprotein L–I is positively associated with hyperglycemia and plasma triglycerides in CAD patients with low HDL.J. Lipid Res. 2005; 46: 469-474
- Cardiovascular twist to the rapidly evolving apolipoprotein L1 story.Circ. Res. 2014; 114: 746-747
- Proteomic signature of apolipoprotein J in the early phase of new-onset myocardial infarction.J. Proteome Res. 2011; 10: 211-220
- Glycoproteome of human apolipoprotein A-I: N- and O-glycosylated forms are increased in patients with acute myocardial infarction.Transl. Res. 2014; 164: 209-222
- A novel truncated form of apolipoprotein A-I transported by dense LDL is increased in diabetic patients.J. Lipid Res. 2015; 56: 1762-1773
- High levels of antifibrinolytic proteins are found in plasma of older octogenarians with cardiovascular disease and cognitive decline.J. Am. Coll. Cardiol. 2015; 65: 2667-2669
- Clinical characteristics and evaluation of LDL-cholesterol treatment of the Spanish Familial Hypercholesterolemia Longitudinal Cohort Study (SAFEHEART).Lipids Health Dis. 2011; 10: 94
- Attainment of LDL-cholesterol treatment goals in patients with familial hypercholesterolemia: 5-year SAFEHEART registry follow-up.J. Am. Coll. Cardiol. 2016; 67: 1278-1285
- Reliable low-density DNA array based on allele-specific probes for detection of 118 mutations causing familial hypercholesterolemia.Clin. Chem. 2005; 51: 1137-1144
- Comparison of DNA array platform vs DNA sequencing as genetic diagnosis tools for familial hypercholesterolemia.Clin. Chem. 2006; 52: 1971-1972
- Universal primer quantitative fluorescent multiplex (UPQFM) PCR: a method to detect major and minor rearrangements of the low density lipoprotein receptor gene.J. Med. Genet. 2000; 37: 272-280
- Cardiovascular disease in familial hypercholesterolaemia: influence of low-density lipoprotein receptor mutation type and classic risk factors.Atherosclerosis. 2008; 200: 315-321
- Enzymatic determination of total serum cholesterol.Clin. Chem. 1974; 20: 470-475
- Serum triglycerides determined colorimetrically with an enzyme that produces hydrogen peroxide.Clin. Chem. 1982; 28: 2077-2080
- Quantification of high-density-lipoprotein cholesterol by precipitation with phosphotungstic acid/MgCl2.Clin. Chem. 1983; 29: 2026-2030
- Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge.Clin. Chem. 1972; 18: 499-502
- Immunoturbidimetric determination of apolipoproteins A-1 and B in serum.Scand. J. Clin. Lab. Invest. 1987; 47: 739-744
- A method of comparing the areas under receiver operating characteristic curves derived from the same cases.Radiology. 1983; 148: 839-843
- Changes in thrombus composition and profilin-1 release in acute myocardial infarction.Eur. Heart J. 2015; 36: 965-975
- Relation of corneal arcus to cardiovascular disease (from the Framingham Heart Study data set).Am. J. Cardiol. 2009; 103: 64-66
- Reductions in all-cause, cancer, and coronary mortality in statin-treated patients with heterozygous familial hypercholesterolaemia: a prospective registry study.Eur. Heart J. 2008; 29: 2625-2633
- Serum apolipoproteins in heterozygous familial hypercholesterolemia.Clin. Chim. Acta. 1992; 211: 93-99
- Association of heterozygous familial hypercholesterolemia with smaller HDL particle size.Atherosclerosis. 2007; 190: 429-435
- Altered composition of HDL3 in FH subjects causing a HDL subfraction with less atheroprotective function.Clin. Chim. Acta. 2005; 359: 171-178
- Human apolipoprotein A-IV. Intestinal origin and distribution in plasma.J. Clin. Invest. 1980; 65: 911-919
- Human apolipoprotein A-IV binds to apolipoprotein A-I/A-II receptor sites and promotes cholesterol efflux from adipose cells.J. Biol. Chem. 1990; 265: 7859-7863
- Activation of lecithin: cholesterol acyltransferase by human apolipoprotein A-IV.J. Biol. Chem. 1985; 260: 2258-2264
- Antioxidative and antiatherosclerotic effects of human apolipoprotein A-IV in apolipoprotein E-deficient mice.Arterioscler. Thromb. Vasc. Biol. 2001; 21: 1023-1028
- Low apolipoprotein A-IV plasma concentrations in men with coronary artery disease.J. Am. Coll. Cardiol. 2000; 36: 751-757
- Human apolipoprotein A-IV reduces secretion of proinflammatory cytokines and atherosclerotic effects of a chronic infection mimicked by lipopolysaccharide.Arterioscler. Thromb. Vasc. Biol. 2004; 24: 756-761
- Apolipoprotein L–I is the trypanosome lytic factor of human serum.Nature. 2003; 422: 83-87
- Apolipoprotein L1, a novel Bcl-2 homology domain 3-only lipid-binding protein, induces autophagic cell death.J. Biol. Chem. 2008; 283: 21540-21549
- Plasma apolipoprotein L concentrations correlate with plasma triglycerides and cholesterol levels in normolipidemic, hyperlipidemic, and diabetic subjects.J. Lipid Res. 2000; 41: 1231-1236
- Lipoprotein Investigators Collaborative. HDL cholesterol subclasses, myocardial infarction, and mortality in secondary prevention: the Lipoprotein Investigators Collaborative.Eur. Heart J. 2015; 36: 22-30
- HDL-3 is a superior predictor of carotid artery disease in a case-control cohort of 1725 participants.J. Am. Heart Assoc. 2014; 3: e000902
- Coincubation of PON1, APO A1, and LCAT increases the time HDL is able to prevent LDL oxidation.IUBMB Life. 2012; 64: 157-161
- Accelerated subclinical coronary atherosclerosis in patients with familial hypercholesterolemia.Atherosclerosis. 2011; 219: 721-727
- Lipoproteomics II: mapping of proteins in high-density lipoprotein using two-dimensional gel electrophoresis and mass spectrometry.Proteomics. 2005; 5: 1431-1445
Article info
Publication history
Footnotes
This work was supported by Spanish Ministry of Economy and Competitiveness of Science Grants SAF2013-42962-R (L.B.) and CNIC-082008 (L.B. and P.M.); FEDER “Una manera de hacer Europa” and Institute of Health Carlos III Grant RIC RD12/0042/0027 (L.B.); TERCEL (Red de Terapia Celular) Grant RD12/0019/0026 (L.B.); FIS (Fondo Investigación Sanitaria) Grant PI13/02850 (T.P.), and FIC-Fundacion Jesús Serra, Barcelona, Spain.
Abbreviations:
AUCIdentification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy