- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- von Eckardstein A.
- Zannis V.I.
- Liu T.
- Krieger M.
- Kan H.Y.
- Zannis V.I.
- Singaraja R.R.
- Van Eck M.
- Bissada N.
- Zimetti F.
- Collins H.L.
- Hildebrand R.B.
- Hayden A.
- Brunham L.R.
- Kang M.H.
- Fruchart J.C.
- et al.
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- von Eckardstein A.
- Zannis V.I.
- Chroni A.
- Kan H.Y.
- Kypreos K.E.
- Gorshkova I.N.
- Shkodrani A.
- Zannis V.I.
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- von Eckardstein A.
- Zannis V.I.
- Ohnsorg P.M.
- Rohrer L.
- Perisa D.
- Kateifides A.
- Chroni A.
- Kardassis D.
- Zannis V.I.
- von Eckardstein A.
EXPERIMENTAL PROCEDURES
Materials
- Liu T.
- Krieger M.
- Kan H.Y.
- Zannis V.I.
- Chroni A.
- Kan H.Y.
- Kypreos K.E.
- Gorshkova I.N.
- Shkodrani A.
- Zannis V.I.
Methods
Generation of adenoviruses expressing the wild-type and the mutant apoA-I forms and human LCAT.
ApoA-I production, purification, and use for functional and physicochemical studies.
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- von Eckardstein A.
- Zannis V.I.
ABCA1-dependent cholesterol efflux and LCAT assays.
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- von Eckardstein A.
- Zannis V.I.
- Chroni A.
- Kan H.Y.
- Kypreos K.E.
- Gorshkova I.N.
- Shkodrani A.
- Zannis V.I.
- Amar M.J.
- Shamburek R.D.
- Vaisman B.
- Knapper C.L.
- Foger B.
- Hoyt Jr, R.F.
- Santamarina-Fojo S.
- Brewer Jr, H.B.
- Remaley A.T.
Physicochemical measurements.
Animal studies.
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- von Eckardstein A.
- Zannis V.I.
- Liu T.
- Krieger M.
- Kan H.Y.
- Zannis V.I.
Statistics.
RESULTS
Expression of the apoA-I transgene following adenovirus infection
Plasma lipid and apoA-I levels and FPLC profiles

Fractionation of plasma, EM analysis, and two-dimensional electrophoresis of plasma of apoA-I−/− mice expressing the WT and the mutant forms of apoA-I



Comparative analysis of the in vitro functions of WT apoA-I, apoA-I[218–222] mutant, and apoA-I[E223A/K226A] mutant

Effect of the L218A/L219A/V221A/L222A and E223A/K226A mutations on the α-helical content, thermal unfolding, chemical unfolding, and hydrophobic surface exposure of apoA-I

Mutation | Circular Dichroism | Thermal Denaturation | Chemical Denaturation | ANS Binding | |||||
---|---|---|---|---|---|---|---|---|---|
ApoA-I | α-Helix | Tm (°C) | Slope | Cooperativity Index (n) | ΔH (kcal/mol) | ΔGDo (kcal/mol) | D1/2 (M) | m (kcal mol−2) | Fold Increase |
WT | 60.0 ± 1.5 | 55.6 ± 0.4 | 8.3 ± 0.4 | 6.4 ± 0.2 | 25.9 ± 1.5 | 6.3 ± 0.4 | 1.01 ± 0.02 | 6.3 ± 0.4 | 6.0 ± 0.4 |
L218A/L219A/V221A/L222A | 52.7 ± 1.6 | 56.1 ± 0.8 | 4.6 ± 0.2 | 9.7 ± 0.6 | 46.4 ± 2.4 | 6.6 ± 0.4 | 1.00 ± 0.03 | 6.4 ± 0.4 | 3.5 ± 0.2 |
E223A/K226A | 55.8 ± 1.1 | 53.4 ± 0.2 | 10.4 ± 1.4 | 5.3 ± 0.7 | 21.01 ± 2.2 | 2.5 ± 0.2 | 0.88 ± 0.02 | 2.8 ± 0.1 | 9.6 ± 0.5 |
DISCUSSION
Rationale for selection of the mutations
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- von Eckardstein A.
- Zannis V.I.
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- von Eckardstein A.
- Zannis V.I.
L218A/L219A/V221A/L222A and E223A/K226A mutations alter the functional and physicochemical properties of apoA-I
Ability of the apoA-I[218–222] and apoA-I[E223A/K226A] mutants to promote biogenesis of HDL
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- von Eckardstein A.
- Zannis V.I.
Clinical implications
Acknowledgments
Supplementary Material
REFERENCES
- The central helices of apoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220–231 of the wild-type apoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo.J. Biol. Chem. 2003; 278: 6719-6730
- The effects of mutations in helices 4 and 6 of apoA-I on scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux suggest that formation of a productive complex between reconstituted high density lipoprotein and SR-BI is required for efficient lipid transport.J. Biol. Chem. 2002; 277: 21576-21584
- Identification of an ABCA1-dependent phospholipid-rich plasma membrane apolipoprotein A-I binding site for nascent HDL formation: implications for current models of HDL biogenesis.J. Lipid Res. 2007; 48: 2428-2442
- Probing the pathways of chylomicron and HDL metabolism using adenovirus-mediated gene transfer.Curr. Opin. Lipidol. 2004; 15: 151-166
- Both hepatic and extrahepatic ABCA1 have discrete and essential functions in the maintenance of plasma high-density lipoprotein cholesterol levels in vivo.Circulation. 2006; 114: 1301-1309
- Adipose tissue ATP binding cassette transporter A1 contributes to high-density lipoprotein biogenesis in vivo.Circulation. 2011; 124: 1663-1672
- Genetic etiology of isolated low HDL syndrome: incidence and heterogeneity of efflux defects.Arterioscler. Thromb. Vasc. Biol. 2007; 27: 1139-1145
- Multiple rare alleles contribute to low plasma levels of HDL cholesterol.Science. 2004; 305: 869-872
- Genetic variation in ABC transporter A1 contributes to HDL cholesterol in the general population.J. Clin. Invest. 2004; 114: 1343-1353
- ApoA-I functions and synthesis of HDL: insights from mouse models of human HDL metabolism..In High-Density Lipoproteins. From Basic Biology to Clinical Aspects. Wiley-VCH, Weinheim2006: 237-265
- Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT.Biochem. J. 2007; 406: 167-174
- LCAT can rescue the abnormal phenotype produced by the natural ApoA-I mutations (Leu141Arg)Pisa and (Leu159Arg)FIN.Biochemistry. 2007; 46: 10713-10721
- Point mutations in apolipoprotein a-I mimic the phenotype observed in patients with classical lecithin:cholesterol acyltransferase deficiency.Biochemistry. 2005; 44: 14353-14366
- Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice.Biochemistry. 2004; 43: 10442-10457
- The carboxy-terminal region of apoA-I is required for the ABCA1-dependent formation of alpha-HDL but not prebeta-HDL particles in vivo.Biochemistry. 2007; 46: 5697-5708
- Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation.Proc. Natl. Acad. Sci. USA. 1997; 94: 12291-12296
- Crystallization of truncated human apolipoprotein A-I in a novel conformation.Acta Crystallogr. D Biol. Crystallogr. 1999; 55: 1578-1583
- Crystal structure of C-terminal truncated apolipoprotein A-I reveals the assembly of high density lipoprotein (HDL) by dimerization.J. Biol. Chem. 2011; 286: 38570-38582
- Structure and function of apolipoprotein A-I and high-density lipoprotein.Curr. Opin. Lipidol. 2000; 11: 105-115
- Carboxyl terminus of apolipoprotein A-I (ApoA-I) is necessary for the transport of lipid-free ApoA-I but not prelipidated ApoA-I particles through aortic endothelial cells.J. Biol. Chem. 2011; 286: 7744-7754
- Apolipoprotein A-I exerts bactericidal activity against Yersinia enterocolitica serotype O:3.J. Biol. Chem. 2011; 286: 38211-38219
- Adenoviral expression of human lecithin-cholesterol acyltransferase in nonhuman primates leads to an antiatherogenic lipoprotein phenotype by increasing high-density lipoprotein and lowering low-density lipoprotein.Metabolism. 2009; 58: 568-575
- Micellar complexes of human apolipoprotein A-I with phosphatidylcholines and cholesterol prepared from cholate-lipid dispersions.J. Biol. Chem. 1982; 257: 4535-4540
- Marked reduction of high density lipoprotein cholesterol in mice genetically modified to lack apolipoprotein A-I.Proc. Natl. Acad. Sci. USA. 1992; 89: 7134-7138
- Testing the role of apoA-I, HDL, and cholesterol efflux in the atheroprotective action of low-level apoE expression.J. Lipid Res. 2003; 44: 2331-2338
- Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E.Science. 1992; 258: 468-471
- Deletions of helices 2 and 3 of human apoA-I are associated with severe dyslipidemia following adenovirus-mediated gene transfer in apoA-I-deficient mice.Biochemistry. 2005; 44: 4108-4117
- ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT.J. Lipid Res. 2013; 54: 107-115
- Alteration of negatively charged residues in the 89 to 99 domain of apoA-I affects lipid homeostasis and maturation of HDL.J. Lipid Res. 2011; 52: 1363-1372
- Cell cholesterol efflux: integration of old and new observations provides new insights.J. Lipid Res. 1999; 40: 781-796
- Cellular cholesterol efflux.Biochim. Biophys. Acta. 2001; 1533: 175-189
- Specific binding of ApoA-I, enhanced cholesterol efflux, and altered plasma membrane morphology in cells expressing ABC1.J. Biol. Chem. 2000; 275: 33053-33058
- Apolipoprotein specificity for lipid efflux by the human ABCAI transporter.Biochem. Biophys. Res. Commun. 2001; 280: 818-823
- Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I.J. Clin. Invest. 2005; 115: 1333-1342
- Pathway of biogenesis of apolipoprotein E-containing HDL in vivo with the participation of ABCA1 and LCAT.Biochem. J. 2007; 403: 359-367
- Characterization of antioxidant/anti-inflammatory properties and apoA-I-containing subpopulations of HDL from family subjects with monogenic low HDL disorders.Clin. Chim. Acta. 2011; 412: 1213-1220
- Abnormal phospholipid composition impairs HDL biogenesis and maturation in mice lacking Abca1.Biochemistry. 2003; 42: 8569-8578
- Subpopulations of high density lipoproteins in homozygous and heterozygous Tangier disease.Atherosclerosis. 2001; 156: 217-225
- Helical apolipoproteins stabilize ATP-binding cassette transporter A1 by protecting it from thiol protease-mediated degradation.J. Biol. Chem. 2002; 277: 22426-22429
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health Grant HL-48739, General Secretariat of Research and Technology of Greece Grant Synergasia 09SYN-12-897 (to D.K. and A.C.), and Ministry of Education of Greece Grant Thalis MIS 377286 (to D.K., A.C., and E.S.). D. Georgiadou was supported by the graduate fellowship program of the National Center for Scientific Research Demokritos. P. Fotakis has been supported by pre-doctoral training Fellowship HERACLEITUS II by the European Union and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF).
Abbreviations:
ANSIdentification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy