- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- Von Eckardstein A.
- Zannis V.I.
- Ohnsorg P.M.
- Rohrer L.
- Perisa D.
- Kateifides A.
- Chroni A.
- Kardassis D.
- Zannis V.I.
- von Eckardstein A.
- Fotakis P.
- Kateifides A.
- Gkolfinopoulou C.
- Georgiadou D.
- Beck M.
- Grundler K.
- Chroni A.
- Stratikos E.
- Kardassis D.
- Zannis V.I.
- Fotakis P.
- Kateifides A.
- Gkolfinopoulou C.
- Georgiadou D.
- Beck M.
- Grundler K.
- Chroni A.
- Stratikos E.
- Kardassis D.
- Zannis V.I.
MATERIALS AND METHODS
Materials
- Liu T.
- Krieger M.
- Kan H.Y.
- Zannis V.I.
- Chroni A.
- Kan H.Y.
- Kypreos K.E.
- Gorshkova I.N.
- Shkodrani A.
- Zannis V.I.
Generation of adenoviruses expressing the wild-type and mutant apoA-I forms
- Fotakis P.
- Kateifides A.
- Gkolfinopoulou C.
- Georgiadou D.
- Beck M.
- Grundler K.
- Chroni A.
- Stratikos E.
- Kardassis D.
- Zannis V.I.
RESULTS
Secretion of the WT and the apoA-I[225–230] mutant in the culture media of cells
Expression of the apoA-I transgenes following adenovirus infection
Treatment | None | WT ApoAI | ApoA-I[225–230] | ApoA-I[225–230] + LCAT |
---|---|---|---|---|
ApoAI −/− mice | ||||
ApoA-Ih mRNA levels (%) | Nondetectable | 100 ± 15 a Expression of WT apoA-I in the apoA-I−/− or apoA-I−/− × apoE−/− was set to 100%. Expression of LCAT was also confirmed by RT-PCR. Statistical significant differences at P < 0.05 were calculated between untreated mice and mice expressing the WT apoA-I and the apoA-I[F225A/V227A/F229A/L230A] in either the apoA-I−/− or apoA-I−/− × apoE−/− mouse background and are indicated as follows: bP ≤ 0.05 relative to WT apoA-I control; cP ≤ 0.05 relative to WT apoA-I control; dP ≤ 0.05 relative to the untreated control; eP ≤ 0.05 relative to WT apoA-I control. | 130 ± 10b | 80 ± 10 |
Plasma apoA-Ih protein (mg/dl) | Nondetectable | 173 ± 63 | 59 ± 17c | 149 ± 43 |
Plasma cholesterol (mg/dl) | 27 ± 8 | 182 ± 82d | 41 ± 12d,e | 297 ± 69d |
Plasma triglycerides (mg/dl) | 34 ± 14 | 39 ± 15 | 42 ± 14 | 48 ± 21 |
ApoAI −/− × apoE −/− mice | ||||
ApoA-Ih mRNA levels (%) | Nondetectable | 100 ± 21 a Expression of WT apoA-I in the apoA-I−/− or apoA-I−/− × apoE−/− was set to 100%. Expression of LCAT was also confirmed by RT-PCR. Statistical significant differences at P < 0.05 were calculated between untreated mice and mice expressing the WT apoA-I and the apoA-I[F225A/V227A/F229A/L230A] in either the apoA-I−/− or apoA-I−/− × apoE−/− mouse background and are indicated as follows: bP ≤ 0.05 relative to WT apoA-I control; cP ≤ 0.05 relative to WT apoA-I control; dP ≤ 0.05 relative to the untreated control; eP ≤ 0.05 relative to WT apoA-I control. | 140 ± 50 | 90 ± 30 |
TC (mg/dl) | 337 ± 107 | 520 ± 85 | 377 ± 90 | 778 ± 103d,e |
TG (mg/dl) | 58 ± 23 | 680 ± 290d | 35 ± 22e | 87 ± 65e |
Plasma lipid and apoA-I levels and FPLC profiles

Fractionation of plasma of apoA-I−/− mice expressing the WT apoA-I or the apoA-I[225–230] mutant, EM analysis, and two-dimensional electrophoresis


Comparative analysis of the in vitro functions and physicochemical properties of the WT apoA-I and the apoA-I[225–230] mutant

Mutation | Helicity | Thermal Denaturation | Chemical Denaturation | ANS Binding | ||
---|---|---|---|---|---|---|
ApoA-I | α-Helix | Tm (°C) | Slope a Slope is calculated from the fit of thermal denaturation curve to a Boltzman sigmoidal model curve using the equation [Θ]222 = Bottom + ((Top − Bottom) / (1 = exp((Tm − X) / Slope))). X describes the temperature, and slope describes the steepness of the curve, with a larger value denoting a shallow curve. | Cooperativity Index (n) | D1/2 (M) | Fold Increase |
WT | 59.3 ± 0.5 | 56.0 ± 0.5 | 7.8 ± 0.1 | 6.3 ± 0.4 | 1.02 ± 0.06 | 10.2 ± 0.5 |
F225A/V227A/F229A/L230A | 51.7 ± 0.3 | 57.8 ± 0.2 | 4.0 ± 0.0 | 11.4 ± 0.4 | 1.01 ± 0.03 | 6.0 ± 0.4 |
DISCUSSION
F225A/V227A/F229A/L230A mutations alter the functional and physicochemical properties of apoA-I
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- Von Eckardstein A.
- Zannis V.I.
225–230 mutations are associated with abnormalities in the biogenesis and maturation of HDL
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- Von Eckardstein A.
- Zannis V.I.
- Chroni A.
- Kan H.Y.
- Kypreos K.E.
- Gorshkova I.N.
- Shkodrani A.
- Zannis V.I.
LCAT corrects the aberrant HDL phenotype caused by the apoA-I[225–230] mutations
- Fotakis P.
- Kateifides A.
- Gkolfinopoulou C.
- Georgiadou D.
- Beck M.
- Grundler K.
- Chroni A.
- Stratikos E.
- Kardassis D.
- Zannis V.I.
- Fotakis P.
- Kateifides A.
- Gkolfinopoulou C.
- Georgiadou D.
- Beck M.
- Grundler K.
- Chroni A.
- Stratikos E.
- Kardassis D.
- Zannis V.I.
- Chroni A.
- Liu T.
- Gorshkova I.
- Kan H.Y.
- Uehara Y.
- Von Eckardstein A.
- Zannis V.I.
- Chroni A.
- Kan H.Y.
- Kypreos K.E.
- Gorshkova I.N.
- Shkodrani A.
- Zannis V.I.
Acknowledgments
Supplementary Material
REFERENCES
- The central helices of ApoA-I can promote ATP-binding cassette transporter A1 (ABCA1)-mediated lipid efflux. Amino acid residues 220-231 of the wild-type ApoA-I are required for lipid efflux in vitro and high density lipoprotein formation in vivo.J. Biol. Chem. 2003; 278: 6719-6730
- The carboxy-terminal region of apoA-I is required for the ABCA1-dependent formation of alpha-HDL but not prebeta-HDL particles in vivo.Biochemistry. 2007; 46: 5697-5708
- Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation.Proc. Natl. Acad. Sci. USA. 1997; 94: 12291-12296
- Crystallization of truncated human apolipoprotein A-I in a novel conformation.Acta Crystallogr. D Biol. Crystallogr. 1999; 55: 1578-1583
- Crystal structure of C-terminal truncated apolipoprotein A-I reveals the assembly of high density lipoprotein (HDL) by dimerization.J. Biol. Chem. 2011; 286: 38570-38582
- Carboxyl terminus of apolipoprotein A-I (ApoA-I) is necessary for the transport of lipid-free ApoA-I but not prelipidated ApoA-I particles through aortic endothelial cells.J. Biol. Chem. 2011; 286: 7744-7754
- Apolipoprotein A-I exerts bactericidal activity against Yersinia enterocolitica serotype O:3.J. Biol. Chem. 2011; 286: 38211-38219
- Role of the hydrophobic and charged residues in the 218 to 226 region of apoA-I in the biogenesis of HDL.J. Lipid Res. 2013; (Epub ahead of print. August 29, 2013; doi:10.1194/jlr.M038356)
- The effects of mutations in helices 4 and 6 of ApoA-I on scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux suggest that formation of a productive complex between reconstituted high density lipoprotein and SR-BI is required for efficient lipid transport.J. Biol. Chem. 2002; 277: 21576-21584
- Substitutions of glutamate 110 and 111 in the middle helix 4 of human apolipoprotein A-I (apoA-I) by alanine affect the structure and in vitro functions of apoA-I and induce severe hypertriglyceridemia in apoA-I-deficient mice.Biochemistry. 2004; 43: 10442-10457
- LCAT can rescue the abnormal phenotype produced by the natural ApoA-I mutations (Leu141Arg)Pisa and (Leu159Arg)FIN.Biochemistry. 2007; 46: 10713-10721
- A protocol for rapid generation of recombinant adenoviruses using the AdEasy system.Nat. Protoc. 2007; 2: 1236-1247
- Cell cholesterol efflux: integration of old and new observations provides new insights.J. Lipid Res. 1999; 40: 781-796
- A protein cofactor of lecithin:cholesterol acyltransferase.Biochem. Biophys. Res. Commun. 1972; 46: 1493-1498
- Deletions of helices 2 and 3 of human apoA-I are associated with severe dyslipidemia following adenovirus-mediated gene transfer in apoA-I-deficient mice.Biochemistry. 2005; 44: 4108-4117
- ApoA-I functions and synthesis of HDL: insights from mouse models of human HDL metabolism..in: Fielding C.J. In High-Density Lipoproteins. From Basic Biology to Clinical Aspects. Wiley-VCH, Weinheim2006: 237-265 (editor)
- Influence of C-terminal α-helix hydrophobicity and aromatic amino acid content on apolipoprotein A-I functionality.Biochim. Biophys. Acta. 2012; 1821: 456-463
- Naturally occurring and bioengineered apoA-I mutations that inhibit the conversion of discoidal to spherical HDL: the abnormal HDL phenotypes can be corrected by treatment with LCAT.Biochem. J. 2007; 406: 167-174
- Point mutations in apolipoprotein A-I mimic the phenotype observed in patients with classical lecithin:cholesterol acyltransferase deficiency.Biochemistry. 2005; 44: 14353-14366
- Targeted inactivation of hepatic Abca1 causes profound hypoalphalipoproteinemia and kidney hypercatabolism of apoA-I.J. Clin. Invest. 2005; 115: 1333-1342
- ApoA-IV promotes the biogenesis of apoA-IV-containing HDL particles with the participation of ABCA1 and LCAT.J. Lipid Res. 2013; 54: 107-115
Article info
Publication history
Footnotes
This work was supported by National Institutes of Health Grant HL-48739; General Secretariat of Research and Technology of Greece Grant Synergasia 09SYN-12-897 (to D.K. and A.C.); and Ministry of Education of Greece Grant Thalis MIS 377286 (to D.K., A.C., and E.S.). P. Fotakis has been supported by pre-doctoral training Fellowship HERACLEITUS II by the European Union and Greek national funds through the Operational Program “Education and Lifelong Learning” of the National Strategic Reference Framework (NSRF).
Abbreviations:
ANSIdentification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy