- Naoumova R.P.
- Bonney S.A.
- Eichenbaum-Voline S.
- Patel H.N.
- Jones B.
- Jones E.L.
- Amey J.
- Colilla S.
- Neuwirth C.K.
- Allotey R.
- et al.
- Naoumova R.P.
- Bonney S.A.
- Eichenbaum-Voline S.
- Patel H.N.
- Jones B.
- Jones E.L.
- Amey J.
- Colilla S.
- Neuwirth C.K.
- Allotey R.
- et al.
- Huertas-Vazquez A.
- Aguilar-Salinas C.
- Lusis A.J.
- Cantor R.M.
- Canizales-Quinteros S.
- Lee J.C.
- Mariana-Nuñez L.
- Riba-Ramirez R.M.
- Jokiaho A.
- Tusie-Luna T.
- et al.
- Huertas-Vazquez A.
- Plaisier C.
- Weissglas-Volkov D.
- Sinsheimer J.
- Canizales-Quinteros S.
- Cruz-Bautista I.
- Nikkola E.
- Herrera-Hernandez M.
- Davila-Cervantes A.
- Tusie-Luna T.
- et al.
- Naoumova R.P.
- Bonney S.A.
- Eichenbaum-Voline S.
- Patel H.N.
- Jones B.
- Jones E.L.
- Amey J.
- Colilla S.
- Neuwirth C.K.
- Allotey R.
- et al.
- Huertas-Vazquez A.
- Aguilar-Salinas C.
- Lusis A.J.
- Cantor R.M.
- Canizales-Quinteros S.
- Lee J.C.
- Mariana-Nuñez L.
- Riba-Ramirez R.M.
- Jokiaho A.
- Tusie-Luna T.
- et al.
- Huertas-Vazquez A.
- Plaisier C.
- Weissglas-Volkov D.
- Sinsheimer J.
- Canizales-Quinteros S.
- Cruz-Bautista I.
- Nikkola E.
- Herrera-Hernandez M.
- Davila-Cervantes A.
- Tusie-Luna T.
- et al.
- Huertas-Vazquez A.
- Aguilar-Salinas C.
- Lusis A.J.
- Cantor R.M.
- Canizales-Quinteros S.
- Lee J.C.
- Mariana-Nuñez L.
- Riba-Ramirez R.M.
- Jokiaho A.
- Tusie-Luna T.
- et al.
- Huertas-Vazquez A.
- Plaisier C.
- Weissglas-Volkov D.
- Sinsheimer J.
- Canizales-Quinteros S.
- Cruz-Bautista I.
- Nikkola E.
- Herrera-Hernandez M.
- Davila-Cervantes A.
- Tusie-Luna T.
- et al.
- Naoumova R.P.
- Bonney S.A.
- Eichenbaum-Voline S.
- Patel H.N.
- Jones B.
- Jones E.L.
- Amey J.
- Colilla S.
- Neuwirth C.K.
- Allotey R.
- et al.
MATERIALS AND METHODS
Microarray gene expression and data annotation
- Naoumova R.P.
- Bonney S.A.
- Eichenbaum-Voline S.
- Patel H.N.
- Jones B.
- Jones E.L.
- Amey J.
- Colilla S.
- Neuwirth C.K.
- Allotey R.
- et al.
- Naoumova R.P.
- Bonney S.A.
- Eichenbaum-Voline S.
- Patel H.N.
- Jones B.
- Jones E.L.
- Amey J.
- Colilla S.
- Neuwirth C.K.
- Allotey R.
- et al.
RT-qPCR
In vitro differentiation of 3T3-L1 murine preadipocytes
eQTL analyses
miRNA analyses
Luciferase reporter assays
FCHL-association analysis
- Naoumova R.P.
- Bonney S.A.
- Eichenbaum-Voline S.
- Patel H.N.
- Jones B.
- Jones E.L.
- Amey J.
- Colilla S.
- Neuwirth C.K.
- Allotey R.
- et al.
Statistics
RESULTS
Overrepresentation of cell-cycle genes in FCHL
Trait | FCHL-CHD (n = 13) | Non-FCHL-CHD (n = 6) | Non-FCHL, non-CHD Controls (n = 5) |
---|---|---|---|
Prior to statin medication (historical): | |||
Age (years) | 54.23 ± 6.94 | 58.33 ± 8.89 | NA |
TC (mmol/l) | 7.86 ± 1.05 | 5.71 ± 0.34 | NA |
TG (mmol/l) | 3.57 ± 1.38 | 1.51 ± 0.63 | NA |
At surgery | |||
Age (years) | 58.00 ± 8.66 | 62.16 ± 8.79 | 60.60 ± 3.04 |
BMI (kg/m2) | 27.73 ± 1.63 | 28.13 ± 3.39 | 25.68 ± 3.44 |
TC (mmol/l) | 5.42 ± 0.97 | 3.95 ± 0.98 | 5.14 ± 0.98 |
TG (mmol/l) | 2.74 ± 1.35 | 1.41 ± 0.52 | 1.60 ± 0.73 |
HDL-C (mmol/l) | 1.11 ± 0.16 | 1.05 ± 0.26 | 1.36 ± 1.36 |

- Roubtsova A.
- Munkonda M.N.
- Awan Z.
- Marcinkiewicz J.
- Chamberland A.
- Lazure C.
- Cianflone K.
- Seidah N.G.
- Prat A.
Cluster Description | Cluster GO Terms in FCHL-CHD DEG | Enrichment of Terms in FCHL-CHD/Mexican FCHL | DEG in Cluster/Overlap Mexican-FCHL | P Value Ranges FCHL-CHD/Mexican-FCHL |
---|---|---|---|---|
Generation of precursor metabolites and energy | 0006091 | 2.99/NE | 23/7 | 4.0 × 10−4 |
Actin cytoskeleton organization and biogenesis | 0030036; 0003779; 0030029 | 2.74/9.82 | 21/7 | 4.1 × 10−4–7.8 × 10−4/ 3.1 × 10−11–5.9 × 10−11 |
Intracellular transport and cellular localization | 0046907; 0051641; 0051649; 0016192; 0045184; 0051179; 0008104; 0033036; 0006886; 0015031; 0051234; 0006810; 0006605 | 2.69/5.02 | 87/24 | 1.5 × 10−6 –3.6 × 10-2/ 5.1 × 10−10–5.7 × 10−3 |
Cytoskeletal organization and biogenesis | 0008092; 0007010 | 2.5/8.07 | 37/10 | 4.1 × 10−6/5.2 × 10−10 |
Cell motility | 0006928 | 1.91/NE | 18/2 | 6.1 × 10−3 |
Nitrogen compound biosynthetic process | 0044271; 0046209; 0006809; 0045428 | 1.85/NE | 8/1 | 7.0 × 10−3–2.4 × 10−2 |
Macromolecular and cellular component assembly | 0065003; 0006461; 0022607 | 1.77/4.06 | 21/7 | 1.1 × 10−2–2.3 × 10−2/ 2.2 × 10−5–4.1 × 10−4 |
Regulation of biosynthetic processes | 0009889; 0031326; 0006417; 0006446; 0051246; 0022618 | 1.73/1.54 | 20/6 | 2.4 × 10−5–3.2 × 10−2/ 8.0 × 10−3 |
Apoptosis and cellular differentiation | 0043066; 0006916 ; 0048468; 0043069; 0016265 ; 0008219; 0042981; 0030154; 0048869; 0043067 | 1.69/2.58 | 50/18 | 7.8 × 10−3–3.2 × 10−2/ 2.5 × 10−4–1 × 10−3 |
Cell-cycle | 0007049; 0051726; 0022402; 0045786 | 1.63/3.23 | 29/6 | 9.4 × 10−3–2.0 × 10−2/ 3.5 × 10−5–3.2 × 10−3 |
Structural and system development | 0032502; 0048856; 0007275; 0048731; 0007399; 0048513 | 1.58/2.21 | 90/25 | 1.0 × 10−3-3.3 × 10−2/ 1.2 × 10−5–1.4 × 10−2 |

Effect of CDKN2 isoforms on adipogenesis
- Hemati N.
- Ross S.E.
- Erickson R.L.
- Groblewski G.E.
- MacDougald O.A.

CDKN2B eQTLs in adipose tissue samples
SNP Position | Adipose Tissue (n = 856) | ||||||
---|---|---|---|---|---|---|---|
Tagging SNP ID | (CDKN2B) | Allele 1 | Allele 1 Frequency | Probe | β | SEM | P |
rs1063192 | 22003367 | G | 0.438 | 1 | −0.09 | 0.0284 | 0.0015 |
(3′ UTR) | 2 | −0.0687 | 0.0258 | 0.0077 | |||
rs3217992 | 22003223 | T | 0.374 | 1 | 0.0942 | 0.0291 | 0.0012 |
(3′ UTR) | 2 | 0.0429 | 0.0264 | 0.1047 | |||
rs2811712 | 21998035 | G | 0.105 | 1 | 0.0504 | 0.0443 | 0.2554 |
(3′ CDKN2B) | 2 | 0.088 | 0.0401 | 0.0281 | |||
rs3218018 | 21998139 | T | 0.909 | 1 | −0.0494 | 0.047 | 0.2932 |
(3′ CDKN2B) | 2 | −0.0862 | 0.0425 | 0.0428 | |||
rs2069426 | 22006273 | T | 0.093 | 1 | 0.0368 | 0.047 | 0.4333 |
(Intron 1) | 2 | 0.0779 | 0.0426 | 0.0674 | |||
rs2069422 | 22008026 | T | 0.9 | 1 | −0.0556 | 0.0445 | 0.2119 |
(Intron 1) | 2 | −0.0861 | 0.0403 | 0.0327 |
Functional analysis of CDKN2B's haplotype 1- and 2-derived transcripts

DISCUSSION
- Gibbons R.J.
- Pellagatti A.
- Garrick D.
- Wood W.G.
- Malik N.
- Ayyub H.
- Langford C.
- Boultwood J.
- Wainscoat J.S.
- Higgs D.R.
- Morine M.J.
- Tierney A.C.
- van Ommen B.
- Daniel H.
- Toomey S.
- Gjelstad I.M.
- Gormley I.C.
- Pérez-Martinez P.
- Drevon C.A.
- López-Miranda J.
- et al.
Acknowledgments
Supplementary Material
REFERENCES
- Confirmed locus on chromosome 11p and candidate loci on 6q and 8p for the triglyceride and cholesterol traits of combined hyperlipidemia.Arterioscler. Thromb. Vasc. Biol. 2003; 23: 2070-2077
- Genetics of familial combined hyperlipidemia and risk of coronary heart disease.Hum. Mol. Genet. 2004; 13: R149-R160
- Unraveling the complex genetics of familial combined hyperlipidemia.Ann. Med. 2006; 38: 337-351
- Nomogram to diagnose familial combined hyperlipidemia on the basis of results of a 5-year follow-up study.Circulation. 2004; 109: 2980-2985
- Familial combined hyperlipidemia in Mexicans: association with upstream transcription factor 1 and linkage on chromosome 16q24.1.Arterioscler. Thromb. Vasc. Biol. 2005; 25: 1985-1991
- TCF7L2 is associated with high serum triacylglycerol and differentially expressed in adipose tissue in families with familial combined hyperlipidaemia.Diabetologia. 2008; 51: 62-69
- A systems genetics approach implicates USF1, FADS3, and other causal candidate genes for familial combined hyperlipidemia.PLoS Genet. 2009; 5: e1000642
- New technologies for delineating and characterizing the lipid exome: prospects for understanding familial combined hyperlipidemia.J. Lipid Res. 2009; 50: S370-S375
- Linkage and association between distinct variants of the APOA1/C3/A4/A5 gene cluster and familial combined hyperlipidemia.Arterioscler. Thromb. Vasc. Biol. 2004; 24: 167-174
- Dynamics of human adipose lipid turnover in health and metabolic disease.Nature. 2011; 478: 110-113
- Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia.Arterioscler. Thromb. 1993; 13: 1110-1118
- Apolipoprotein B metabolism in humans: studies with stable isotope-labeled amino acid precursors.Atherosclerosis. 2002; 162: 227-244
- An integrated reverse functional genomic and metabolic approach to understanding orotic acid-induced fatty liver.Physiol. Genomics. 2004; 17: 140-149
- Bioconductor: open software development for computational biology and bioinformatics.Genome Biol. 2004; 5: R80
.R Development Core Team. 2006. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.
- A comparison of normalization methods for high density oligonucleotide array data based on variance and bias.Bioinformatics. 2003; 19: 185-193
- Significance analysis of microarrays applied to the ionizing radiation response.Proc. Natl. Acad. Sci. USA. 2001; 98: 5116-5121
- Changes in the transcriptome of abdominal subcutaneous adipose tissue in response to short-term overfeeding in lean and obese men.Am. J. Clin. Nutr. 2009; 89: 407-415
- DAVID: database for annotation, visualization, and integrated discovery.Genome Biol. 2003; 4: 3
- Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources.Nat. Protoc. 2009; 4: 44-57
- Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists.Nucleic Acids Res. 2009; 37: 1-13
- Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method.Methods. 2001; 25: 402-408
- Simple flow cytometric method used to assess lipid accumulation in fat cells.J. Lipid Res. 2004; 45: 1162-1167
- Haploview: analysis and visualization of LD and haplotype maps.Bioinformatics. 2005; 21: 263-265
- Efficiency and power in genetic association studies.Nat. Genet. 2005; 37: 1217-1223
.International HapMap Consortium. 2003. The International HapMap Project. Nature., 426: 789–796.
- Mapping cis- and trans-regulatory effects across multiple tissues in twins.Nat. Genet. 2012; 44: 1084-1089
- MicroRNA targeting specificity in mammals: determinants beyond seed pairing.Mol. Cell. 2007; 27: 91-105
- miRDB: a microRNA target prediction and functional annotation database with a wiki interface.RNA. 2008; 14: 1012-1017
- Prediction of both conserved and nonconserved microRNA targets in animals.Bioinformatics. 2008; 24: 325-332
- RegRNA: an integrated web server for identifying regulatory RNA motifs and elements.Nucleic Acids Res. 2006; 34: W429-W434
- Fast and effective prediction of microRNA/target duplexes.RNA. 2004; 10: 1507-1517
- GWAF: an R package for genome-wide association analyses with family data.Bioinformatics. 2010; 26: 580-581
- Evaluation of reference genes for studies of gene expression in human adipose tissue.Obes. Res. 2005; 13: 649-652
- Identification of a novel N-terminal hydrophobic sequence that targets proteins to lipid droplets.J. Cell Sci. 2008; 121: 1852-1860
- Inhibition of adipogenesis and induction of apoptosis and lipolysis by stem bromelain in 3T3-L1 adipocytes.PLoS ONE. 2012; 7: e30831
- Circulating proprotein convertase subtilisin/kexin 9 (PCSK9) regulates VLDLR protein and triglyceride accumulation in visceral adipose tissue.Arterioscler. Thromb. Vasc. Biol. 2011; 31: 785-791
- Regulation of cyclin-dependent kinase 4 during adipogenesis involves switching of cyclin D subunits and concurrent binding of p18INK4c and p27Kip1.Cell Growth Differ. 1998; 9: 595-610
- CCAAT/enhancer binding protein alpha is sufficient to initiate the 3T3-L1 adipocyte differentiation program.Proc. Natl. Acad. Sci. USA. 1994; 91: 8757-8761
- Signaling pathways through which insulin regulates CCAAT/enhancer binding protein alpha (C/EBPalpha) phosphorylation and gene expression in 3T3-L1 adipocytes. Correlation with GLUT4 gene expression.J. Biol. Chem. 1997; 272: 25913-25919
- A high-capacity assay for PPARgamma ligand regulation of endogenous aP2 expression in 3T3-L1 cells.Anal. Biochem. 2004; 330: 21-28
- Consecutive positive feedback loops create a bistable switch that controls preadipocyte-to-adipocyte conversion.Cell Rep. 2012; 2: 976-990
- Adipose development: from stem cell to adipocyte.Crit. Rev. Biochem. Mol. Biol. 2005; 40: 229-242
- Extent, causes, and consequences of small RNA expression variation in human adipose tissue.PLoS Genet. 2012; 8: e1002704
- miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay.Science. 2012; 336: 237-240
- Genome-wide identification of translationally inhibited and degraded miR-155 targets using RNA-interacting protein-IP.RNA Biol. 2013; 10: 1018-1029
- Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the alpha-thalassemia myelodysplasia syndrome (ATMDS).Nat. Genet. 2003; 34: 446-449
- NDUFS6 mutations are a novel cause of lethal neonatal mitochondrial complex I deficiency.J. Clin. Invest. 2004; 114: 837-845
- Arts syndrome is caused by loss-of-function mutations in PRPS1.Am. J. Hum. Genet. 2007; 81: 507-518
- Gene and microRNA analysis of neutrophils from patients with polycythemia vera and essential thrombocytosis: down-regulation of micro RNA-1 and -133a.J. Transl. Med. 2009; 7: 39
- Activation of Wnt/β-catenin pathway in monocytes derived from chronic kidney disease patients.PLoS ONE. 2013; 8: e68937
- Disease-specific molecular events in cortical multiple sclerosis lesions.Brain. 2013; 136: 1799-1815
- Expression of lipoprotein lipase in different human subcutaneous adipose tissue regions.J. Lipid Res. 1991; 32: 423-429
- Regional differences in subcutaneous adipose tissue gene expression.Obesity (Silver Spring). 2012; 20: 2168-2173
- Region-specific nutrient intake patterns exhibit a geographical gradient within and between European countries.J. Nutr. 2010; 140: 1280-1286
- Fatty acids intake in the Mexican population. Results of the National Nutrition Survey 2006.Nutr. Metab. (Lond). 2011; 8: 33
- Transcriptomic coordination in the human metabolic network reveals links between n-3 fat intake, adipose tissue gene expression and metabolic health.PLOS Comput. Biol. 2011; 7: e1002223
- Protein kinase C regulates alpha v beta 5-dependent cytoskeletal associations and focal adhesion kinase phosphorylation.J. Cell Biol. 1996; 134: 1323-1332
- Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour.J. Cell Sci. 2012; 125: 317-327
- Tailored integrin-extracellular matrix interactions to direct human mesenchymal stem cell differentiation.Stem Cells Dev. 2012; 21: 2442-2456
- Involvement of cytoskeleton-associated proteins in the commitment of C3H10T1/2 pluripotent stem cells to adipocyte lineage induced by BMP2/4.Mol. Cell. Proteomics. 2011; 10 (M110.002691)
- Association of alphaB-crystallin, a small heat shock protein, with actin: role in modulating actin filament dynamics in vivo.J. Mol. Biol. 2007; 366: 756-767
- Insulin and insulin-like growth factor-1 receptors act as ligand-specific amplitude modulators of a common pathway regulating gene transcription.J. Biol. Chem. 2010; 285: 17235-17245
- Differential effects of IGF-I, IGF-II and insulin in human preadipocytes and adipocytes—role of insulin and IGF-I receptors.Mol. Cell. Endocrinol. 2011; 339: 130-135
- Limited overlapping roles of P15(INK4b) and P18(INK4c) cell cycle inhibitors in proliferation and tumorigenesis.EMBO J. 2000; 19: 3496-3506
- Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice.Nature. 2010; 464: 409-412
- Effect of 9p21.3 coronary artery disease locus neighboring genes on atherosclerosis in mice.Circulation. 2012; 126: 1896-1906
- p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a.Nature. 2007; 448: 943-946
- Mammalian microRNAs predominantly act to decrease target mRNA levels.Nature. 2010; 466: 835-840
- Expression of linear and novel circular forms of an INK4/ARF-associated non-coding RNA correlates with atherosclerosis risk.PLoS Genet. 2010; 6: e1001233
- Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA.Nature. 2008; 451: 202-206
- Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene.Oncogene. 2011; 30: 1956-1962
- Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression.PLoS Genet. 2010; 6: e1000899
- Functional analysis of the chromosome 9p21.3 coronary artery disease risk locus.Arterioscler. Thromb. Vasc. Biol. 2009; 29: 1671-1677
- Relationship between CAD risk genotype in the chromosome 9p21 locus and gene expression. Identification of eight new ANRIL splice variants.PLoS ONE. 2009; 4: e7677
- ANRIL expression is associated with atherosclerosis risk at chromosome 9p21.Arterioscler. Thromb. Vasc. Biol. 2010; 30: 620-627
- Elevated Fra-1 expression causes severe lipodystrophy.J. Cell Sci. 2011; 124: 1465-1476
- Dynamics of fat cell turnover in humans.Nature. 2008; 453: 783-787
- Adipocyte turnover: relevance to human adipose tissue morphology.Diabetes. 2010; 59: 105-109
- Biological, clinical and population relevance of 95 loci for blood lipids.Nature. 2010; 466: 707-713
Article info
Publication history
Footnotes
This work was supported by the British Medical Research Council and by an unrestricted educational research grant from Merck Sharp & Dohme / Schering Plough.
Abbreviations:
BMIIdentification
Copyright
User license
Creative Commons Attribution (CC BY 4.0) |
Permitted
- Read, print & download
- Redistribute or republish the final article
- Text & data mine
- Translate the article
- Reuse portions or extracts from the article in other works
- Sell or re-use for commercial purposes
Elsevier's open access license policy