Localization of a liver-specific enhancer in the apolipoprotein E/C-I/C-II gene locus

Neil S. Shachter¹, Yuying Zhu, Annemarie Walsh, Jan L. Breslow, and Jonathan D. Smith²

Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, NY 10021-6399

Abstract The sequences necessary for liver-specific expression of the apolipoprotein (apo) E gene have been shown to reside 3' to the gene, within the apoE/C-I/C-I1 gene cluster, but have not been precisely characterized. Utilizing a transient transfection reporter gene assay based on the apoC-II promoter, we have localized a liver-specific enhancer to its approximate limit been precisely characterized. A DNase1 protection assay revealed two footprints over a reporter gene assay based on the apoC-I1 promoter, we have postulated to represent the recognition sequence of a hepatic inverted repeat of a known transcriptionally active motif, dimension of 154 base pairs. This enhancer directed liver-gene cluster.

Supplementary key words apolipoprotein E • transgenic mice • tissue-specific gene expression

Apolipoproteins (apo) E, C-I, and C-II are components of a gene family whose members play a major role in the trafficking of plasma cholesterol and triglycerides (1). ApoE is expressed predominantly in the liver, but to some degree in virtually all tissues, with significant amounts made in brain, skin, spleen, kidney, and steroidogenic tissues (2-11). ApoE is a high affinity ligand for the low density lipoprotein (LDL) receptor and the LDL receptor-related protein (12), and is felt to mediate the hepatic clearance of lipolyzed very low density lipoproteins (VLDL) and chylomicrons (13). ApoE may also be involved in the removal of excess cholesterol from peripheral tissues and in the local redistribution of cholesterol (14). Apo-C-I is also expressed primarily in the liver, with lesser amounts found in skin, spleen, and lung (15, 16). Expression of apoC-I, and apoE, is induced during monocyte differentiation into macrophages (15). The function of apoC-I is less well understood but has been shown to interfere with the apoE-mediated hepatic uptake of small chylomicrons (17). Human apoC-I-expressing transgenic mice were mildly hypertriglyceridemic, an effect that was opposed in mice that simultaneously expressed human apoE (16). ApoC-II expression has not been extensively studied. In the fetus it is expressed primarily in the liver (7). ApoC-II is an obligatory cofactor for lipoprotein lipase (18) and its hereditary absence causes a well-defined clinical syndrome which mimics lipoprotein lipase deficiency (19). ApoC-II also appears to interfere with particle uptake in models of chylomicron remnant clearance (17). The cloning of cDNA sequences for the human apoE, apoC-I, and apoC-II mRNAs was followed by the documentation of close association of all three genes on chromosome 19 (20-23). Subsequent genomic cloning of the locus revealed a 48 kb cluster consisting of apoE, apoC-I, apoC-I' (a pseudogene), and apoC-II (24).

We have previously characterized transcriptionally active elements in the apoE promoter and first intron by the technique of deletional analysis of transiently transfected reporter gene constructions (25). In initial work in transgenic mice, both our laboratory (11) and Simonet et al. (26) found that an apoE construction containing 5.7 kb of 5' and 1.9 kb of 3' flanking sequence was expressed at high levels in the kidney, but not in the liver. Simonet et al. (26) observed that a cosmid containing both the apoE and apoC-I genes, terminating 23 kb 3' to apoE, was expressed in the liver of transgenic mice. In a later study (16) they reported that a 5.7 kb BamHI fragment within this cosmid, spanning the 5' end of the apoC-I' pseudogene, directed liver-specific expression of apoC-I, raising the possibility of regulation of the entire locus by

Abbreviations: apo, apolipoprotein; LDL, low density lipoprotein; VLDL, very low density lipoprotein; PCR, polymerase chain reaction; CAT, chloramphenicol acetyl transferase.

¹Present address: Division of Preventive Medicine and Nutrition, Department of Medicine, Columbia College of Physicians and Surgeons, 630 West 168th Street, New York, NY 10032.

To whom correspondence should be addressed.
a single liver-specific enhancer. The present study was undertaken to further define this enhancer. We now describe the localization of this liver-specific enhancer to a 154 bp fragment with documentation of activity in both transient transfection and transgenic mice. We have also analyzed sequence motifs and characterized protein binding regions within this enhancer.

MATERIALS AND METHODS

Enhancer test constructions

The apoC-II-CAT expression vector was created from a cosmid comprising the human apoC-I, C-I', and C-II genes which was the generous gift from Marten Hofker (24). An 8.3 kb fragment extending from an NcoI site present 6 kb upstream of the apoC-II gene to a SacI site in the first intron was subcloned into pUC31. A 110 bp polymerase chain reaction (PCR) fragment was generated, which spanned the SacI site in the first intron and created a false HindIII site just prior to the translation initiation codon in the second exon, and was ligated into the above subclone. The NcoI site was then blunted with T4 polymerase and the total NcoI-HindIII insert was ligated into pKT (27), a previously described promoterless chloramphenicol acetyl transferase (CAT) vector, and entitled pC2KT. To facilitate the subcloning of enhancer fragments, a shuttle vector, pG9K2, was created by converting both the Not1 and SfiI sites of pGEMSzf(-) (Promega) to KpnI sites. The entire 5.7 kb fragment or subclone. The NcoI site was then blunted with T4 polymerase and the total NcoI-HindIII insert was ligated into pKT (27), a previously described promoterless chloramphenicol acetyl transferase (CAT) vector, and entitled pC2KT. To facilitate the subcloning of enhancer fragments, a shuttle vector, pG9K2, was created by converting both the Not1 and SfiI sites of pGEMSzf(-) (Promega) to KpnI sites. The 5.7 kb BamHI fragment spanning the 5' end of apoC-I' was cloned into the HindIII site of pG9K2. The entire 5.7 kb fragment or subclone portions, produced by restriction digestion of an internal and polylinker site followed by blunt ending and self-ligation, could be excised with KpnI for ligation into the unique 5' KpnI site of pC2KT. After localization of the enhancer to 154 bp, site-directed mutagenesis was performed by digestion with Sty1, treatment with T4 polymerase in the presence of all four deoxynucleotides and either self-ligation (mutation 1) or ligation of a PstI linker (mutation 2). Mutation 1 led to the duplication of bases 121-123 (CCT); mutation 2 led to a 16 bp insertion (CTGGCAAGCTGCAGCTT) following base 123, both as determined by DNA sequence analysis. (The numbering of bases is as shown in Fig. 5). The minimal Adenovirus major late promoter-CAT expression vector, pXT, was created by inserting the 499 bp SalI fragment of bacteriophage λ into the EcoRI site of pC7 (25). The apoE promoter-CAT expression vector contained apoE sequences from -1000 bp to +803 bp as previously described (25). Constructions were verified either by restriction enzyme mapping or sequencing by the dideoxynucleotide method. All plasmids were prepared by alkaline lysis and banded twice through cesium chloride-ethidium bromide gradients.

Cell culture, transfections, and reporter gene assays

HepG2 and HeLa cells were grown and transfected as previously described (25). Each transfection contained the CAT expression vector along with the β-galactosidase expressing vector pCH110 (28), which was used as an internal control for transfection efficiency. CAT and β-galactosidase assays were performed as previously described (25). The percent of the chloramphenicol substrate acetylated was determined by liquid scintillation counting after thin-layer chromatography. The CAT activity of each sample was corrected for transfection efficiency by dividing by its corresponding β-galactosidase activity.

Transgenic mice

Transgenic mice were created as reported previously (11). Integration of the human apoE gene was determined by Southern blotting of tail-derived DNA as previously described (11). RNA derived from various tissues were probed for the presence of human apoE mRNA using a previously described RNase protection assay (11).

ApoE protein assay

The level of human apoE in the plasma of transgenic mice was determined through the courtesy of Henry N. Ginsberg, Columbia College of Physicians and Surgeons. A previously reported apoE radioimmunoassay was used that showed no significant crossreactivity with normal mouse plasma (29).

DNasel protection assay

The 154 bp PvuII-ApaI liver-specific enhancer fragment was cloned with linkers into the HindIII site of pG9K2 and sequenced to determine its orientation. In order to specifically label the 3' end of the sense strand, the fragment was excised from the polylinker with XbaI and NsiI, and labeled by filling in the XbaI overhang with T4 DNA polymerase in the presence of [α-32P]dCTP and the other three dNTPs. The antisense strand was labeled similarly using a SacI-ThhI fragment in the presence of [α-32P]dATP. The probe (50,000 cpm) was incubated in a final volume of 50 μl with either albumin, as a control, or HepG2 nuclear extract, prepared according to the method of Dignam, Lebowitz, and Roeder (30), in 15 mM HEPES, pH 7.9, 45 mM potassium chloride, 1 mM magnesium chloride, 1 mM dithiothreitol, 3% Ficol, and 25 μg/ml of poly dIdC. The mixture was incubated for 15 min at room temperature and treated with 5 μl of a DNasel mix for 1 min at room temperature. The DNasel mix contained 5 mM calcium chloride, 1 mM EDTA, and either 0.45 μg/ml or 30 μg/ml DNasel for the albumin- and nuclear extract-treated probes, respectively. DNasel digestion was halted by the addition of 10 μl of 10 mg/ml proteinase K, 5 μl of 10 mg/ml RNA, and 10 μl of a solution containing 0.6 M sodium acetate, 1% sodium...
dodecyl sulfate, 5 mM EDTA, and 100 μg/ml glycogen. This mixture was incubated at 65°C for 20 min, and ethanol-precipitated before running on a 6% polyacrylamide, 6 M urea sequencing gel. In order to define the position of the protected regions, a G + A sequence ladder (31) was prepared from each probe and run alongside the reaction products in the gel.

RESULTS

The goal of this study was the localization of a liver-specific enhancer that has been shown to reside within a 5.7 kb region spanning the 5' end of the apoC-I' pseudogene. We suspected that this region might mediate the hepatic expression of all three expressed apolipoprotein genes in the chromosome 19 cluster. In order to rapidly localize this enhancer, this 5.7 kb region was tested in the context of an apoC-II promoter–CAT expression vector, pC2KT, in a cell culture assay system. As diagrammed in Fig. 1A, we observed that the 5.7 kb BamHI fragment (insert 1), in the context of pC2KT, behaved as an enhancer, giving rise to a consistent fourfold increase in CAT activity in transiently transfected HepG2 cells, a human hepatoma cell line. Successive deletions of the 5.7 kb fragment were performed in a shuttle vector. These smaller fragments were tested, many in both orientations; and the effect remained consistent, orientation-independent, and always present only in one part of a divided fragment. The enhancer activity was further
Localized to a 1.4 kb SphI-XbaI segment (insert 6) in the center of the BamHI fragment and subsequently to a 250 bp PstI-ApaI segment (insert 11) in the center of the 1.4 kb fragment. The 154 bp PvuII-ApaI fragment (insert 12) retained full activity while deletion of the 3' 30 bp at a Styl site (insert 13, 124 bp) abolished activity. A 98 bp PCR product missing the 5' 56 bp (insert 14) also lacked enhancer activity. Therefore, enhancer activity required sequence elements found at both ends of the 154 bp fragment. The results of the CAT assays are presented quantitatively in Fig. 1A and a representative CAT assay is shown in Fig. 1B.

In order to determine whether a cell-type-specific enhancing effect would be present in other promoter contexts, we observed an approximately fourfold effect of the 154 bp fragment in the apoC-II and apoE promoter contexts, and a 13-fold effect in the Adenovirus major late promoter in HepG2 transfections. In contrast, we observed a very slight effect in HeLa cells only in the apoE promoter context (Fig. 2). We observed a similar pattern and degree of cell line-specific enhancer activity for the parental 5.7 kb BamHI fragment (data not shown). We, therefore, concluded that the 154 bp fragment contains the entire sequence necessary for cell line-specific enhancer activity.
We then sought to determine whether this 154 bp enhancer, defined in transient transfections, corresponded to the sequences necessary for liver-specific expression of the human apoE gene in transgenic mice. Fig. 3A shows the organization of the human chromosome 19 apolipoprotein gene cluster, along with four constructions used to generate human apoE transgenic mice. The expression of these constructions in liver, kidney, skin, and brain, as determined by a human apoE RNase protection assay, is summarized (Fig. 3A). A representative RNase protection gel is shown in Fig. 3B. ApoE transgenic construction 1 is an 11.1 kb HindIII fragment containing 5.7 kb of 5' and 1.9 kb of 3' flanking sequence. We have previously reported this construction as showing high levels of expression in kidney, but not in liver in three independent lines of transgenic mice (11). Construction 2 was created by truncating construction 1 at a -650 bp BglII site and joining it to a 5 kb HindIII fragment spanning the 5' end of the apoC-I gene. This construction exhibited little or no expression in any tissue tested in three independent lines. Replacement of the 5 kb fragment by the 5.7 kb BamHI fragment spanning the 5' end of the apoC-I' pseudogene (construction 3) conferred liver-specific expression of the apoE gene in two independent lines. The 154 bp fragment which exhibited enhancer activity in tissue culture, when linked to the same apoE gene fragment (construction 4), also gave a liver-specific expression pattern in two independent lines of transgenic mice. Human apoE mRNA levels in these construction 4 transgenics were very low or nondetectable in kidney, skin, and brain (Fig. 3B), as well as in heart, intestine, and spleen (data not shown). The plasma level of human apoE in one of the two lines made from construction 4 was 13 μg/ml, compared to an average value for normal human males of 46.7 ± 16.3 μg/ml (29). The 154 bp enhancer is therefore sufficient for liver-specific expression of the human apoE gene in transgenic mice.

Fig. 4 shows a DNaseI protection experiment using the 154 bp liver-specific enhancer fragment as a probe. After incubation with a HepG2 nuclear extract, we observed two DNaseI protected regions, or footprints, near the 3' end of the fragment, covering nucleotides 114 to 127 and 133 to 146. These two footprints were specifically competed by unlabeled DNA (data not shown). In addition to DNaseI protection by factors in the nuclear extract, we also observed sites that were rendered DNaseI-sensitive at positions 37, 88, and 95. The DNA sequence of the 154 bp liver-specific enhancer (Fig. 5) contains two copies in opposite orientation of the sequence CTGTACCT, a known transcriptionally active motif that is found in the promoters of numerous apolipoprotein and other liver-expressed genes (Table 1). A partially overlapping inverted repeat, GACCTCTG, was found at the 3' end of the 154 bp fragment. The sequence also contains six repeats (three perfect, two 6/7, and one 5/7) of a heptanucleotide sequence, GCAAACA, which matches the recognition sequence of a proposed liver-specific transcriptional activity, HNF-5 (38) (Table 2). Two of the sites rendered DNaseI-sensitive by incubation with nuclear extract were found at the third A of adjacent perfect copies of the GCAAACA motif at positions 88 and 95. The third sensitive site was located on the antisense strand at position 37 within a 6/7 HNF-5 consensus homology. The position of the DNaseI-sensitive sites within the heptanucleotides is consistent.
with HNF-5 binding, as described (38). The position 37 site was bracketed by inverted repeats of CTGAA.

A Sty1 site within footprint I was used for the site-directed mutagenesis of the 154 bp liver-specific enhancer. Two mutations were made; mutations 1 and 2 led to 3 bp and 16 bp insertions, respectively. These mutations were tested for enhancer activity in the context of pC2KT by transient transfection into HepG2 cells. Mutations 1 and 2 showed 2.2 ± 0.1 and 0.9 ± 0.1 fold enhancer activity, respectively, eliminating most of the 4.1 ± 1.2 fold enhancer activity of the native 154 bp fragment. The site-directed mutagenesis data support the notion that factors binding to the footprint I region are involved in mediating enhancer activity.

DISCUSSION

In the present study we have localized the liver-specific enhancer in the apoE/C-I/C-II gene cluster using trans-
We have also performed a DNaseI protection assay and found two footprints at the 3' end of the 154 bp enhancer, with each containing a copy (in opposite orientation) of a sequence, CTGACCT. Site-directed mutagenesis within footprint I was found to markedly diminish enhancer activity supporting a functional role for this element. Deletion of the 3' 30 bp comprising footprint II and part of footprint I abolished enhancer activity. However, the region of these footprints was insufficient for enhancer activity as demonstrated by the elimination of activity by deletion of 56 bp at the 5' end of the 154 bp fragment (Fig. 1A, insert 14). Factors interacting with the 5' end of the enhancer did not produce a footprint under the conditions of the assay. Three sites were, however, rendered DNaseI-sensitive after incubation with nuclear extract, two at the same position within adjacent copies of GCAAACA and the third in the 5' part of the enhancer within a 5/7 sequence identity (Fig. 5).

The TGACCT element, as shown in Table 1, has been found in transcriptionally active regions of numerous apolipoprotein (32) and other heptatically expressed genes (37). The extended motif found within footprint I, TGACCTTGG, is also found 145 bp 5' to the apoC-II gene (32). The core motif is similar to a family of elements binding a variety of transcription factors within the steroid hormone receptor superfamily (42). A number of transcription factors have been shown to interact specifically with this motif and regulate apolipoprotein gene expression, as summarized in a recent review (33). For example, nuclear factor AF-1, which binds this motif, has been shown to be necessary for high levels of expression of apoC-III gene transcription (32). Other factors that bind this motif, ARP-1 and EAR-3, members of a recently described steroid hormone receptor subfamily, and factor HNF-4, have been shown to interact with this motif in the apoA-I and apoC-III promoters (43). These factors and transcription factor EAR-2 have also been shown to interact with this motif within the apoB and apoA-II promoters (35). The apoA-I element has been shown to respond selectively to RXRs but not to other members of the steroid receptor superfamily (44). The enhancer footprint I is similar to footprint A of the acyl-CoA oxidase peroxisome proliferator-responsive enhancer (36). This raises the possibility that a characterized transcription factor, the peroxisome proliferator-activated receptor, may interact with the enhancer as part of the coordinate regulation of genes involved in triglyceride metabolism (45).

The GCAAACA motif has also been found in a transcriptionally active segment of the apoB promoter adjacent to a TGACCT-type element (39). Multiple repeats of a similar element (consensus G/A CAAA C/T A) have been noted to be present in liver-specific footprints of two remote glucocorticoid responsive units of the liver-expressed gene tyrosine aminotransferase (38). A cell type-specific activity binding to this motif has been characterized by DNaseI footprint analysis and termed HNF-5 (38). HNF-5 binding produces a characteristic asymmetric pattern of DNaseI cleavage (38). The sensitive sites at bp 88 and 95 are found within the HNF-5 consensus sequence and are consistent with the HNF-5 DNaseI cleavage pattern. The sensitive site at bp 37 is found within a 6/7 match to the HNF-5 consensus on the antisense strand and exhibits the expected cleavage site for this orientation. A number of liver expressing genes containing the HNF-5 motif in regulatory regions are listed in Table 2. A similar sequence is found in a DNaseI footprint within the mouse albumin enhancer but could be competed by an HNF-3 binding oligonucleotide (41).

In summary, we have shown that the 154 bp fragment functions as a tissue-specific enhancer in cultured cells, displaying positive transcriptional activity at a distance from the apoC-II promoter and in either orientation, as well as activity in a heterologous viral promoter. We have also shown that this 154 bp fragment is sufficient for liver-specific expression of the apoE transgene. This 154 bp enhancer is localized within, and may be responsible for the activity of, the 5.7 kb region shown by Simonet et al. (16) to be necessary for the liver-specific expression of the adjacent apoC-I gene in transgenic mice. We speculate that this 154 bp region may mediate the liver-specific expression of all three expressing apolipoprotein genes in the human chromosome 19 cluster. Examples of liver enhancers functioning throughout a multigene locus are limited. It appears that a single DNA region may mediate the intestinal expression of the chromosome 11 apolipoprotein gene cluster (apoA-I/C-III/A-IV) (46-48). ApoE, C-I, and C-II are components of VLDL and play a major role in triglyceride metabolism. It has been speculated that the consequent need for coordinate regulation has been the evolutionary impetus for the maintenance of this gene cluster (49). Further studies will be needed to establish whether this 154 bp enhancer mediates the liver-specific expression of the other two apolipoprotein genes in this cluster, and to elaborate the mechanism and factors involved.

Note added in proof: After the submission of this manuscript, Simonet, et al. published the localization of a liver-specific enhancer to a 764 bp region, 5' to the apoC-I' pseudogene. The 154 bp enhancer fragment that we have characterized lies within this 764 bp region. Simonet, W. S., N. Bucay, S. J. Lauer, and J. M. Taylor. 1993. J. Biol. Chem. 268: 8221-8229.

We thank Drs. Li-Shin Huang, Todd Leff, Andrew Plump, and Henry N. Ginsberg for valuable discussion and encouragement. We also thank Claire Grigaux and Jeffrey Jones for expert technical assistance. This work was supported in part by an American Heart Association Grant-In-Aid to J. D. S., a Roth Foundation grant to N. S., National Institutes of Health grants HL32435 and HL33714 to J. L. B., and the Calder Foundation.

Manuscript received 12 November 1992 and in revised form 28 April 1993.

Shachter et al. Localization of apoE liver-specific enhancer 1705
REFERENCES

31. Zannis, V. I., D. Kardassis, P. Cardot, M. Hadzopoulou-

