Advertisement

Fatty acid binding to plasma albumin

Open AccessPublished:May 01, 1975DOI:https://doi.org/10.1016/S0022-2275(20)36723-7
      This paper is only available as a PDF. To read, Please Download here.
      A review of the available information about fatty acid binding to plasma albumin is presented. Albumin is composed of a single polypeptide chain, folded so as to form three or four spherical units. The strong fatty acid binding sites probably are located in crevices between these spherical regions. The anionic form of the fatty acid binds to albumin. Most of the binding energy comes from nonpolar interactions between the fatty acid hydrocarbon chain and uncharged amino acid side chains that line the binding sites. The binding sites are somewhat pliable, and their configuration can adapt to fit the incoming fatty acid. Stepwise association constants for binding to human albumin of fatty acids containing 6-18 carbon atoms are presented. These data indicate that each mole of fatty acid binds with a different affinity and that the association constants for multiple binding diminish sequentially, i.e., kappa 1 > kappa 2 > kappa 3 greater ... greater kappan. Because of uncertainties concerning fatty acid association in aqueous solutions, the constants for the 14-18 carbon acids probably are not definitive. In the usual physiological concentration range, free fatty acids do not displace appreciable amounts of a second organic compound from albumin. Sensitive spectrophotometric analyses revealed, however, that even small increases in free fatty acid concentration alter the molecular interaction between human albumin and another organic compound.

      REFERENCES

        • Kendall F.E.
        Studies on human serum proteins. II. Crystallization of human serum albumin. /.
        Biol. Chem. 1941; 138: 97-109
        • Ballou G.A.
        • Boyer P.D.
        • Luck J.M.
        • Lum F.G.
        The heat coagulation of human serum albumin.
        J. Biol. Chem. 1944; 153: 589-605
        • Scatchard G.
        The attraction of proteins for small molecules and ions.
        Ann. N. Y. Acad. Sci. 1949; 51: 660-672
        • Gordon Jr., R.S.
        • Boyle E.
        • Brown R.K.
        • Cherkes A.
        • Anfinsen C.B.
        Role of serum albumin in li-pemia clearing reaction.
        Proc. Soc. Exp. Biol. Med. 1953; 84: 168-170
        • Robinson D.S.
        • French J.E.
        The role of albumin in the interaction of chyle and plasma in the rat.
        Quart. J. Exp. Physiol. 1953; 38: 233-239
        • Korn E.D.
        Clearing factor, a heparin-activated lipoprotein lipase. I. Isolation and characterization of the enzyme from normal rat heart.
        J. Biol. Chem. 1955; 215: 1-14
        • Korn E.D.
        Clearing factor, a heparin-activated lipoprotein lipase. II. Substrate specificity and activation of coconut oil.
        J. Biol. Chem. 1955; 215: 15-26
        • Dole V.P.
        A relation between non-esterified fatty acids in plasma and the metabolism of glucose.
        J. Clin. Invest. 1956; 35: 150-154
        • Gordon R.S.
        • Cherkes A.
        Unesterified fatty acid in human blood plasma.
        J. Clin. Invest. 1956; 35: 206-212
        • Gordon Jr., R.S.
        Unesterified fatty acid in human blood plasma. II. The transport function of unesterified fatty acid.
        J. Clin. Invest. 1957; 36: 810-815
        • Laurell S.
        Turnover rate of unesterified fatty acids in human plasma.
        Acta Physiol. Scand. 1957; 41: 158-167
        • Gordon Jr., R.S.
        • Cherkes A.
        Production of unesterified fatty acids from isolated rat adipose tissue incubated in vitro.
        Proc. Soc. Exp. Biol. Med. 1958; 97: 150-151
        • White J.E.
        • Engel F.L.
        A lipolytic action of epinephrine and norepinephrine on rat adipose tissue in vitro.
        Proc. Soc. Exp. Biol. Med. 1958; 99: 375-378
        • Phelps R.A.
        • Putnam F.W.
        Chemical composition and molecular parameters of purified plasma proteins.
        in: Putnam F.W. The Plasma Proteins. 1. Academic Press, New York1960: 143-178
        • Pederson D.M.
        • Foster J.F.
        Subtilisin cleavage of bovine plasma albumin. Reversible association of the two primary fragments and their relation to the structure of the parent protein.
        Biochemistry. 1969; 8: 2357-2365
        • Spahr P.F.
        • Edsall T.
        Amino acid composition of human and bovine serum mercaptalbumins.
        J. Biol. Chem. 1964; 239: 850-854
        • Peters Jr., T.
        Isolation and amino acid composition of two peptide fragments from bovine serum albumin.
        J. Biol. Chem. 1965; 240: 1865-1867
        • Saifer A.
        • Palo J.
        Amino acid composition of momomeric and polymeric human serum albumin.
        Anal. Biochem. 1969; 27: 1-14
        • Wong K.-P.
        • Foster J.F.
        The microheterogeneity of plasma albumin. VII. An investigation by the equilibrium salting out method of the origins of microheterogeneity.
        Biochemistry. 1969; 8: 4104-4108
        • Fuller Noel J.K.
        • Hunter M.J.
        Bovine mer-captalbumin and non-mercaptalbumin monomers. Interconversions and structural differences.
        J. Biol. Chem. 1972; 247: 7391-7406
        • Sogami M.
        • Peterson H.A.
        • Foster J.F.
        The microheterogeneity of plasma albumins. V. Permutations in disulfide pairings as a probable source of microheterogeneity in bovine albumin.
        Biochemistry. 1969; 8: 49-58
        • Teale F.W.J.
        The ultraviolet fluorescence of proteins in neutral solution.
        Biochem. J. 1960; 76: 381-388
        • Spector A.A.
        • John K.M.
        Effects of free fatty acid on the fluorescence of bovine serum albumin.
        Arch. Biochem. Biophys. 1968; 127: 65-71
        • Halfman C.J.
        • Nishida T.
        Nature of the alteration of the fluorescence spectrum of bovine serum albumin produced by the binding of dodecyl sulfate.
        Biochim. Biophys. Acta. 1971; 243: 294-303
        • Chignell C.F.
        Recent advances in methodology: spectroscopic techniques.
        Ann. N. Y. Acad. Sci. 1973; 226: 44-59
        • Anderson S.R.
        • Weber G.
        Fluorescence polarization of the complexes of 1-anilino-8-naphthalene-sulfon-ate with bovine serum albumin. Evidence for preferential orientation of the ligand.
        Biochemistry. 1969; 8: 371-377
        • Bloomfield V.
        The structure of bovine serum albumin at low pH.
        Biochemistry. 1966; 5: 684-689
        • Brown J.R.
        Structure of serum albumin: disulfide bridges.
        Federation Proc. 1974; 33 (Abstr.): 1389
        • Peters Jr., T.
        • Hawn C.
        Isolation of two large peptide fragments from the amino-and carboxyl-terminal positions of bovine serum albumin.
        J. Biol. Chem. 1967; 242: 1566-1573
        • Goodman D.S.
        The interaction of human serum albumin with long-chain fatty acid anions.
        J. Amer. Chem. Soc. 1958; 80: 3892-3898
        • Fletcher J.E.
        • Spector A.A.
        • Ashbrook J.D.
        Analysis of macromolecule-ligand binding by determination of stepwise equilibrium constants.
        Biochemistry. 1970; 9: 4580-4587
        • Ashbrook J, D.
        • Spector A.A.
        • Fletcher J.E.
        Medium chain fatty acid binding to human plasma albumin.
        J. Biol. Chem. 1972; 247: 7038-7042
        • Spector A.A.
        • Fletcher J.E.
        • Ashbrook J.D.
        Analysis of long-chain free fatty acid binding to bovine serum albumin by determination of stepwise equilibrium constants.
        Biochemistry. 1971; 10: 3229-3232
        • Ashbrook J.D.
        • Spector A.A.
        • Santos E.C.
        • Fletcher J.E.
        Long chain fatty acid binding to human plasma albumin.
        J. Biol. Chem. 1975 (In press)
        • McClure R.J.
        • Craven B.M.
        X-ray data for four crystalline forms of serum albumin.
        J. Mol. Biol. 1974; 83: 551-555
        • Spector A.A.
        • John K.
        • Fletcher J.E.
        Binding of long-chain fatty acids to bovine serum albumin.
        J. Lipid Res. 1969; 10: 56-67
        • Santos E.C.
        • Spector A.A.
        Effect of fatty acids on the binding of l-anilino-8-naphthalenesulfonate to bovine serum albumin.
        Biochemistry. 1972; 11: 2299-2302
        • Santos E.C.
        • Spector A.A.
        Effects of fatty acids on the interaction of l-anilino-8-naphthalenesulfonate with human plasma albumin.
        Mol. Pharmacol. 1974; 10: 519-528
        • Bradshaw R.A.
        • Peters Jr., T.
        The amino acid sequence of peptide (1-24) of rat and human serum albumins.
        J. Biol. Chem. 1969; 244: 5582-5589
        • Klotz I.M.
        • Burkhard R.K.
        • Urquhart J.M.
        Structural specificities in the interaction of some organic ions and serum albumin.
        J. Amer. Chem. Soc. 1952; 74: 202-208
        • Markus G.
        • Karush F.
        Structural effects of anionic azo dyes on serum albumin.
        J. Amer. Chem. Soc. 1958; 80: 89-94
        • Steinhardt J.
        • Krijn J.
        • Leidy J.G.
        Differences between bovine and human serum albumins. Binding isotherms, optical rotatory dispersion, viscosity, hydrogen ion titration and fluorescence effects.
        Biochemistry. 1971; 10: 4005-4014
        • Baxter J.H.
        Dissimilarity of changes induced in absorption spectrum of 2-(4'-hydroxyphenylazo)-benzoic acid by different serum albumins.
        Proc. Soc. Exp. Biol. Med. 1963; 113: 197-202
        • Baxter J.H.
        Differences in serum albumins reflected in absorption spectra of a bound dye.
        Arch. Biochem. Biophys. 1964; 108: 375-383
        • Spector A.A.
        • Santos E.C.
        • Ashbrook J.D.
        • Fletcher J.E.
        Influence of free fatty acid concentration on drug binding to plasma albumin.
        Ann. N. Y. Acad. Sci. 1973; 226: 247-258
        • Karush F.
        • Sonnenberg M.
        Interaction of homologous alkyl sulfates with bovine serum albumin.
        J. Amer. Chem. Soc. 1949; 71: 1369-1376
        • Klotz I.M.
        • Walker F.M.
        • Pivan R.B.
        The binding of organic ions by proteins.
        J. Amer. Chem. Soc. 1946; 68: 1486-1490
        • Klotz I.M.
        • Walker F.M.
        The binding of organic ions by proteins. Charge and pH effects.
        J. Amer. Chem. Soc. 1947; 69: 1609-1612
        • Klotz I.M.
        • Ayers J.
        Interactions of some neutral organic molecules with proteins. /.
        Amer. Chem. Soc. 1952; 74: 6178-6180
        • Ray A.
        • Reynolds J.A.
        • Polet H.
        • Steinhardt J.
        Binding of large organic anions and neutral molecules by native bovine serum albumin.
        Biochemistry. 1966; 5: 2606-2616
        • Decker R.V.
        • Foster J.F.
        Amphoteric behavior of bovine plasma albumin and its detergent complexes.
        J. Biol. Chem. 1967; 242: 1526-1532
        • Klotz I.M.
        • Urquhart J.M.
        The binding of organic ions by proteins. Effect of temperature.
        J. Amer. Chem. Soc. 1949; 71: 847-851
        • Morrisett J.D.
        • Pownall H.J.
        • Gotto Jr., A.M.
        Bovine serum albumin. Study of the fatty acid and steroid binding sites using spin-labeled lipids.
        J. Biol. Chem. 1975 (In press)
        • Muller N.
        • Mead Jr., R.J.
        Fluorine magnetic resonance study of the binding of long-chain trifluoroalkyl sulfate ions by bovine serum albumin.
        Biochemistry. 1973; 12: 3831-3835
        • Karush R.
        Heterogeneity of the binding sites of bovine serum albumin.
        J. Amer. Chem. Soc. 1950; 72: 2705-2713
        • Reynolds J.A.
        • Herbert S.
        • Polet H.
        • Steinhardt J.
        The binding of divers detergent anions to bovine serum albumin.
        Biochemistry. 1967; 6: 937-947
        • Pallansch M.J.
        • Briggs D.R.
        A study of the interaction of dodecyl sulfate with bovine serum albumin.
        J. Amer. Chem. Soc. 1954; 76: 1396-1403
        • Lovrien R.
        Interaction of dodecyl sulfate anions of low concentration with alkaline bovine serum albumin.
        J. Amer. Chem. Soc. 1963; 85: 3677-3682
        • Karush R.
        The interaction of optically isomeric dyes with human serum albumin.
        J. Amer. Chem. Soc. 1954; 76: 5536-5542
        • Ott H.
        Untersuchungen zur Binding langkettiger Fettsauren an Serumalbumin.
        in: Peeters H. Protides of the Biological Fluids. Elsevier, 1961: 190-192
        • Foster J.F.
        Plasma albumin.
        in: Putnam F.W. The Plasma Proteins. 1. Academic Press, New York1960: 179-239
        • Leonard Jr., W.J.
        • Vijai K.K.
        • Foster J.F.
        A structural transformation in bovine and human plasma albumins in alkaline solution as revealed by rotatory dispersion studies.
        J. Biol. Chem. 1963; 238: 1984-1988
        • Aoki K.
        Interactions of horse serum albumin with anionic and cationic detergents.
        J. Amer. Chem. Soc. 1958; 80: 4904-4909
        • Reynolds J.A.
        • Gallagher J.P.
        • Steinhardt J.
        Effect of pH on the binding of .V-alkyl sulfates to bovine serumalbumin.
        Biochemistry. 1970; 9: 1232-1238
        • Boyer P.D.
        • Ballou G. A
        • Luck J.M.
        The combination of fatty acids and related compounds with serum albumin. III. The nature and extent of the combination.
        J. Biol. Chem. 1947; 167: 407-424
        • Campbell J.
        • Martucci A.R.
        • Green G.R.
        Plasma albumin as an acceptor of free fatty acids.
        Biochem. J. 1964; 93: 183-189
        • Spector A.A.
        • Fletcher J.E.
        Binding of long chain fatty acids to β-lactoglobulin.
        Lipids. 1970; 5: 403-411
        • Goodman D.S.
        • Shafrir E.
        The interaction of human low density lipoproteins with long-chain fatty acid anions.
        J. Amer. Chem. Soc. 1959; 81: 364-370
        • Gordon Jr., R.S.
        Interaction between oleate and the lipoproteins of human serum.
        J. Clin. Invest. 1955; 34: 477-484
        • Herbst F.S.M.
        • Lever W.F.
        • Lyons M.E.
        • Hurley N.A.
        Effects of heparin on the lipoproteins in hyperlipemia. An electrophoretic study of the serum alpha and beta lipoproteins after their separation by fractionation of the plasma proteins or ultracentrifugal flotation.
        J. Clin. Invest. 1955; 34: 581-589
        • Shafrir E.
        • Gatt S.
        • Khasis S.
        Partition of fatty acids of 20-24 carbon atoms between serum albumin and lipoproteins.
        Biochim. Biophys. Acta. 1965; 98: 365-371
        • Ockner R.K.
        • Manning J.A.
        Fatty acid-binding protein in small intestine. Identification, isolation, and evidence for its role in cellular fatty acid transport.
        J. Clin. Invest. 1974; 54: 326-338
        • Mishkin S.
        • Stein L.
        • Gatmaitan Z.
        • Arias I.M.
        The binding of fatty acids to cytoplasmic proteins: binding to Z proteins in liver and other tissues of the rat.
        Biochem. Biophys. Res. Commun. 1972; 47: 997-1003
        • Carlson C.W.
        • Baxter R.C.
        • Ulm E.H.
        • Po-gell B.M.
        Role of oleate in the regulation of “neutral” rabbit liver fructose 1, 6-diphosphatase activity.
        J. Biol. Chem. 1973; 248: 5555-5561
        • Miller A.L.
        • Geroch M.E.
        • Levy H.R.
        Rat mammary-gland acetyl-coenzyme A carboxylase. Interaction with milk fatty acids.
        Biochem. J. 1970; 118: 645-657
        • McGee R.
        • Spector A.A.
        Short-term effects of free fatty acids on the regulation of fatty acid biosynthesis in Ehrlich ascites tumor cells.
        Cancer Res. 1974; 34: 3355-3362
        • Saifer A.
        • Goldman L.
        The free fatty acids bound to human serum albumin.
        J. Lipid Res. 1961; 2: 268-270
        • Hanson R.W.
        • Ballard F.J.
        Citrate, pyruvate, and lactate contaminants of commercial serum albumin.
        J. Lipid Res. 1968; 9: 667-668
        • Swaney J.B.
        • Klotz I.M.
        Amino acid sequence adjoining the lone tryptophan of human serum albumin. A binding site of the protein.
        Biochemistry. 1970; 9: 2570-2574
        • Boyer P.D.
        • Lum F.G.
        • Ballou G.A.
        • Luck J.M.
        • Rice R.G.
        The combination of fatty acids and related compounds with serum albumin I. Stabilization against heat denaturation.
        J. Biol. Chem. 1946; 162: 181-198
        • Boyer P.D.
        • Ballou G.A.
        • Luck J.M.
        The combination of fatty acids and related compounds with serum albumin. II. Stabilization against urea and guanidine denaturation.
        J. Biol. Chem. 1946; 162: 199-208
        • Ballou G.A.
        • Boyer P.D.
        • Luck J.M.
        The electrophoretic mobility of human serum albumin as affected by lower fatty acid salts.
        J. Biol. Chem. 1945; 159: 111-116
        • Jacobsen C.
        • Funding L.
        • Moller N.P.H.
        • Steens-gaard J.
        Properties and immunochemical reactivities of native and modified human serum albumin.
        Eur. J. Biochem. 1972; 30: 392-402
        • Peters Jr., T.
        • Taniuchi H.
        • Anfinsen Jr., C.B.
        Affinity chromatography of serum albumin with fatty acids immobilized on agarose.
        J. Biol. Chem. 1973; 248: 2447-2451
        • Kuhl W.E.
        • Spector A.A.
        Uptake of long-chain fatty acid methyl esters by mammalian cells.
        J. Lipid Res. 1970; 11: 458-465
        • Spector A.A.
        • Soboroff J.M.
        Studies on the cellular mechanism of free fatty acid uptake using an analog, hexadecanol.
        J. Lipid Res. 1972; 13: 790-796
        • Chen R.F.
        Removal of fatty acids from serum albumin by charcoal treatment.
        J. Biol. Chem. 1967; 242: 173-181
        • Soetewey F.
        • Rosseneu-Motreff M.
        • Lamote R.
        • Peeters H.
        Size and shape determination of native and defatted bovine serum albumin monomers. II. Influence of the fatty acid content on the conformation of bovine serum albumin monomers.
        J. Biochem. (Tokyo). 1972; 71: 705-710
        • Glazer A.N.
        • Sanger F.
        Effect of fatty acid on the iodination of bovine serum albumin.
        J. Mol. Biol. 1963; 7: 452-453
        • Green N.M.
        The apparent high reactivity of some amino groups of bovine serum albumin.
        Biochim. Biophys. Acta. 1963; 74: 542-543
        • Jones A.
        • Weber G.
        Presence of arginine residues at the strong, hydrophobic anion binding sites of bovine serum albumin.
        Biochemistry. 1971; 10: 1335-1339
        • Andersson L.-O.
        • Brandt J.
        • Johansson S.
        The use of trinitrobenzenesulfonic acid in studies on the binding of fatty acid anions to bovine serum albumin.
        Arch. Biochem. Biophys. 1971; 146: 428-440
        • Ryan M.T.
        • Gibbs G.
        Analysis of ultraviolet spectral perturbations arising in the interactions of steroids and human serum albumin.
        Arch. Biochem. Biophys. 1970; 136: 65-72
        • Zakrzewski K.
        • Goch H.
        Human serum albumin. Tyrosyl residues and strongly binding sites.
        Biochemistry. 1968; 7: 1835-1842
        • Steinhart J.
        • Leidy J.G.
        • Mooney J.P.
        Effects of n-alkyl ligands on the difference spectra of bovine and human serum albumin.
        Biochemistry. 1972; 11: 1809-1817
        • Reynolds J.
        • Herbert S.
        • Steinhardt J.
        The binding of some long chain fatty acid anions and alcohols by bovine serum albumin.
        Biochemistry. 1968; 7: 1357-1361
        • Stainsby G.
        • Alexander A.E.
        Studies of soap solutions. Part I. The fatty acid soaps and their hydrolysis in aqueous solutions.
        Trans. Faraday Soc. 1949; 45: 585-597
        • fjyren V.
        • Back E.
        The ionization constant, solubility product and solubility of lauric and myristic acid.
        Acta Chem. Scand. 1958; 12: 1305-1311
        • Mattson F.H.
        • Volpenhein R.A.
        Enzymic hydrolysis at an oil-water interface.
        J. Amer. Oil Chem. Soc. 1966; 43: 286-289
        • Jukes T.H.
        • Schmidt C.L.A.
        The combination of certain fatty adds with lysine, arginine and sal-mine.
        J. Biol. Chem. 1935; 110: 9-16
        • White J.R.
        Dissociation constants of higher alkyl phosphate esters, phosphoric acids, phosphorus acids, phosphinic adds and carboxylic acids.
        J. Amer. Chem. Soc. 1950; 72: 1859-1860
        • Garvin J.
        • Karnovsky M.L.
        The titration of some phosphatides and related compounds in a nonaqueous medium.
        J. Biol. Chem. 1956; 221: 211-222
        • Goodman D.S.
        The distribution of fatty acids between n-heptane and aqueous phosphate buffer.
        J. Amer. Chem. Soc. 1958; 80: 3887-3892
        • Mukerjee P.
        Dimerization of anions of long-chain fatty acids in aqueous solutions and the hydrophobic properties of the acids.
        J. Phys. Chem. 1965; 69: 2821-2827
        • Smith R.
        • Tanford C.
        Hydrophobicity of long chain n-alkyl carboxylic acids, as measured by their distribution between heptane and aqueous solutions.
        Proc. Nat. Acad. Sci. USA. 1973; 70: 289-293
        • Simpson R.B.
        • Ashbrook J.D.
        • Santos E.C.
        • Spector A.A.
        Partition of fatty acids.
        J. Lipid Res. 1974; 15: 415-422
        • Teresi J.D.
        • Luck J.M.
        The combination of organic anions with serum albumin. VIII. Fatty acid salts.
        J. Biol. Chem. 1952; 194: 823-834
        • Goodman D.S.
        Preparation of human serum albumin free of long chain fatty acids.
        Science. 1957; 125: 1296-1297
        • Arvidsson E.O.
        • Green F.A.
        • Laurell S.
        Branching and hydrophobic bonding. Partition equilibria and serum albumin binding of palmitic and phytanic acids.
        J. Biol. Chem. 1971; 246: 5373-5379
        • Cecil R.
        • Louis C.F.
        Protein-hydrocarbon interactions. Interactions of various proteins with pure decane.
        Biochem. J. 1970; 117: 139-145
        • Schellman J.A.
        • Lumry R.
        • Samuels L.T.
        The binding of uncharged molecules to proteins. II. Testosterone and bovine serum albumin.
        J Amer. Chem. Soc. 1954; 76: 2808-2813
        • Laiken N.
        • Nemethy G.
        A new model for the binding of flexible ligands to proteins.
        Biochemistry. 1971; 10: 2101-2106
        • Fletcher J.E.
        • Ashbrook J.D.
        • Spector A.A.
        Computer analysis of drug-protein binding data.
        Ann. N.Y. Acad. Set. 1973; 226: 69-81
        • King T.P.
        • Spencer M.
        Structural studies and organic ligand-binding properties of bovine plasma albumin.
        J. Biol. Chem. 1970; 245: 6134-6148
        • King T.P.
        On the location of the primary ligand binding site of bovine plasma albumin.
        Ann. N. Y. Acad. Set. 1973; 226: 94-100
      1. 116. Peters, T., Jr. 1973. Evidence for a fatty acid-binding site in the C-terminal third of the peptide chain of albumin. Proc. 9th lnt. Congr. Biochem. 2h3. (Abstr.)

        • Feldhoff R.C.
        • Peters Jr., T.
        Native fragments of bovine albumin produced by limited pepsin digestion.
        Federation Proc. 1974; 33 (Abstr.): 1235
        • Klotz I.M.
        • Harris J.U.
        Macromolecule-small molecule interactions. Strong binding by intramolecularly cross-linked polylysine.
        Biochemistry. 1971; 10: 923-926
        • Klotz I.M.
        • Royer G.P.
        • Sloniewsky A.R.
        Macromolecule-small molecule interactions. Strong binding and cooperativity in a model synthetic polymer.
        Biochemistry. 1969; 8: 4752-4756
        • Jacobsen C.
        Chemical modification of the high-affinity bilirubin binding site of human-serum albumin.
        Eur. J. Biochem. 1972; 27: 513-519
        • Green H.O.
        • Mortiz J.
        • Lack L.
        Binding of sodium taurocholate by bovine serum albumin.
        Biochim. Biophys. Acta. 1971; 231: 550-552
        • Steiner R.F.
        • Roth J.
        • Robbins J.
        The binding of thyroxine by serum albumin as measured by fluorescence quenching.
        J. Biol. Chem. 1966; 241: 560-567
        • Dawkins P.D.
        • McArthur J.N.
        • Smith M.J.H.
        The effect of sodium salicylate on the binding of long-chain fatty acids to plasma proteins.
        J. Pharm. Pharmacol. 1970; 22: 405-410
        • O'Reilly R.A.
        The binding of sodium warfarin to plasma albumin and its displacement by phenylbutazone.
        Ann. N. Y. Acad. Set. 1973; 226: 293-308
        • Chignell C.F.
        Optical studies of drug-protein complexes. IV. The interaction of warfarin and dicoumarol with human serum albumin.
        Mol. Pharmacol. 1970; 6: 1-12
        • Lukas D.S.
        • DeMartino A.G.
        Binding of dig-itoxin and some related cardenolides to human plasma proteins.
        J. Clin. Invest. 1969; 48: 1041-1053
        • Anton A.H.
        Increasing activity of sulfonamides with displacing agents: a review.
        Ann. N. Y. Acad. Sci. 1973; 226: 273-292
        • Kunin C.M.
        • Craig W.A.
        • Kornguth M.
        • Mon-son R.
        Influence of binding on the pharmacologic activity of antibiotics.
        Ann. N. Y. Acad. Sci. 1973; 226: 214-224
        • Court J.M.
        • Dunlop M.E.
        • Leonard R.F.
        High frequency oscillation of free fatty acid levels in man.
        J. Appl. Physiol. 1971; 31: 345-347
        • Havel R.J.
        • Naimark A.
        • Borchgrevink C.F.
        Turnover rate and oxidation of free fatty acids of blood plasma in man during exercise: studies during continuous infusion of palmitate-l-14C.
        J. Clin. Invest. 1963; 42: 1054-1063
        • Rodahl K.
        • Miller H.I.
        • Issekutz Jr., B.
        Plasma free fatty acids in exercise.
        J. Appl. Physiol. 1964; 19: 489-492
        • Rutenberg H.
        • Lacko A.G.
        • Soloff L.A.
        Inhibition of lecithin xholesterol acyltransferase following intravenous administration of heparin in man.
        Biochim. Biophys. Acta. 1973; 326: 419-427
        • Cogin G.E.
        • Davis B.D.
        Competition in the binding of long chain fatty acids and methyl orange to bovine serum albumin.
        J. Amer. Chem. Soc. 1951; 73: 3135-3138
        • Rudman D.
        • Bixler II, T.J.
        • Del Rio A.E.
        Effect of free fatty acids on binding of drugs by bovine serum albumin, by human serum albumin and by rabbit serum.
        J. Pharmacol. Exp. Ther. 1971; 176: 261-272
        • Tabachnick M.
        Thyroxine-protein interactions. IV. Thermodynamic values for the association of thyroxine with human serum albumin.
        J. Biol. Chem. 1967; 242: 1646-1650
        • Tabachnick M.
        Thyroxine protein interactions. III. Effect of fatty acids, 2, 4-dinitrophenol and other anionic compounds on the binding of thyroxine by human serum albumin.
        Arch. Biochem. Biophys. 1964; 106: 415-421
        • Braverman L.E.
        • Arky R.A.
        • Foster A.E.
        • Ingbar S.H.
        Effect of physiological variations in free fatty acid concentration on the binding of thyroxine in the serum of euthyroid and thyrotoxic subjects. /.
        Clin. Invest. 1969; 48: 878-884
        • Woolley Ill, P.V.
        • Hunter M.J.
        Binding and circular dichroism data on bilirubin-albumin in the presence of oleate and salicylate.
        Arch. Biochem. Biophys. 1970; 140: 197-209
        • Thiessen H.
        • Jacobsen J.
        • Brodersen R.
        Displacement of albumin-bound bilirubin by fatty acids.
        Acta Paediat. Scand. 1972; 61: 225-237
        • McMenamy R.H.
        • Oncley J.L.
        The specific binding of L-tryptophan to serum albumin. /.
        Biol. Chem. 1958; 233: 1436-1447
        • McMenamy R.H.
        Binding of indole analogues to human serum albumin. Effects of fatty acids.
        J. Biol. Chem. 1965; 240: 4235-4243
        • Curzon G.
        • Friedel J.
        • Knott P.J.
        The effect of fatty acids on the binding of tryptophan to plasma protein.
        Nature. 1973; 242: 198-200
        • Lipsett D.
        • Madras B.K.
        • Wurtman R.J.
        • Munro H.N.
        Serum tryptophan level after carbohydrate ingestion: selective decline in nonalbumin-bound tryptophan coincident with reduction in serum free fatty acids.
        Life Sci. 1973; 12: 57-64
        • Thorp J.M.
        An experimental approach to the problem of disordered lipid metabolism.
        J. Atheroscler. Res. 1963; 3: 351-360
        • Spector A.A.
        • Soboroff J.M.
        Effect of chloro-phenoxyisobutyrate on free fatty acid utilization by mammalian cells.
        Proc. Soc. Exp. Biol. Med. 1971; 137: 945-947