Advertisement

Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis

Open AccessPublished:April 01, 1996DOI:https://doi.org/10.1016/S0022-2275(20)37569-6
      This paper is only available as a PDF. To read, Please Download here.
      Although it has been known for over 50 years that lipoprotein lipase (LPL) hydrolyzes triglyceride in chylomicrons, during the past half decade there has been a reinterest in the physiologic and pathophysiologic actions of this enzyme. In part, this has coincided with clinical studies implicating increased postprandial lipemia as a risk factor for atherosclerosis development. In addition, the recent creation of genetically altered mice with hypertriglyceridemia has focused the interest of geneticists and physiologists on the pathophysiology of triglyceride metabolism. As reviewed in this article, it is apparent that the lipolysis reaction is only partially understood. Several factors other than LPL are critical modulators of this process, in part, because the reaction requires the lipoproteins to interact with the arterial or capillary wall. Among the factors that affect this are the apolipoprotein composition of the particles, the size of the lipoproteins, and how LPL is displayed along the endothelial luminal surface. Zilversmit's observation that LPL activity is found in greater amounts in atherosclerotic than normal arteries has led to a large number of experiments linking LPL with atherogenesis. In medium and large arteries LPL is found on the luminal endothelial surface and in macrophage-rich areas within the plaque. LPL actions in both of these locations probably have major effects on the biology of the blood vessel. Possible atherogenic actions for this LPL based on in vitro experiments are reviewed.

      REFERENCES

        • Enerback S.
        • Gimble j.M.
        Lipoprotein lipase gene expression: physiological regulators at the transcriptional and post-translational level.
        Biochim. Biophys. Acta. 1993; 1169: 107-125
        • Olivecrona T.
        • Bengtsson-Olivecrona G.
        Lipoprotein lipase and hepatic lipase.
        Curr. Opin. Lipidol. 1993; 4: 187-196
        • Santamarina-Fojo S.
        • Dugi K.A.
        Structure, function and role of lipoprotein lipase in lipoprotein metabolism.
        Curr. Opin. Lipidol. 1994; 5: 117-125
        • Hahn P.F.
        Abolishment of alimentary lipemia following injection of heparin.
        Science. 1943; 98: 19-20
        • Havel R.J.
        • Gordon Jr., R.S.
        Idiopathic hyperlipemia: metabolic studies in an affected family.
        J. Clin. Invest. 1960; 39: 1777-1790
        • LaRosa J.C.
        • Levy R.I.
        • Herbert P.N.
        • Lux S.E.
        • Fredrickson D.S.
        A specific apoprotein activator for lipoprotein lipase.
        Biochem. Biophys. Res. Commun. 1970; 41: 57-62
        • Breckenridge W.
        • Little J.
        • Alaupovic P.
        • Wang C.S.
        • Kuksis A.
        • Kakis G.
        • Lindgren F.
        • Gardiner G.
        Lipoprotein abnormalities associated with a familial deficiency of hepatic triglyceride lipase.
        Atherosclerosis. 1982; 45: 161-179
        • Bisgaier C.L.
        • Glickman R.M.
        Intestinal synthesis, secretion, and transport of lipoproteins.
        Annu. Rev. Physiol. 1983; 45: 625-636
        • Havel R.J.
        • Kane J.P.
        • Kashyap M.L.
        Interchange of apolipoproteins between chylomicrons and high density lipoproteins during alimentary lipemia in man.
        J. Clin. Invest. 1973; 61: 1654-1665
        • Dolphin P.J.
        • Forsyth S.J.
        • Krul E.S.
        Post-secretory acquisition of apolipoprotein E by nascent rat hepatic very-low-density lipoproteins in the absence of cholesteryl ester transfer.
        Biochim. Biophys. Acta. 1986; 875: 21-30
        • Eisenberg S.
        Removal of apoC-II and apoC-III from VLDL during lipolysis in vitro.
        J. Biol. Chem. 1979; 254: 12603-12608
        • Goldberg I.J.
        • Scheraldi C.A.
        • Yacoub L.K.
        • Saxena U.
        • Bisgaier C.L.
        Lipoprotein apoC-II activation of lipoprotein lipase. Modulation by apolipoprotein A-IV.
        J. Biol. Chem. 1990; 265: 4266-4272
        • Rubinstein A.
        • Gibson J.C.
        • Paterniti J.R.J.
        • Kakis G.
        • Little A.
        • Ginsberg H.N.
        • Brown W.V.
        Effect of heparin-induced lipolysis on the distribution of apolipoprotein E among lipoprotein subclasses. Studies with patients deficient in hepatic triglyceride lipase and lipoprotein lipase.
        J. Clin. Invest. 1985; 75: 710-721
        • Herbert P.
        • Assmann G.
        • Gotto A.
        • Fredrickson D.S.
        Familial HDL deficiency: Tangier disease.
        in: Stanbury J.B. Wyngaarden J.B. Fredrickson D.S. Goldstein J.L. Brown B.S. McGraw-Hill, New York1983: 589-621
        • Calabresi L.
        • Cassinotti M.
        • Gianfranceschi G.
        • Safa O.
        • Murakami T.
        • Sirtori C.R.
        • Franceschini G.
        Ar-terioscler. Thromb. 1993; 13: 521-528
        • Erkelens D.W.
        • Mocking j.A.
        The C-IIJC-III ratio of transferable apolipoprotein in primary and secondary hypertriglyceridemia.
        Clin. Chim. Acta. 1982; 6: 59-65
        • Tornoci L.
        • Scheraldi C.A.
        • Li X.
        • Ide H.
        • Goldberg I.J.
        • Le N.A.
        Abnormal activation of lipoprotein lipase by non-equilibrating apoC-II: further evidence for the presence of non-equilibrating pools of apolipoproteins C-II and C-III in plasma lipoproteins.
        J. Lipid Res. 1993; 34: 1793-1803
        • Olivecrona G.
        • Olivecrona T.
        Triglyceride lipases and atherosclerosis.
        Curr. Opin. Lipidol. 1995; 6: 291-305
        • Saxena U.
        • Witte L.D.
        • Goldberg I.J.
        Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids.
        J. Biol. Chem. 1989; 264: 4349-4355
        • Zambon A.
        • Hashimoto S.I.
        • Brunzell J.D.
        Analysis of techniques to obtain plasma for measurement of levels of free fatty acids.
        J. Lipid Res. 1993; 34: 1021-1028
        • Clark A.
        • Quarfordt S.
        Apolipoprotein effects on the lipolysis of perfused triglyceride by heparin-immobilized milk lipase.
        J. Biol. Chem. 1985; 260: 4778-4783
        • ielding P.E.
        • Ishikawa Y.
        • Fielding C.J.
        Apolipoprotein E mediates binding of normal very low density lipoprotein to heparin but is not required for high affinity receptor binding.
        J. Biol. Chem. 1989; 264: 12462-12466
        • Ji Z.S.
        • Brecht W.J.
        • Miranda R.D.
        • Hussain M.M.
        • Innerarity T.L.
        • Mahley R.W.
        Role of heparan sulfate proteoglycans in the binding and uptake of apolipoprotein E-enriched remnant lipoproteins by cultured cells.
        J. Biol. Chem. 1993; 268: 10160-10167
        • Ishikawa Y.
        • Fielding C.J.
        • Fielding P.E.
        A change in apolipoprotein B expression is required for the binding of apolipoprotein E to very low density lipoprotein.
        J. Biol. Chem. 1988; 263: 2744-2749
        • Lund K.S.
        • Weisgraber K.H.
        • Mahley R.W.
        • Phillips M.C.
        Conformation of apolipoprotein E in lipoproteins.
        J. Biol. Chem. 1993; 268: 23008-23015
        • Krul E.S.
        • Tikkanen M.J.
        • Schonfeld G.
        Heterogeneity of apolipoprotein E epitope expression on human lipoproteins: importance for apolipoprotein E function.
        J. Lipid Res. 1988; 29: 1309-1325
        • Sehayek E.
        • Lewin V.U.
        • Chajek S.T.
        • Eisenberg S.
        Lipolysis exposes unreactive endogenous apolipoprotein E-3 in human and rat plasma very low density lipoprotein.
        J. Clin. Invest. 1991; 88: 553-560
        • Brasaemle D.L.
        • Cornely-Moss K.
        • Bensadoun A.
        Hepatic lipase treatment of chylomicron remnants increases exposure of apolipoprotein E..
        J. Lipid Res. 1993; 34: 455-465
        • Sehayek E.
        • Eisenberg S.
        Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway.
        J Biol. Chem. 1991; 266: 18259-18267
        • Nykj;aer A.
        • Bengtsson O.G.
        • Lookene A.
        • Moestrup S.K.
        • Petersen C.M.
        • Weber W.
        • Beisiegel U.
        • Gliemann j.
        The alpha2-macroglobulin receptorJlow density lipoprotein receptor-related protein binds lipoprotein lipase and beta-migrating very low density lipoprotein associated with the lipase.
        J. Biol. Chem. 1993; 268: 15048-15055
        • Chappell D.A.
        • Inoue I.
        • Fry G.L.
        • Pladet M.W.
        • Bowen S.L.
        • Iverius P.H.
        • Lalouel J.M.
        • Strickland D.K.
        Cellular catabolism of normal very low density lipoproteins via the low density lipoprotein receptor-related proteinJalpha 2-macroglobulin receptor is induced by the C-terminal domain of lipoprotein lipase.
        J. Biol. Chem. 1994; 269: 18001-18006
        • Fazio S.
        • Lee Y.L.
        • Ji Z.S.
        • Rail S.J.
        Type III hyperlipoproteinemic phenotype in transgenic mice expressing dysfunctional apolipoprotein E..
        J. Clin. Invest. 1993; 92: 1497-1503
        • Ghiselli G.E.
        • Schaefer E.J.
        • Gascon P.
        • Brewer Jr., H.B.
        Type III hyperlipoproteinemia associated with apolipoprotein E deficiency.
        Science. 1981; 214: 1239-1241
        • Lohse P.
        • Brewer III H.B.
        • Meng M.S.
        • Skarlatos S.I.
        • LaRosa J.C.
        • LaRosa H.J.
        • Brewer J.C.
        Familial apolipoprotein E deficiency and type III hyperlipoproteinemia due to a premature stop codon in the apolipoprotein E gene.
        J. Lipid Res. 1992; 33: 1583-1590
        • Plump A.
        • Smith J.
        • Hayek T.
        • Aalto-Setala K.
        • Walsh A.
        • Verstuyft J.
        • Rubin E.
        • Breslow
        Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells.
        Cell. 1992; 71: 343-353
        • Zhang S.H.
        • Reddick R.L.
        • Piedrahita J.A.
        • Maeda N.
        Spontaneous hypercholesterolemia and arterial lesions in mice lacking apolipoprotein E..
        Science. 1992; 258: 468-471
        • Shachter N.S.
        • Ebara T.
        • Ramakrishnan R.
        • Smith j.
        Overexpression of apolipoprotein C-I causes hypertriglyceridemia and decreased remnant clearance in transgenic mice.
        Circulation. 1995; 92: 1-106
        • Shachter N.
        • Hayek T.
        • Leff T.
        • Smith J.
        • Rosenberg D.
        • Walsh A.
        • Ramakrishnan R.
        • Goldberg I.
        • Ginsberg H.
        • Breslow j.
        Overexpression of apolipoprotein C-II causes hypertriglyceridemia in transgenic mice.
        J. Clin. Invest. 1994; 93: 1683-1690
        • Aalto-Setala K.
        • Fisher E.
        • Chen X.
        • Chajek-Shaul T.
        • Hayek T.
        • Zechner R.
        • Walsh A.
        • Ramakrishnan R.
        • Ginsberg H.
        • Breslow J.
        Mechanism of hypertriglyceridemia in human apoC-III transgenic mice.
        J. Clin. Invest. 1992; 90: 1889-1900
        • deSilva H.V.
        • Lauer S.J.
        • Wang J.
        • Simonet W.S.
        • Weisgraber K.H.
        • Mahley R.W.
        • Taylor j.M.
        Overexpression of human apolipoprotein C-III in transgenic mice.
        J. Biol. Chem. 1994; 269: 2324-2335
        • Ginsberg H.N.
        • Le N.A.
        • Goldberg I.J.
        • Gibson J.C.
        • Rubinstein A.
        • Wang I.P.
        • Norum R.
        • Brown W.V.
        Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins C-III and A-I.Evidence that apolipoprotein C-III inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo.
        J. Clin. Invest. 1986; 78: 1287-1295
        • Kowal R.C.
        • Herz J.
        • Weisgraber K.H.
        • Mahley R.W.
        • Brown M.S.
        • Goldstein J.L.
        Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein.
        J. Biol. Chem. 1990; 265: 10771-10779
        • Windier E.
        • Chao Y.
        • Havel R.J.
        Regulation of hepatic uptake of triglyceride-rich lipoproteins in the rat.
        J. Biol. Chem. 1980; 255: 8303-8306
        • Shelburne F.
        • Hanks J.
        • Meyers W.
        • Quarfordt S.
        Effect of apolipoproteins on hepatic uptake of triglyceride emulsions in the rat.
        J. Clin. Invest. 1980; 65: 652-658
        • Evans A.J.
        • Wolfe B.M.
        • Strong W.L.
        • Huff M.W.
        Reduced lipolysis of large apoE-poor very-low-density lipoprotein subfractions from type IV hypertriglyceridemic subjects in vitro and in vivo.
        Metab. Clin. Exp. 1993; 42: 105-115
        • Brown W.V.
        • Baginsky M.L.
        Inhibition of lipoprotein lipase by an apoprotein of human very low density lipoprotein.
        Biochem. Biophys. Res. Commun. 1972; 46: 375-381
        • Shirari K.
        • Matsuoka N.
        • Jackson R.L.
        Interaction of lipoprotein lipase with phospholipid vesicles: role of apolipoprotein C-II and heparin.
        Biochim. Biophys. Acta. 1981; 665: 504-510
        • Connelly P.
        • W„ G.
        • Maguire F.
        • Vezina C.
        • Hegele R.A.
        • Kuksis A.
        Kinetics of lipolysis of very low density lipoproteins by lipoprotein lipase. Importance of particle number and noncompetitive inhibition by particles with low triglyceride content.
        J. Biol. Chem. 1994; 269: 20554-20560
        • Kern P.A.
        • Ong J.M.
        • Saffari B.
        • Carty J.
        The Goldberg Lipoprotein lipase and lipolysis 703 effects of weight loss on the activity and expression of adipose-tissue lipoprotein lipase in very obese humans.
        N. EnglJ. Med. 1990; 322: 1053-1059
        • Doolittle M.H.
        • Ben Z.O.
        • Elovson J.
        • Martin D.
        • Kirchgessner T.G.
        The response of lipoprotein lipase to feeding and fasting. Evidence for posttranslational regulation.
        J. Biol. Chem. 1990; 265: 4570-4577
        • Cheng C.F.
        • O0sta A.
        • Bensadoun A.
        • Rosenberg R.D.
        Binding of lipoprotein lipase to endothelial cells in culture..
        J. Biol. Chem. 1981; 256: 12893-12896
        • Gallagher J.T.
        • Turnbull J.E.
        • Lyon M.
        Patterns of sulphation in heparan sulphate: polymorphism based on a common structural theme.
        Int.J. Biochem. 1992; 24: 553-560
        • Mertens G.
        • Cassiman J.
        • Van den Berghe H.
        • Vermylen J.
        • David G.
        Cell surface heparan sulfate proteoglycans from human vascular endothelial cells. Core protein characterization and antithrombin III binding properties.
        J. Biol. Chem. 1992; 267: 20435-20443
        • Saxena U.
        • Klein M.G.
        • Goldberg I.J.
        Identification and characterization of the endothelial cell surface lipoprotein Jipase receptor.
        J. Biol. Chem. 1991; 266: 17516-17521
        • Noonan D.M.
        • Fulle A.
        • Valente P.
        • Cai S.
        • Horigan E.
        • Sasaki M.
        • Yamada Y.
        • Hassell j.R.
        The complete sequence of perlecan, a basement membrane heparan sulfate proteoglycan, reveals extensive similarity with laminin A chain, low density lipoprotein-receptor, and the neural cell adhesion molecule.
        J. Biol. Chem. 1991; 266: 22939-22947
        • Murdoch A.D.
        • Dodge G.R.
        • Cohen I.
        • Tuan R.S.
        • lozzo R.V.
        Primary structure of the human heparan sulfate proteoglycan from basement membrane (HSPG2Jperle-can).
        J. Biol. Chem. 1992; 267: 8544-8557
        • Misa K.B.
        • Kim K.C.
        • Cho S.
        • Low M.G.
        • Bensadoun A.
        Purification and characterization of adipocyte heparan sulfate proteoglycans with affinity for lipoprotein lipase.
        J. Biol. Chem. 1994; 269: 23838-23844
        • Chajek-Shaul T.
        • Halimi O.
        • Ben-Naim M.
        • Stein O.
        • Stein Y.
        Phosphatidylinositol-specific phospholipase C releases lipoprotein lipase from the heparin releasable pool in rat heart cell cultures.
        Biochim. Biophys. Acta. 1989; 1014: 178-183
        • Olivecrona T.
        • Bengtsson-Olivecrona G.
        • Ostergaard P.
        • Liu G.
        • Chevreuil O.
        • Hultin M.
        New aspects on heparin and lipoprotein metabolism.
        Haemostasis. 1993; 1: 150-160
        • Hoogewerf A.J.
        • Cisar L.A.
        • Evans D.C.
        • Bensadoun A.
        Effect of chlorate on the sulfation of lipoprotein lipase and heparan sulfate proteoglycans. Sulfation of heparan sulfate proteoglycans affects lipoprotein lipase degradation. J. Biol.
        Chem. 1991; 266: 16564-16571
        • Parthasarathy N.
        • Goldberg I.J.
        • Sivaram P.
        • Mulloy B.
        • Flory D.M.
        • Wagner W.D.
        Oligosaccharide sequences of endothelial cell surface heparan sulfate proteoglycan with affinity for lipoprotein lipase.
        J. Biol. Chem. 1994; 269: 22391-22396
        • Larnkjaer A.
        • Nykjaer A.
        • Olivecrona G.
        • Thogersen H.
        • Ostergaard P.
        Structure of heparin fragments with high affinity for lipoprotein lipase and inhibition of lipoprotein lipase binding to alpha 2-macroglobulin-receptorJlow density lipoprotein receptor-related protein by heparin fragments.
        Biochem. J. 1995; 307: 205-214
        • Turnbull J.E.
        • Fernig D.G.
        • Ke Y.
        • Wilkinson M.C.
        • Gallagher j.T.
        Identification of the basic fibroblast growth factor binding sequence in fibroblast heparan sulfate.
        J. Biol. Chem. 1992; 267: 10337-10341
        • Sivaram P.
        • Klein M.G.
        • Goldberg I.J.
        Identification of a heparin-releasable lipoprotein lipase binding protein from endothelial cells.
        J. Biol. Chem. 1992; 267: 16517-16552
        • Sivaram P.
        • Choi S.Y.
        • Curtiss L.K.
        • Goldberg I.J.
        An amino-terminal fragment of apolipoprotein-B binds to lipoprotein lipase and may facilitate its binding to endothelial cells.
        J. Biol. Chem. 1994; 269: 9409-9412
        • Saxena U.
        • Klein M.G.
        • Goldberg I.J.
        Metabolism of endothelial cell-bound lipoprotein lipase: evidence for heparan sulfate proteoglycan-mediated internalization and recycling.
        J. Biol. Chem. 1990; 265: 12880-12886
        • Peterson J.
        • Bihain B.E.
        • Bengtsson-Olivecrona G.
        • Deckelbaum R.J.
        • Carpentier Y.A.
        • Olivecrona T.
        Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport.
        Proc. Natl. Acad. Sci. 1990; 87: 909-913
        • Felts J.M.
        • Itakura H.
        • Crane R.T.
        The mechanism of assimilation of constituents of chylomicrons, very low density lipoproteins and remnants: a new theory.
        Biochem. Biophys. Res. Commun. 1975; 66: 1467-1475
        • Beisiegel U.
        • Weber W.
        • Bengtsson-Olivecrona G.
        Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein.
        Proc. Natl. Acad. Sci. 1991; 88: 8342-8346
        • Nykjaer A.
        • Nielsen M.
        • Lookene A.
        • Meyer N.
        • Roigaard H.
        • Etzerodt M.
        • Beisiegel U.
        • Olivecrona G.
        • Gliemann j.
        A carboxyl-terminal fragment of lipoprotein lipase binds to the low density lipoprotein receptor-related protein and inhibits lipase-mediated uptake of lipoprotein in cells.
        J. Biol. Chem. 1994; 269: 31747-31755
        • Williams S.E.
        • Inoue I.
        • Tran H
        • Fry G.L.
        • Pladet M.W.
        • Iverius P.H.
        • Lalouel J.M.
        • Chappell D.A.
        • Strickland D.K.
        The carboxyl-terminal domain of lipoprotein lipase binds to the low density lipoprotein receptor-related proteinJalpha 2-macroglobulin receptor (LRP) and mediates binding of normal very low density lipoproteins to LRP.
        J. Biol. Chem. 1994; 269: 8653-8658
        • Willnow T.E.
        • Goldstein J.L.
        • Orth K.
        • Brown M.S.
        • Herz j.
        Low density lipoprotein receptor-related protein and gp330 bind similar ligands, including plasminogen acti-vator-inhibitor complexes and lactoferrin, an inhibitor of chylomicron remnant clearance.
        J. Biol. Chem. 1992; 267: 26172-26180
        • Argraves K.M.
        • Battey F.D.
        • MacCalman C.D.
        • Gafvels M.K.R. M.
        • Kozarsky K.F.
        • Chappell D.A.
        • Straus III J.F.
        • Strickland D.K.
        The very low density lipoprotein receptor mediates the cellular catabolism of lipoprotein lipase arid urokinase-plasminogen activator inhibitor type I complexes.
        J. Biol. Chem. 1995; 270: 26550-26557
        • Yen F.T.
        • Mann C.J.
        • Guermani L.M.
        • Hannouche N.F.
        • Hubert N.
        • Hornick C.A.
        • Bordeau V.N.
        • Agnani G.
        • Bihain B.E.
        Identification of a lipolysis-stimulated receptor that is distinct from the LDL receptor and the LDL receptor-related protein.
        Biochemistry. 1994; 33: 1172-1180
        • Ginsberg H.N.
        Lipoprotein metabolism and its relationship to atherosclerosis. Med. Clin.
        North Am. 1994; 78: 1-20
        • Marzetta C.A.
        • Foster D.M.
        • Brunzell J.D.
        Conversion of plasma VLDL and IDL precursors into various LDL subpopulations using density gradient ultracentrifugation.
        J. Lipid Res. 1990; 31: 975-984
        • Goldberg I.J.
        • Le N.A.
        • Paterniti J.R.J.
        • Ginsberg H.N.
        • Lindgren F.T.
        • Brown W.V.
        Lipoprotein metabolism during acute inhibition of hepatic triglyceride lipase in the cynomolgus monkey.
        J. Clin. Invest. 1982; 70: 1184-1192
        • Havel R.J.
        Role of triglyceride-rich lipoproteins in progression of atherosclerosis.
        Circulation. 1990; 81: 694-696
        • Ginsberg H.N.
        • Le N-A.
        • Gibson J.C.
        Regulation of the production and catabolism of plasma low density lipoproteins in hypertriglyceridemic subjects: effect of weight loss.
        J Clin. Invest. 1985; 75: 614-623
        • Ginsberg H.N.
        Lipoprotein physiology in nondiabetic and diabetic states. Relationship to atherogenesis.
        Diabetes Care. 1991; 14: 839-855
        • Boberg J.
        • Boberg M.
        • Gross R.
        • Grundy S.
        • Augustin J.
        • Brown W.V.
        The effect of treatment with clofibrate on hepatic triglyceride and lipoprotein lipase activiiies from human postheparin plasma in male patients with hyperlipoproteinemia.
        Atherosclerosis. 1977; 27: 499-503
        • Babirak S.P.
        • Brown B.G.
        • Brunzell j.D.
        Familial combined hyperlipidemia and abnormal lipoprotein lipase.
        Arterioscler. Thromb. 1992; 12: 1176-1183
        • Williams K.J.
        • Petrie K.A.
        • Brocia R.W.
        • Swenson T.L.
        Lipoprotein lipase modulates net secretory output of apolipoprotein B in vitro. A possible pathophysiologic explanation for familial combined hyperlipidemia.
        J. Clin. Invest. 1991; 88: 1300-1306
        • Huff M.W.
        • Miller D.B.
        • Wilfe B.M.
        • Sawyez C.G.
        Uptake of hypertriglyceridemia VLDL by HepG2 cells requires active lipoprotein lipase and cell surface proteoglycans.
        Circulation. 1994; 90: 1-289
        • Semenkovich C.
        • Chen S.
        • Wims M.
        • Luo C.
        • Li W.
        • Chan L.
        Lipoprotein lipase and hepatic lipase mRNA tissue specific expression, developmental regulation, and evolution.
        J Lipid Res. 1989; 30: 423-431
        • Wallinder L.
        • Peterson J.
        • Olivecrona T.
        • Bengtsson-Olivecrona G.
        Rapid removal to the liver of intravenously injected lipoprotein lipase.
        Biochim. Biophys. Acta. 1979; 575: 166-173
        • Camps L.
        • Reina M.
        • Llobera M.
        • Bengtsson-Olivecrona G.
        • Olivecrona T.
        • Vilaro S.
        Lipoprotein lipase in lungs, spleen, and liver: synthesis and distribution.
        J Lipid Res. 1991; 32: 1877-1888
        • Cohn J.S.
        • McNamara J.R.
        • Krasinski S.D.
        • Russell R.M.
        • Schaefer E.J.
        Role of triglyceride-rich lipoproteins from the liver and intestine in the etiology of postprandial peaks in plasma triglyceride concentration.
        Metabolism. 1989; 38: 484-490
        • Karpe F.
        • Steiner G.
        • Olivecrona T.
        • Carlson L.A.
        • Hamsten A.
        Metabolism of triglyceride-rich lipoproteins during alimentary lipemia.
        J. Clin. Invest. 1993; 91: 748-758
        • Patsch J.R.
        • Gotto Jr., A.M.
        • Olivecrona T.
        • Eisenberg S.
        Formation of high density lipoprotein2-like particles during lipolysis of very low density lipoproteins in vitro.
        Proc. Natl. Acad. Sci. 1978; 75: 4519-4523
        • Liang H.Q.
        • Rye K.A.
        • Barter P.J.
        Dissociation of lipid-free apolipoprotein A-I from high density lipoproteins.
        J. Lipid Res. 1994; 35: 1187-1199
        • Newnham H.H.
        • Barter P.J.
        Changes in particle size of high density lipoproteins during incubation with very low density lipoproteins, cholesteryl ester transfer protein and lipoprotein lipase.
        Biochim. Biophys. Acta. 1992; 1125: 297-304
        • Horowitz B.S.
        • Goldberg I.J.
        • Merab J.
        • Vanni T.M.
        • Ramakrishnan R.
        • Ginsberg H.N.
        Increased plasma and renal clearance of an exchangeable pool of apolipoprotein A-I in subjects with low levels of high density lipoprotein cholesterol.
        J. Clin. Invest. 1993; 91: 1743-1752
        • Brinton E.A.
        • Eisenberg S.
        • Breslow j.L.
        Increased apoA-I and apoA-II fractional catabolic rate in patients with low high density lipoprotein-cholesterol levels with or without hypertriglyceridemia.
        J. Clin. Invest. 1991; 87: 536-544
        • Goldberg I.J.
        • Blaner W.S.
        • Vanni T.M.
        • Moukides M.
        • Ramakrishnan R.
        Role of lipoprotein lipase in the regulation of high density lipoprotein apolipoprotein metabolism. Studies in normal and lipoprotein lipase-inhibited monkeys.
        J. Clin. Invest. 1990; 86: 463-473
        • Tornvall P.
        • Olivecrona G.
        • Karpe F.
        • Hamsten A.
        • Olivecrona T.
        Lipoprotein lipase mass and activity in plasma and increase after heparin are separate parameters with different relations to plasma lipoproteins.
        Arterioscler. Thromb. Vase. Biol. 1995; 15: 1086-1093
        • Blades B.
        • Vega G.L.
        • Grundy S.M.
        Activities of lipoprotein lipase and hepatic triglyceride lipase in postheparin plasma of patients with low concentrations of HDL cholesterol.
        Arterioscler. Thromb. 1993; 13: 1227-1235
        • Patsch J.R.
        • Prasad S.
        • Gotto Jr., A.M.
        • Patsch W.
        High density lipoprotein: relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipidemia, and to the activities of lipoprotein lipase and hepatic lipase.
        J. Clin. Invest. 1987; 80: 341-347
        • Karpe F.
        • Bard J.M.
        • Steiner G.
        • Carlson L.A.
        • Fruchart J.C.
        • Hamsten A.
        HDLs and alimentary lipemia: studies in men with previous myocardial infarction at a young age.
        Arterioscler. Thromb. 1993; 13: 11-22
        • Cohen J.C.
        • Stray G.J.
        • Grundy S.M.
        Dissociation between postprandial lipemia and high density lipoprotein cholesterol concentrations in endurance-trained men.
        Arterioscler. Thromb. 1991; 11: 838-843
        • Havel R.J.
        Postprandial hyperlipidemia and remnant lipoproteins.
        Curr. Opin. Lipidol. 1994; 5: 102-109
        • Tsutsumi K.
        • Inoue Y.
        • Shima A.
        • Iwasaki K.
        • Kawamura M.
        • Murase T.
        The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long-term administration inhibits atherogenesis in the coronary arteries of rats with experimental atherosclerosis.
        J. Clin. Invest. 1993; 92: 411-417
        • Krauss R.M.
        • Levy R.I.
        • Frederickson D.S.
        Selective measurement of two lipase activities in postheparin plasma from normal subjects and patients with hyperlipoproteinemia.
        J. Clin. Invest. 1974; 54: 1107-1124
        • Nilsson-Ehle P.
        • Schotz M.C.
        A stable, radioactive substrate emulsion for assay of lipoprotein lipase.
        J. Lipid Res. 1976; 17: 536-541
        • Brunzell J.D.
        • Hazzard W.R.
        • Porte D.J.
        • Bierman E.L.
        Evidence for a common, saturable triglyceride removal mechanism for chylomicrons and very low density lipoproteins in man.
        J. Clin. Invest. 1973; 52: 1578-1585
        • Chao F.F.
        • Amende L.M.
        • Blanchette-Mackie E.J.
        • Skarlatos S.I.
        • Gamble W.
        • Resau J.H.
        • Mergner W.T.
        • Kruth H.S.
        Unesterified cholesterol-rich lipid particles in atherosclerotic lesions of human and rabbit aortas.
        Am.J. Pathol. 1988; 131: 73-83
        • Rapp J.H.
        • Lespine A.
        • Hamilton R.L.
        • Colyvas N.
        • Chaumeton A.H.
        • Tweedie-Hardman J.
        • Kotite L.
        • Kunitake S.T.
        • Havel R.J.
        • Kane j.P.
        Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B im-munosorption from human atherosclerotic plaque.
        Arterioscler. Thromb. Vase. Biol. 1994; 14: 1767-1774
        • Chung B.H.
        • Tallis G.
        • Yalamoori V.
        • Anan-tharamaiah G.M.
        • Segrest j.P.
        Liposome-like particles isolated from human atherosclerotic plaques are structurally and compositionally similar to surface remnants of triglyceride-rich lipoproteins.
        Arterioscler. Thromb. 1994; 14: 622-635
        • Hennig B.
        • Shasby D.M.
        • Fulton A.B.
        • Spector A.A.
        Exposure to free fatty acids increases the transfer of albumin across cultured endothelial monolayers.
        Arteriosclerosis. 1984; 4: 489-497
        • Saxena U.
        • Klein M.G.
        • Vanni T.M.
        • Goldberg I.J.
        Lipoprotein lipase increases low density lipoprotein (LDL) retention by subendothelial cell matrix.
        J. Clin. Invest. 1992; 89: 373-380
        • Zilversmit D.B.
        Atherogenesis: a postprandial phenomenon.
        Circulation. 1979; 60: 473-485
        • Yla-Herttuala S.
        • Lipton B.
        • Rosenfeld M.
        • Goldberg I.
        • Steinberg D.
        • Witztum j.
        Macrophages and smooth muscle cells express lipoprotein lipase in human and rabbit atherosclerotic lesions.
        Proc. Natl. Acad. Sci. 1991; 88: 10143-10147
        • O'Brien K.
        • Gordon D.
        • Deeb S.
        • Ferguson M.
        • Chait A.
        Lipoprotein lipase is synthesized by macrophage-derived foam cells in human coronary atherosclerotic plaques.
        J. Clin. Invest. 1992; 89: 1544-1550
        • Mattson L.
        • Johansson H.
        • Ottosson M.
        • Bondjers G.
        • Wiflund O.
        Expression of lipoprotein lipase mRNA and secretion in macrophages isolated from human atherosclerotic aorta.
        J. Clin. Invest. 1993; 92: 1759-1765
        • Renier G.
        • Skamene E.
        • DeSanctis J.B.
        • Radzioch D.
        High macrophage lipoprotein lipase expression and secretion are associated in inbred murine strains with susceptibility to atherosclerosis.
        Arterioscler. Thromb. 1993; 13: 190-196
        • Saxena U.
        • Goldberg I.J.
        Endothelial cells and atherosclerosis: lipoprotein metabolism, matrix interactions, and monocyte recruitment.
        Curr. Opin. Lipidol. 1994; 5: 316-322
        • Camejo G.
        • Hurt-Camejo E.
        • Olsson U.
        • Bondjers G.
        Proteoglycans and lipoproteins in atherosclerosis.
        Curr. Opin. Lipidol. 1993; 5: 385-391
        • Vijayagopal P.
        • Srinivasan S.R.
        • Xu J.H.
        • Dalferes E.J.
        • Radhakrishnamurthy B.
        • Berenson G.S.
        Lipopro-tein-proteoglycan complexes induce continued cholesteryl ester accumulation in foam cells from rabbit atherosclerotic lesions.
        J. Clin. Invest. 1993; 91: 1011-1018
        • Camejo G.
        • Olofsson S.O.
        • Lopez F.
        • Carlsson P.
        • Bondjers G.
        Identification of apoB-100 segments mediating the interaction of low density lipoproteins with arterial proteoglycans.
        Arteriosclerosis. 1988; 8: 368-377
        • Camejo G.
        • Fager G.
        • Rosengren B.
        • Hurt-Camejo E.
        • Bondjers G.
        Binding of low density lipoproteins by proteoglycans synthesized by proliferating and quiescent human arterial smooth muscle cells.
        J. Biol. Chem. 1993; 268: 14131-14137
        • Srinivasan S.
        • Xu J-H.
        • Vijayagopal P.
        • Radhakrisnamur-thy B.
        • Berenson G.
        Injury to the arterial wall of rabbits produces proteoglycan variants with enhanced low-density lipoprotein-binding property.
        Biochim. Biophys. Acta. 1993; 1168: 158-166
        • Wagner W.D.
        • Salisbury B.G.J.
        Aortic total glycosaminoglycan and dermatan sulfate changes in atherosclerotic rhesus monkeys.
        Lab. Invest. 1978; 39: 322-328
        • O’Brien K.D.
        • Deeb S.S.
        • Ferguson M.
        • McDonald T.O.
        • Allen M.D.
        • Alpers C.E.
        • Chait A.
        Apolipoprotein E localization in human coronary atherosclerotic plaques by in situ hybridization and immunohistochemistry and comparison with lipoprotein lipase.
        Am.], Pathol. 1994; 144: 538-548
        • Eisenberg S.
        • Sehayek E.
        • Olivecrona T.
        • Vlodavsky I.
        Lipoprotein lipase enhances the binding of lipoprotein to heparan sulfate on cell surfaces and extracellular matrix.
        J. Clin. Invest. 1992; 90: 2013-2021
        • Saxena U.
        • Ferguson E.
        • Bisgaier C.L.
        Apolipoprotein E modulates low density lipoprotein retention by lipoprotein lipase anchored to the subendothelial matrix.
        J. Biol. Chem. 1993; 268: 14812-14819
        • Tabas I.
        • Li Y.
        • Brocia R.W.
        • Xu S.W.
        • Swenson T.L.
        • Williams K.J.
        Lipoprotein lipase and sphingomyelinase synergistically enhance the association of atherogenic lipoproteins with smooth muscle cells and extracellular matrix. A possible mechanism for low density lipoprotein and lipoprotein[a] retention and macrophage foam cell formation.
        J. Biol. Chem. 1993; 268: 20419-20432
        • Rutledge J.C.
        • Goldberg I.J.
        Lipoprotein lipase (LPL) affects low density lipoprotein (LDL) flux through vascular tissue: evidence that LpL increases LDL accumulation in vascular tissue.
        J Lipid Res. 1994; 35: 1152-1160
        • Edwards I.J.
        • Goldberg I.J.
        • Parks J.S.
        • Xu H.
        • Wagner W.D.
        Lipoprotein lipase enhances the interaction of low density lipoproteins with artery-derived extracellular matrix proteoglycans.
        J. Lipid Res. 1993; 34: 1155-1163
        • Edwards I.J.
        • Xu H.
        • Obunike J.C.
        • Goldberg I.J.
        • Wagner W.D.
        Differentiated macrophages synthesize a heparan sulfate proteoglycan and an oversulfated chondroi-tin sulfate proteoglycan that bind lipoprotein lipase.
        Arterios-cler. Thromb. Vase. Biol. 1995; 15: 400-409
        • Goldberg I.J.
        • Kandell J.J.
        • Blum C.B.
        • Ginsberg H.N.
        Association of plasma lipoproteins with postheparin plasma lipase activities.
        J Clin. Invest. 1986; 78: 1523-1528
        • Vilella E.
        • Joven J.
        • Fernandez M.
        • Vilaro S.
        • Brunzell J.D.
        • Olivecrona T.
        • Bengtsson-Olivecrona G.
        Lipoprotein lipase in human plasma is mainly inactive and associated with cholesterol-rich lipoproteins.
        J. Lipid Res. 1993; 34: 1555-1564
        • Choi S.Y.
        • Sivaram P.
        • Walker D.E.
        • Curtiss L.K.
        • Gretch D.G.
        • Sturley S.L.
        • Attie A.D.
        • Deckelbaum R.J.
        • Goldberg I.J.
        Lipoprotein lipase association with lipoproteins involves protein-protein interaction with apolipoprotein B..
        J. Biol. Chem. 1995; 270: 8081-8086
        • Gianturco S.H.
        • Ramprasad M.P.
        • Lin A.H-Y.
        • Song R.
        • Bradley W.A.
        Cellular binding site and membrane binding proteins for triglyceride-rich lipoproteins in human monocvte-macrophages and THP-1 monocytic cells.
        J. Lipid Res. 1994; 35:: 1674-1687
        • Khoo J.C.
        • Mahoney E.
        • Witztum J.L.
        Secretion of lipoprotein lipase by macrophages in culture.
        J. Biol. Chem. 1981; 256: 7105-7108
        • Chait A.
        • Iverius P.H.
        • Brunzell j.D.
        Lipoprotein lipase secretion by human monocyte-derived macrophages.
        J. Clin. Invest. 1982; 69: 490-493
        • Traber M.
        • Olivecrona T.
        • Kayden H.
        Bovine milk lipoprotein lipase transfers tocopherol to human fibroblasts during triglyceride hydrolysis in vitro.
        J. Clin. Invest. 1985; 75: 1729-1734
        • Blaner W.S.
        • Obunike J.C.
        • Kurlandsky S.B.
        • al-Haideri M.
        • Piantedosi R.
        • Deckelbaum R.J.
        • Goldberg I.J.
        Lipoprotein lipase hydrolysis of retinyl ester. Possible implications for retinoid uptake by cells.
        J. Biol. Chem. 1994; 269: 16559-16565
        • Lindqvist P.
        • Ostlund-Lindqvist J.L.
        • Witztum J.L.
        • Steinberg D.
        • Little J.A.
        The role of lipoprotein lipase in the metabolism of triglyceride-rich lipoproteins by macrophages.
        J. Biol. Chem. 1983; 258: 9086-9092
        • Stein O.
        • Friedman G.
        • Chajek-Shaul T.
        • Halperin G.
        • Olivecrona T.
        • Stein Y.
        Transfer of cholesteryl li-noleyl ether from phosphatidylcholine and phospha-tidylethanolamine liposomes to cultured cells catalyzed by lipoprotein lipase.
        Biochim. Biophys. Acta. 1983; 750: 306-316
        • Aviram M.
        • Bierman E.L.
        • Chait A.
        Modification of low density lipoprotein by lipoprotein lipase or hepatic lipase enhances uptake and cholesterol accumulation in cells.
        J. Biol. Chem. 1988; 263: 15416-15422
        • Mulder M.
        • Lombardi P.
        • Jansen H.
        • Van B.T.
        • Frants R.R.
        • Havekes L.M.
        Low density lipoprotein receptor internalizes low density and very low density lipoproteins that are bound to heparan sulfate proteoglycans via lipoprotein lipase.
        J Biol. Chem. 1993; 268: 9369-9375
        • Williams K.J.
        • Fless G.M.
        • Petrie K.A.
        • Snyder M.L.
        • Brocia R.W.
        • Swenson T.L.
        Mechanisms by which lipoprotein lipase alters cellular metabolism of lipopro-teinfaj, low density lipoprotein, and nascent lipoproteins. Roles for low density lipoprotein receptors and heparan sulfate proteoglycans.
        J. Biol. Chem. 1992; 267: 13284-13292
        • Obunike J.
        • Edwards I.
        • Rumsey S.
        • Curtiss L.
        • Wagner W.
        • Deckelbaum R.
        • Goldberg I.
        Cellular differences in lipoprotein lipase-mediated uptake of low density lipoproteins.
        J Biol. Chem. 1994; 269: 13129-13135
        • Medh J.D.
        • Bowen S.L.
        • Fry G.L.
        • Pladet M.
        • Andracki M.
        • Inoue I.
        • Lalouel J-M.
        • Strickland D.K.
        • Chappell D.A.
        Lipoprotein lipase (LPL) induces cellular catabolism of lipoproteins via LDL receptors (in vitro).
        FASEB J. 1995; 9
        • Tabas I.
        The stimulation of the cholesterol esterifica-tion pathway by atherogenic lipoproteins in macrophages.
        Curr. Opin. Lipidol. 1995; 6: 260-268
        • Chung B.H.
        • Segrest J.P.
        • Smith K.
        • Griffin F.M.
        • Brouillette C.G.
        Lipolytic surface remnants of triglyceride-rich lipoproteins are cytotoxic to macrophages but not in the presence of high density lipoprotein.
        A possible mechanism of atherogenesis? J. Clin. Invest. 1989; 83: 1363-1374
        • Rumsey S.C.
        • Galeano N.F.
        • Lipschitz B.
        • Deckelbaum R.J.
        Oleateand other long chain fatty acids stimulate low density lipoprotein receptor activity by enhancing acyl coenzyme Axholesterol acyltransferase activity and altering intracellular regulatory cholesterol pools in cultured cells.
        J. Biol. Chem. 1995; 270: 10008-10016
        • Lalouel J.
        • Wilson D.
        • Iverius P.
        Lipoprotein lipase and hepatic triglyceride lipase: molecular and genetic aspects.
        Curr. Opin. Lipidol. 1992; 3: 86-95
        • Harlan W.R.
        • Winesett P.S.
        • Wasserman A.J.
        Tissue lipoprotein lipase in normal individuals and in individuals with exogenous hypertriglyceridemia and the relationship of this enzyme to assimilation of fat.
        J. Clin. Invest. 1967; 46: 239-247
        • Wilson D.
        • Emi M.
        • Iverius P.
        • Hata A.
        • Wu L.
        • Hillas E.
        • Williams R.
        • Lalouel J.
        Phenotypic expression of heterozygous lipoprotein lipase deficiency in the extended pedigree of a proband homozygous for a missense mutation.
        J. Clin. Invest. 1990; 86: 735-750
        • Ma Y.
        • Liu M.S.
        • Ginzinger D.
        • Frohlich J.
        • Brunzell J.D.
        • Hayden M.R.
        Gene-environment interaction in the conversion of a mild-to-severe phenotype in a patient homozygous for a Serl72 Cys mutation in the lipoprotein lipase gene.
        J Clin. Invest. 1993; 91: 1953-1958
        • Ma Y.
        • Ooi T.
        • Liu M.
        • Zhang H.
        • McPherson R.
        • Edwards A.
        • Forsythe I.
        • Frohlich J.
        • Brunzell J.
        • Hayden M.
        High frequency of mutations in the human lipoprotein lipase gene in pregnancy induced chylomicronemia: possible association with apolipoprotein E2 isoform.
        J. Lipid Res. 1994; 35: 1066-1075
        • Heizmann C.
        • Kirchgessner T.
        • Kwiterovich P.O.
        • Ladias J.A.
        • Derby C.
        • Antonarakis S.E.
        • Lusis A.J.
        DNA polymorphism haplotypes of the human lipoprotein lipase gene: possible association with high density lipoprotein levels.
        Hum. Genet. 1991; 86: 578-584
        • Mailly F.
        • Tugrul Y.
        • Reymer P.W.A.
        • Bruin T.
        • Seed M.
        • Groenemeyer B.F.
        • Asplund-Carlson A.
        • Vallance D.
        • Winder A.F.
        • Miller G.J.
        • Kastelein J.J.P.
        • Hamsten A.
        • Olivecrona G.
        • Humphries S.E.
        • Talmud P.
        A common variant in the gene for lipoprotein lipase (asp9-Asn): functional implications and prevalence in normal and hyperlipidemic subjects. Arte-riosder.
        Thromb. Vase. Biol. 1995; 15: 468-478
        • Reymer P.W.A.
        • Gagne E.
        • Grownemeyer B.E.
        • Zhang H.
        • Forsyth I.
        • Jansen H.
        • Seidell J.C.
        • Kromhout D.
        • Lie K.E.
        • Kastelein J.
        • Hayden M.R.
        A lipoprotein lipase mutation (asp291ser) is associated with reduced HDL cholesterol levels in premature atherosclerosis.
        Nat. Genet. 1995; 10: 28-34
        • Dugi K.A.
        • Feuerstein I.M.
        • Santamarina-Fojo S.
        • Brewer Jr., H.B.
        • Hoeg J.M.
        Lipoprotein lipase may contribute to the varient degree of atherosclerosis in homozygous familial hypercholesterolemia.
        Circulation. 1994; 90
        • Zambon A.
        • Torres A.
        • Bijvoet S.
        • Gagne C.
        • Mooijani S.
        • Lupien P.J.
        • Hayden M.R.
        • Brunzell j.D.
        Prevention of raised low-density lipoprotein cholesterol in a patient with familial hypercholesterolaemia and lipoprotein lipase deficiency.
        Lancet. 1993; 341: 1119-1121
        • Liu M.S.
        • Jirik F.R.
        • LeBoeuf R.C.
        • Henderson H.
        • Castellani L.W.
        • Lusis A.J.
        • Ma Y.
        • Forsythe I.J.
        • Zhang H.
        • Kirk E.
        • Brunzell J.D.
        • Hayden M.R.
        Alteration of lipid profiles in plasma of transgenic mice expressing human lipoprotein lipase.
        J. Biol. Chem. 1994; 269: 11417-11424
        • Levak-Frank S.
        • Radner H.
        • Walsh A.
        • Stollberger R.
        • Knipping G.
        • Heofler G.
        • Sattler W.
        • Weinstock P.H.
        • Breslow J.L.
        • Zechner R.
        Muscle-specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice.
        J. Clin. Invest. 1995; 96: 976-986
        • Shimada M.
        • Shimano H.
        • Gotoda T.
        • Yamamoto K.
        • Kawamura M.
        • Inaba T.
        • Yazaki Y.
        • Yamada N.
        Overexpression of human lipoprotein lipase in transgenic mice. Resistance to diet-induced hypertriglyceridemia and hypercholesterolemia.
        J. Biol. Chem. 1993; 268: 17924-17929
        • Zsigmond E.
        • Schefiler E.
        • Forte T.M.
        • Potenz R.
        • Wu W.
        • Chan L.
        Transgenic mice expressing human lipoprotein lipase driven by the mouse metallothionein promoter. A phenotype associated with increased perinatal mortality and reduced plasma very low density lipoprotein of normal size.
        J. Biol. Chem. 1994; 269: 18757-18766
        • Coleman T
        • Seip R.L.
        • Gimble J.M.
        • Lee D.
        • Maeda N.
        • Semenkovich C.F.
        COOH-disruption of lipoprotein lipase in mice is lethal in homozygotes, but heterozygotes have elevated triglycerides and impaired enzyme activity.
        J. Biol. Chem. 1995; 270: 12518-12525
        • Weinstock P.H.
        • Bisgaier C.L.
        • Aalto-Setala K.
        • Radner H.
        • Ramakrishnon R.
        • Levak-Frank S.
        • Essenberg A.D.
        • Zechner R.
        • Breslow j.L.
        Severe hypertriglyceridemia, reduced high density lipoprotein and neonatal death in lipoprotein lipase knockout mice.
        J. Clin. Invest. 1995; 96: 2555-2568