Advertisement
Research Article| Volume 37, ISSUE 2, P309-319, February 1996

Download started.

Ok

Lack of association of the apolipoprotein A-I-C-III-A-IV gene XmnI and SstI polymorphisms and of the lipoprotein lipase gene mutations in familial combined hyperlipoproteinemia in French Canadian subjects

Open AccessPublished:February 01, 1996DOI:https://doi.org/10.1016/S0022-2275(20)37618-5
      This paper is only available as a PDF. To read, Please Download here.
      Familial combined hyperlipoproteinemia (FCH) is a common familial lipoprotein disorder characterized by elevated plasma cholesterol and triglyceride levels with segregation in first-degree relatives. Most affected subjects with FCH have elevated plasma levels of apolipoprotein (apo) B. The disorder results from oversecretion of hepatic apoB-containing lipoprotein particles. The genetic defect(s) are unknown. Previous work has suggested that genetic polymorphisms of the apoA-I gene and functional abnormalities of the lipoprotein lipase (LPL) gene are associated with FCH. We investigated the XmnI and SstI restriction fragment length polymorphisms (RFLP) of the apoA-I gene in FCH subjects of French Canadian descent. We also investigated three common functional mutations of the lipoprotein lipase (LPL) gene (LPLGly188Glu, LPLPro207Leu, and LPLAsp250Asn) in French Canadians that account for approximately 97% of cases of complete LPL deficiency in the province of Québec, Canada. We identified and characterized 54 FCH probands in lipid clinics and examined at least one first-degree relative. There were 37 men and 17 women (mean age 48 +/- 9 and 58 +/- 8 years, respectively). None of the probands had diabetes mellitus; mean plasma glucose was 5.5 mmol/L. High blood pressure was diagnosed in 32% of men and 29% of women. The body mass index (weight (kg)/height(m2)) was elevated in probands (27 +/- 4 for men and 26 +/- 4 for women). Mean plasma levels of cholesterol (C) was 7.6 +/- 1.5 mmol/L, triglycerides 3.5 +/- 1.6 mmol/L, LDL-C 4.9 +/- 1.2 mmol/L, HDL-C 1.0 +/- 0.3 mmol/L, and apoB 1.83 +/- 0.67 g/L in the probands. Allele frequency of the rare alleles of the XmnI and SstI RFLP was not significantly different from a healthy reference group. In several families studied, the XmnI and SstI RFLP did not unequivocally segregate with the FCH phenotype. There was no significant effect of the presence or absence of the XmnI or SstI RFLP's on plasma lipids, lipoprotein cholesterol or apoB levels. Only one FCH proband was found to have a mutation of the LPL gene (Gly188Glu), and this did not segregate with the FCH phenotype in the family. We conclude that in our highly selected group of FCH subjects of French Canadian descent, the XmnI and SstI RFLPs of the apoA-I gene and common functional mutations of the LPL gene resulting in complete LPL deficiency are not associated with FCH.

      REFERENCES

        • Goldstein J.L.
        • Schrott H.G.
        • Hazzard W.R.
        • Bierman E.L.
        • Motulsky A.G.
        Hyperlipidemia in coronary heart disease. II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia.
        J. Clin. Invest. 1973; 52: 1544-1568
        • Rose H.G.
        • Kranz P.
        • Weinstock M.
        • Juliano J.
        • Haft J.I.
        Inheritance of combined hyperlipoproteinemia: evidence for a new lipoprotein phenotype.
        Am.J. Med. 1973; 54: 148-160
        • Nikkila E.A.
        • Aro A.
        Family study of lipids and lipoproteins in coronary heart disease.
        Lancet. 1973; 1: 954-959
        • Glueck C.J.
        • Fallat R.
        • Buncher C.R.
        • Tsang R.
        • Steiner P.
        Familial combined hyperlipoproteinemia: studies in 91 adults and 95 children from 33 kindreds.
        Metabolism. 1973; 23: 1403-1428
        • Brunzell J.D.
        • Albers J.J.
        • Chait A.
        • Grundy S.M.
        • Groszek E.
        • McDonald G.B.
        Plasma lipoproteins in familial combined hyperlipidemia and monogenic familial hypertriglyceridemia.
        J. Lipid Res. 1983; 24: 147-155
        • Vega G.L.
        • Beltz W.F.
        • Grundy S.M.
        Low density lipoprotein metabolism in hypertriglyceridemic and normolipidemic patients with coronary heart disease.
        J. Lipid Res. 1985; 26: 115-126
        • Teng B.
        • Sniderman A.D.
        • Soutar A.K.
        • Thompson G.R.
        Metabolic basis of hyperapobetalipo-proteinemia. Turnover of apolipoprotein B in low density lipoprotein and its precursors and subfractions compared with normal and familial hypercholesterolemia.
        J. Clin. Invest. 1986; 77: 663-672
        • Grundy S.M.
        • Chait A.
        • Brunzell J.D.
        Familial combined hyperlipidemia workshop. Meeting summary.
        Arteriosclerosis. 1987; 7: 203-207
      1. ricsson, S., M. Eriksson, L. Berglund, and B. Angelin. 1988. Low density lipoprotein metabolism in hereditary forms of hypertriglyceridemia: studies in familial hypertriglyceridemia and familial combined hyperlipidemia. 8th International Symposium on Atherosclerosis. 231.

        • Sane T.
        • Nikkila E.A.
        Very low density lipoprotein triglyceride metabolism in relatives of hypertriglyceridemic probands. Evidence for genetic control of triglyceride removal.
        Arteriosclerosis. 1988; 8: 217-226
        • Genest Jr., J.
        • Bard J-M.
        • Fruchart J-C.
        • Ordovas J.M.
        • Schaefer E.J.
        Familial hypoalphalipoproteinemia in premature coronary artery disease.
        Arterioscler. Thromb. 1993; 13: 1728-1737
        • Sniderman A.
        • Shapiro S.
        • Marpole D.
        • Skinner B.
        • Teng B.
        • Kwiterovich Jr., P.O.
        Association of coronary atherosclerosis with hyperapobetalipoprote-inemia [increased protein but normal cholesterol levels in human plasma low density (beta) lipoproteins].
        Proc. Natl. Acad. Sci. 1980; 77: 604-608
        • Genest Jr., J.J.
        • Martin-Munley S.S.
        • McNamara J.R.
        • Ordovas J.M.
        • Jenner J.M.
        • Meyers R.H.
        • Silberman S.R.
        • Wilson P.W.F.
        • Salem D.N.
        • Schaefer E.J.
        Familial lipoprotein disorders in patients with premature coronary artery disease.
        Circulation. 1992; 85: 2025-2033
        • Wojciechowski A.P.
        • Farrall M.
        • Cullen P.
        • Wilson T.M.
        • Bayliss J.D.
        • Farren B.
        • Griffin B.A.
        • Caslake M.J.
        • Packard C.J.
        • Shepherd J.
        Familial combined hyper-lipidaemia linked to the apolipoprotein A-I-C-III-A-IV gene cluster on chromosome Ilq23-q24.
        Nature. 1991; 349: 161-164
        • Hayden M.R.
        • Kirk H.
        • Clark C.
        • Frolich J.
        • Rabkin S.
        • McLeod R.
        • Hewitt J.
        DNA polymorphisms in and around the apoA-I-CIII genes and genetic hyper-lipidemias.
        Am.J. Hum. Genet. 1987; 40: 421-430
        • Ordovas J.M.
        • Civeira F.
        • Genest Jr., J.
        • Craig S.
        • Robbins A.H.
        • Meade T.
        • Pocovi M.
        • Frossard P.M.
        • Masha-rani U.
        • Wilson P.W.F.
        • Salem D.N.
        • Ward R.H.
        • Schaefer E.J.
        Restriction fragment length polymorphisms of the apolipoprotein A-I, C-III, A-IV gene locus. Relationships with lipids, apolipoproteins, and premature coronary artery disease.
        Atherosclerosis. 1991; 87: 75-86
        • Genest Jr., J.
        • Ordovas J.M.
        • McNamara J.R.
        • Robbins A.M.
        • Meade T.
        • Cohn S.D.
        • Salem D.N.
        • Wilson P.W.F.
        • Masharani U.
        • Frossard P.M.
        • Schaefer E.J.
        DNA polymorphisms of the apolipoprotein B gene in patients with premature coronary artery disease.
        Atherosclerosis. 1990; 82: 7-17
        • Gagne C.
        • Brun L.D.
        • Julien P.
        • Moorjani S.
        • Lupien P-J.
        Primary lipoprotein-lipase activity deficiency: clinical investigation of a French Canadian population.
        Can. Med. Assoc. J. 1989; 140: 405-411
        • Ma Y.
        • Henderson H.E.
        • Murthy M.R.V.
        • Roederer G.
        • Monsalve M.V.
        • Clarke L.A.
        • Normand T.
        • Julien P.
        • Gagne C.
        • Lambert M.
        • Davignon J.
        • Lupien P.J.
        • Brunzell J.D.
        • Hayden M.R.
        A mutation in the human lipoprotein lipase gene as the most common cause of familial chylomicronemia in French Canadians.
        N. EnglJ. Med. 1991; 324: 1761-1766
        • Monsalve M.V.
        • Henderson H.
        • Roederer G.
        • Julien P.
        • Deeb S.
        • Kastelein J.J.P.
        • Perity L.
        • Devlin R.
        • Bruin T.
        • Murthy M.R.V.
        • Gagne C.
        • Davignon J.
        • Lupien P.J.
        • Brunzell J.D.
        • Hayden M.R.
        A missense mutation at codon 188 of the human lipoprotein lipase gene is a frequent cause of lipoprotein lipase deficiency in persons of different ancestries.
        J. Clin. Invest. 1990; 86: 728-734
        • Henderson H.E.
        • Ma Y.
        • Hassan F.
        • Monsalve M.V.
        • Marais A.D.
        • Winkler F.
        • Gubemator K.
        • Peterson J.
        • Brunzell J.D.
        • Hayden M.R.
        Amino acid substitution (Ilel94 ?> Thr) in exon 5 of the lipoprotein lipase gene causes lipoprotein lipase deficiency in three unrelated probands. Support fora multicentric origin.
        J. Clin. Invest. 1991; 87: 2005-2011
        • Babirak S.P.
        • Iverius P-H.
        • Fujimoto W.Y.
        • Brunzell J.D.
        Detection and characterization of the heterozygote state for lipoprotein lipase deficiency.
        Arteriosclerosis. 1989; 9: 326-334
        • Emi M.
        • Wilson D.E.
        • Iverius P-H.
        • Wu L.
        • Hata A.
        • Hegele R.
        • Williams R.R.
        • Lalouel J-M.
        Missense mutation (Gly ?? Glul88) of human lipoprotein lipase imparting functional deficiency.
        J. Biol. Chem. 1990; 265: 5910-5916
        • Wilson D.E.
        • Emi M.
        • Iverius P-H.
        • Hata A.
        • Wu L.L.
        • Hillas E.
        • Williams R.R.
        • Lalouel J.M.
        Phenotypic expression of heterozygous lipoprotein lipase deficiency in the extended pedigree of a proband homozygous for a missense mutation.
        J. Clin. Invest. 1990; 86: 735-750
        • McNicoll S.
        • Latour Y.
        • Rondeau C.
        • Bouthillier D.
        • Davignon J.
        • Genest Jr., J.
        Cardiovascular risk factors and lipoprotein profile in French Canadians with premature CAD: impact of the National Cholesterol Education Program II.
        Can.J. Cardiol. 1995; 11: 109-116
        • Hobbs H.H.
        • Brown M.S.
        • Goldstein J.L.
        Molecular genetics of the LDL receptor gene in familial hypercholesterolemia.
        Hum. Mutat. 1992; 1: 445-466
        • Panel Expert
        Summary of the Second Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II).
        J. Am. Med. Assoc. 1993; 269: 3015-3023
        • Xhignesse M.
        • Lussier-Cacan S.
        • Sing C.F.
        • Kessling A.M.
        • Davignon J.
        Influences of common variants of apolipoprotein E on measures of lipid metabolism in a sample selected for health.
        Arterioscler. Thromb. 1991; 11: 1100-1110
        • Kessling A.
        • Ouelette S.
        • Bouffard O.
        • Chamberland A.
        • Betard C.
        • Selinger E.
        • Xhignesse M.
        • Lussier-Cacan S.
        • Davignon J.
        Patterns of association between genetic variability in apolipoprotein (apo) B, apoA-I-C-III-A-IV, and cholesterol ester transfer protein gene regions and quantitative variation in lipid and lipoprotein traits: influence of gender and exogenous hormones.
        Am. J. Hum. Genet. 1992; 50: 92-106
        • Fievet-Desreumaux C.
        • Dedender-Decoopman E.
        • Fruchart J-C.
        • Dewailly P.
        • Sezille G.
        Immono-chemical determination of human apolipoprotein B by laser nephelometry.
        Clin. Chim. Acta. 1979; 95: 405-408
        • Saiki R.K.
        • Gelfand D.H.
        • Stoffel S.
        • Scharf S.J.
        • Higuchi R.
        • Horn G.T.
        • Mullis K.B.
        • Erlich H.A.
        Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase.
        Science. 1988; 239: 487-491
        • Minnich A.
        • Kessling A.
        • Roy M.
        • Giry C.
        • DeLan-gavant G.
        • Lavigne J.
        • Lussier-Cacan S.
        • Davignon J.
        Prevalence of alleles encoding defective lipoprotein lipase in hypertriglyceridemic patients of French Canadian descent.
        J. Lipid Res. 1995; 36: 117-124
      2. The Lipid Research Clinics. 1980. Population Sudies Data Book. Vol I: The Prevalence Study. Washington, DC, US Department of Health and Human Services. NIH Publication No. 80-1527.

        • Gagne E.
        • Genest Jr., J.
        • Zhang H.
        • Clarke L.A.
        • Hayden M.R.
        Analysis of DNA changes in the LPL gene in patients with familial combined hyperlipidemia.
        Arterioscler. Thromb. 1994; 14: 1250-1257
        • Beisiegel U.
        • Weber W.
        • Bengtsson-Olivecrona G.
        Lipoprotein lipase enhances the binding of chylomicrons to low density lipoprotein receptor-related protein.
        Proc. Natl. Acad. Sci. 1991; 88: 8342-8346
        • Hussain M.M.
        • Maxfield F.R.
        • Mas-Oliva J.
        • Tabas I.
        • Ji Z-S.
        • Innerarity T.L.
        • Mahley R.W.
        Clearance of chylomicron remnants by the low density lipoprotein receptor-related protein/alpha-2-macroglobulin receptor.
        J. Biol. Chem. 1991; 266: 13936-13940
        • Young S.G.
        Recent progress in understanding apolipoprotein B..
        Circulation. 1990; 82: 1574-1594
        • Dashti N.
        • Smith E.A.
        • Alaupovic P.
        Increased production of apolipoprotein B and its lipoproteins by oleic acid in Caco-2 cells.
        J. Lipid Res. 1990; 31: 113-123
        • Zannis V.I.
        • Kardassis D.
        • Cardot P.
        • Hadzopoulou-Cladaras M.
        • Zanni E.E.
        • Cladaras C.
        Molecular biology of the human apolipoprotein genes: gene regulation and structure/function relationship.
        Curr. Opin. Lipi-dol. 1992; 3: 96-113
        • Sorci-Thomas M.
        • Wilson M.D.
        • Johnson F.L.
        • Williams D.L.
        • Rudel L.L.
        Studies on the expression of genes encoding apolipoproteins B100 and B48 and the low density lipoprotein receptor in nonhuman primates.
        J. Biol. Chem. 1989; 264: 9039-9045
        • Davis R.A.
        • Boogaerts J.R.
        • Borchardt R.A.
        • Malone-McNeal M.
        • Archambault-Schexnayder J.
        Intra-hepatic assembly of very low density lipoproteins. Varied synthetic response of individual apolipoprotein to fasting.
        J. Biol. Chem. 1985; 260: 14137-14144
        • Bamberger M.J.
        • Lane M.D.
        Assembly of very low density lipoprotein in the hepatocyte. Differential transport of apoproteins through the secretory pathway.
        J. Biol. Chem. 1988; 263: 11868-11878
        • Boren J.
        • Wettesten M.
        • Sjoberg A.
        • Thorlin T.
        • Bond-jers G.
        • Wiklund O.
        • Olofsson S.O.
        The assembly and secretion of apoB-100-containing lipoproteins in HepG2 cells. Evidence for different sites for protein synthesis and lipoprotein assembly.
        J. Biol. Chem. 1990; 265: 10556-10564
        • Cianflone K.M.
        • Yasruel Z.
        • Rodriguez M.A.
        • Vas D.
        • Sniderman A.D.
        Regulation of apoB secretion from HepG2 cells: evidence for a critical role for cholesteryl ester synthesis in the response to a fatty acid challenge.
        J. Lipid Res. 1990; 31: 2045-2055
        • Chait A.
        • Albers J.J.
        • Brunzell J.D.
        Very low density lipoprotein overproduction in genetic forms of hypertriglyceridaemia.
        Eur.J. Clin. Invest. 1980; 10: 17-22
        • Cortner J.A.
        • Coates P.M.
        • Bennett M.J.
        • Cryer D.R.
        • Le N.A.
        Familial combined hyperlipidaemia: use of stable isotopes to demonstrate overproduction of very low density lipoprotein apolipoprotein B by the liver.
        J. Inherited Metab. Dis. 1991; 14: 915-922
        • Kissebach A.H.
        • Alfarsi S.
        • Adams P.W.
        Integrated regulation of very low density lipoprotein triglyceride and apolipoprotein-B kinetics in man: nor-molipemic subjects, familial hypertriglyceridemia and familial combined hyperlipidemia.
        Metabolism. 1981; 30: 856-868
        • Venkatesan S.
        • Cullen P.
        • Pacy P.
        • Halliday D.
        • Scott J.
        Stable isotopes show a direct relation between VLDL apoB overproduction and serum triglyceride levels and indicate a metabolically and biochemically coherent basis for familial combined hyperlipidemia.
        Arterioscler. Thromb. 1993; 13: 1110-1118
        • Reaven G.M.
        Banting Lecture 1988. The role of insulin resistance in human disease..
        Diabetes. 1988; 37: 1595-1607
        • Williams R.R.
        • Hunt S.C.
        • Hopkins P.N.
        • Stults B.M.
        • Wu L.L.
        • Hasstedt S.J.
        • Barlow G.K.
        • Stephenson S.H.
        • Lalouel J-M.
        • Kuida H.
        Familial dyslipidemic hypertension. Evidence from 58 Utah families for a syndrome present in approximately 12% of patients with essential hypertension.
        J. Am. Med. Assoc. 1988; 259: 3579-3586
        • Assmann G.
        • Schulte H.
        Relation of high density lipoprotein cholesterol and triglycerides to incidence of atherosclerotic coronary artery disease (the PROCAM experience). Prospective Cardiovascular Munster study.
        Am.J. Cardiol. 1992; 70: 733-737
        • Genest Jr., J.
        • Cohn J.
        Clustering of cardiovascular risk factors. Targeting high risk individuals.
        Am. J. Cardiol. 1995; 75: 8A-20A
        • Sniderman A.
        • Brown B.G.
        • Stewart B.F.
        • Cian-flone K.
        From familial combined hyperlipidemia to hyperapoB: unraveling the overproduction of hepatic apolipoprotein B..
        Curr. Opin. Lipidol. 1992; 3: 137-142
        • Innerarity T.L.
        • Mahley R.W.
        • Weisgraber K.H.
        • Bersot T.P.
        • Krauss R.M.
        • Vega G.L.
        • Grundy S.M.
        • Friedl W.
        • Davignon J.
        • McCarthy B.J.
        Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia.
        J. Lipid Res. 1990; 31: 1337-1349
        • Cullen P.
        • Farren B.
        • Scott J.
        • Farrall M.
        Complex segregation analysis provides evidence for a major gene acting on serum triglyceride levels in 55 British families with familial combined hyperlipidemia.
        Arterioscler. Thromb. 1994; 14: 1233-1249
        • Nishina P.M.
        • Johnson J.P.
        • Naggert J.K.
        • Krauss R.M.
        Linkage of atherogenic lipoprotein phenotype to the low density lipoprotein receptor locus on the short arm of chromosome 19.
        Proc. Natl. Acad. Sci. 1992; 89: 708-712