Advertisement

Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity.

Open AccessPublished:December 01, 1989DOI:https://doi.org/10.1016/S0022-2275(20)38196-7
      This paper is only available as a PDF. To read, Please Download here.
      Increased lipid peroxidation products were detected in a lipoprotein fraction containing very low density lipoprotein (VLDL) and low density lipoprotein (LDL) obtained from rats made diabetic by streptozotocin injection. The enhanced oxidation in the diabetic VLDL plus LDL fraction correlated with the in vitro toxicity of this lipoprotein fraction to proliferating fibroblasts. In contrast, high density lipoprotein (HDL) was not cytotoxic. That the increased oxidation and development of cytotoxic activity in the diabetic VLDL + LDL was related to the diabetes was shown by the fact that insulin treatment of diabetic animals inhibited both oxidation and cytotoxicity of VLDL + LDL. In contrast, treatment of diabetic rats with the antioxidants vitamin E or probucol after diabetes was established also inhibited both the in vivo oxidation and in vitro cytotoxicity of diabetic VLDL + LDL, but without altering hyperglycemia. Vitamin E or probucol treatment thus allowed separation of the oxidation process from the hyperglycemia occurring in experimental diabetes. The mechanisms by which diabetes in humans or experimental animals leads to the various manifestations of tissue damage are unknown; however, these studies demonstrate for the first time that a relationship exists between the in vivo oxidation of lipoproteins in diabetes and the potential for tissue damage as monitored by in vitro cytotoxicity. Furthermore, these results suggest that the mechanism for certain aspects of tissue damage accompanying experimental diabetes may be mediated by lipid peroxidation products.

      REFERENCES

        • Brownlee M.
        • Cerami A.
        The biochemistry of the complications of diabetes mellitus.
        Annu. Rev. Biochem. 1981; 50: 385-432
        • Ruderman N.B.
        • Haudenschild C.
        Diabetes as an atherogenic factor.
        Prog. Cardiovasc. Dis. 1984; 26: 373-412
        • Bell Jr., R.H.
        • Hye R.J.
        Animal models of diabetes mellitus: physiology and pathology.
        J. Surg. Res. 1983; 35: 433-460
        • Dormandy T.L.
        An approach to free radicals.
        Lancet. 1969; ii: 1010-1014
        • Harman D.
        Prolongation of life: role of free radical reactions in aging.
        J. Am. Geriatr. Soc. 1969; 17: 721-735
        • Halliwell B.
        • Gutteridge J.M.C.
        Oxygen free radicals and iron in relation to biology and medicine: some problems and concepts.
        Arch. Biochem. Biophys. 1986; 246: 501-514
        • Sato Y.
        • Hotta N.
        • Sakamoto N.
        • Matasuoka S.
        • Ohishi N.
        • Yagi K.
        Lipid peroxide level in plasma of diabetic patients.
        Biochem. Med. 1979; 21: 104-107
        • Nishigaki I.
        • Hagihara M.
        • Tsunekawa H.T.
        • Maseki M.
        • Yagi K.
        Lipid peroxide levels of serum lipoprotein fractions of diabetic patients.
        Biochem. Med. 1981; 25: 373-378
        • Higuchi Y.
        Lipid peroxides and α-tocopherol in rat streptozotocin-induced diabetes mellitus.
        Acta. Med. Okayama. 1982; 3: 165-175
        • Karpen C.W.
        • Pritchard Jr., K.A.
        • Arnold J.H.
        • Cornwell D.G.
        • Panganamala R.V.
        Restoration of protacyclin/thromboxane A2 balance in the diabetic rat. Influence of dietary vitamin E.
        Diabetes. 1982; 31: 947-951
        • Hessler J.R.
        • Morel D.W.
        • Lewis L.J.
        • Chisolm G.M.
        Lipoprotein oxidation and lipoprotein-induced cytotoxicity.
        Arteriosclerosis. 1983; 3: 215-222
        • Morel D.W.
        • Hessler J.R.
        • Chisolm G.M.
        Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid.
        J. Lipid Res. 1983; 24: 1070-1076
        • Cathcart M.K.
        • Morel D.W.
        • Chisolm G.M.
        Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic.
        J. Leukocyte Biol. 1985; 38: 341-350
        • Morel D.W.
        • DiCorleto P.E.
        • Chisolm G.M.
        Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation.
        Arteriosclerosis. 1984; 4: 357-364
        • Parthasarathy S.
        • Young S.G.
        • Witztum J.L.
        • Pittman R.C.
        • Steinberg D.
        Probucol inhibits oxidative modification of low density lipoprotein.
        J. Clin. Invest. 1986; 77: 641-644
        • Arbogast B.W.
        • Lee G.M.
        • Raymond T.L.
        In vitro injury of porcine aortic endothelial cells by very-lowdensity lipoproteins from diabetic rat serum.
        Diabetes. 1982; 31: 593-599
        • Chapman M.J.
        Animal lipoproteins: chemistry, structure and comparative aspects.
        J. Lipid Res. 1980; 21: 789-853
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265-275
        • Morre J.
        • Morazzani-Pelletier S.
        LAldehyde malonique est product par irradiation y du galactose au pH 9.5. Modification du phenomene par la borate de sodium.
        C. R. Acad. Sci. 1966; 262: 1729-1731
        • Landegren U.
        Measurement of cell numbers by means of the endogenous enzyme hexosaminidase. Applications to detection of lymphokines and cell surface antigens.
        J. Immunol. Methods. 1984; 67: 379-388
        • Kleinbaum D.G.
        • Kupper L.L.
        Applied Regression Analysis and Other Multivariable Methods. Duxbury Press, North Scituate, MA1978: 244-288
        • Pritchard Jr., K.A.
        • Patel S.T.
        • Karpen C.W.
        • Newman H.A.I.
        • Panganamala R.V.
        Triglyceridelowering effect of dietary vitamin E in streptozotocininduced diabetic rats. Increased lipoprotein lipase activity in livers of diabetic rats fed high dietary vitamin E.
        Diabetes. 1986; 35: 278-281
        • Dillard C.J.
        • Kunert K.J.
        • Tappel A.L.
        Lipid peroxidation during chronic inflammation induced in rats by Freund's adjuvant: effect of vitamin E as measured by expired pentane.
        Res. Commun. Chem. Pathol. Pharmacol. 1982; 37: 143-146
        • Dillard C.J.
        • Kunert K.J.
        • Tappel A.L.
        Effects of vitamin E, ascorbic acid and mannitol on alloxaninduced lipid peroxidation in rats.
        Arch. Biochem. Biophys. 1982; 216: 204-212
        • Szczeklik A.
        • Gryglewski R.J.
        • Domagala B.
        • Dworski R.
        • Basista M.
        Dietary supplementation with vitamin E in hyperlipoproteinemias: effects on plasma lipid peroxides, antioxidant activity, prostacyclin generation and platelet aggregability.
        Thromb. Haemostasis. 1985; 54: 425-430
        • Heeg J.F.
        • Hiser M.F.
        • Satonen D.K.
        • Rose J.Q.
        Pharmacokinetics of probucol in male rats.
        J. Pharm. Sci. 1984; 73: 1758-1763
        • Slonim A.E.
        • Surber M.L.
        • Page D.L.
        • Sharp R.A.
        Modification of chemically induced diabetes in rats by vitamin E.
        J. Clin. Invest. 1983; 71: 1282-1288
        • Sandler S.
        • Andersson A.
        The partial protective effect of the hydroxyl radical scavenger dimethyl urea on steptozotocin-induced diabetes in the mouse in vivo and in vitro.
        Diabetologia. 1982; 23: 374-378
        • Steinbrecher U.P.
        • Witzum J.L.
        • Parthasarathy S.
        • Steinberg D.
        Copper-catalyzed oxidation of low density lipoproteins in the absence of cells mimicks the modification produced by incubation with endothelial cells.
        Arteriosclerosis. 1987; 7: 135-142
        • Pongor S.
        • Ulrech P.C.
        • Bencsath F.A.
        • Cerami A.
        Aging of proteins: isolation and identification of a fluorescent chromophore from the reaction of polypeptides with glucose.
        Proc. Natl. Acad. Sci. USA. 1984; 81: 2684-2688
        • Witztum J.L.
        • Mahoney E.M.
        • Branks M.J.
        • Fisher M.
        • Elam R.
        • Steinberg D.
        Nonenzymatic glucosylation of low-density lipoprotein alters its biologic activity.
        Diabetes. 1982; 31: 283-291
        • Chi D.S.
        • Berry D.L.
        • Dillon K.A.
        • Arbogast B.W.
        Inhibition of in vitro lymphocyte response by streptozotocin-induced diabetic rat serum-a function of very-low-density lipoproteins.
        Diabetes. 1982; 31: 1098-1102
        • Arbogast B.W.
        • Berry D.L.
        • Newell C.L.
        Injury of arterial endothelial cells in diabetic, sucrose-fed and aged rats.
        Atherosclerosis. 1984; 51: 31-45
        • Gianturco S.H.
        • Eshin S.G.
        • Navarro L.T.
        • Lahart C.J.
        • Smith L.C.
        • Gotto Jr., A.M.
        Abnormal effects of hypertriacylglycerolemic very low density lipoproteins on 3-hydroxy-3-methylglutaryl-CoA reductase activity and viability of cultured bovine aortic endothelial cells.
        Biochim. Biobhys. Acta. 1980; 618: 143-152
        • Hessler J.R.
        • Robertson Jr., A.L.
        • Chisolm G.M.
        LDL-induced cytotoxicity and its inhibition by HDL in human vascular smooth muscle and endothelial cells in culture.
        Atherosclerosis. 1979; 32: 213-219
        • Henriksen T
        • Evensen S.F.
        • Carlander B.
        Injury to human endothelial cells in culture induced by low density lipoproteins.
        Scand. J. Clin. Lab. Invest. 1979; 39: 361-368
        • Kosugi K.
        • Morel D.W.
        • DiCorleto P.E.
        • Chisolm G.M.
        Toxicity of oxidized low-density lipoprotein to cultured fibroblasts is selective for S phase of the cell cycle.
        J. Cell. Physiol. 1987; 130: 311-320
        • Ha Y.C.
        • Barter P.J.
        Differences in plasma cholesteryl ester transfer activity in sixteen vertebrate species.
        Comp. Biochem. Physiol. 1982; 71B: 265-269
        • Kitahara M.
        • Eyre H.J.
        • Lynch R.E.
        • Rallison M.L.
        • Hill H.R.
        Metabolic activity of diabetic monocytes.
        Diabetes. 1980; 29: 251-256
        • Loven D.P.
        • Schedi H.P.
        • Oberley L.W.
        • Wilson H.D.
        • Brunch L.
        • Niehaus C.N.
        Superoxide dismutase activity in the intestinal mucosa of streptozotocindiabetic rat.
        Endocrinology. 1982; 111: 737-742
        • Matkovics B.
        • Varga S.I.
        • Szabo I.
        • Witas H.
        The effect of diabetes on the activities of the peroxide metabolism enzymes.
        Horm. Metab. Res. 1982; 14: 77-79
        • Pisanti F.A.
        • Frascatore S.
        • Papaccio G.
        Superoxide dismutase activity in the BB rat: a dynamic time-course study.
        Life Sci. 1988; 43: 1625-1632