Advertisement

Incorporation of deuterium-labeled fatty acids into human milk, plasma, and lipoprotein phospholipids and cholesteryl esters.

Open AccessPublished:March 01, 1989DOI:https://doi.org/10.1016/S0022-2275(20)38367-X
      This paper is only available as a PDF. To read, Please Download here.
      Fatty acid metabolism and the contribution of dietary fatty acids to milk cholesteryl ester (CE) and phospholipid (PL) were investigated in normal lactating mothers. The approach used was to feed mixtures of triglycerides containing deuterium-labeled palmitic acid (16:0-2H2), oleic acid (18:1-2H6), and linoleic acid (18:2-2H4). Milk and plasma samples were collected for 72 hr. Triglyceride (TG), CE, and PL fractions from milk, plasma, and lipoprotein were isolated and analyzed by gas-liquid chromatography and mass spectrometry. Data for the milk CE and PL fractions showed a definite selectivity for incorporation of 16:0-2H2 and 18:1-2H6 relative to 18:2-2H4. Based on the ratios of the deuterated fatty acids incorporated into the milk CE and PL samples, their incorporation times and isotopic enrichment data, it appears that these fatty acids are supplied mainly by the TG derived from chylomicrons and very low density lipoproteins. Plasma and lipoprotein CE data showed a progressive increase in 18:2-2H4 content, with 16:0-2H2 and 18:1-2H4 remaining relatively constant over the collection period. Plasma and lipoprotein PL data showed a higher rate for incorporation of 18:2-2H4 than 16:0-2H2 and 18:1-2H6 over the course of the sampling period. Comparison to previous data from adult males indicates lactation does not have a major effect on the general metabolism of these fatty acids. An increase with time in the isotopic enrichment of 18:2-2H4 in the plasma and lipoprotein CE and PL samples was observed which is consistent with in vitro selectivities reported for lecithin:cholesterol acyltransferase and phosphatidylcholine acyltransferase.(ABSTRACT TRUNCATED AT 250 WORDS)

      REFERENCES

        • Vuori E.
        • Kiuru K.
        • Makinen S.M.
        • Vayrynen P.
        • Kara R.
        • Kuitunen P.
        Maternal diet and fatty acid pattern of breast milk.
        Acta Pediatr. Scand. 1982; 71: 959-963
        • Mellies M.J.
        • Ishikawa T.T.
        • Gartside P.S.
        • Burton K.
        • Macgee J.
        • Allen K.
        • Steiner P.M.
        • Brady D.
        • Glueck C.J.
        Effects of varying maternal dietary fatty acids in lactating women and their infants.
        Am. J. Clin. Nutr. 1979; 32: 299-303
        • Hall B.
        Uniformity of human milk.
        Am. J. Clin. Nutr. 1979; 32: 443-450
        • Insull W.
        • Hirsch T.J.
        • Ahrens Jr., E.H.
        The fatty acids of human milk. II. Alterations produced by manipulation of caloric balance and exchange of dietary fats.
        J. Clin. Invest. 1959; 38: 443-450
        • Guthrie H.A.
        • Picciano M.F.
        • Sheene D.
        Fatty acid patterns of human milk.
        J. Pediatr. 1977; 90: 39-41
        • Hachey D.L.
        • Thomas M.R.
        • Emken E.A.
        • Garza C.
        • Brown-Booth L.
        • Adlof R.O.
        • Klein P.D.
        Human lactation: maternal transfer of dietary triglycerides labelled with stable isotopes.
        J. Lipid Res. 1987; 28: 1185-1192
        • Patton S.
        • Jensen R.G.
        Lipid metabolism and membrane functions of the mammary gland.
        Prog. Chem. Fats Other Lipids. 1975; 24: 163-277
        • Gaull G.E.
        • Jensen R.G.
        • Rassin D.K.
        • Malloy M.H.
        Human milk as food.
        in: Milunsky A. Friedman E.A. Gluck L. Advances in Perinatal Medicine. 2. Plenum Publishing Corp., New York1982: 47-120
        • Hamosh M.
        • Bitman J.
        • Fink C.S.
        • Freed L.M.
        • York C.M.
        • Wood D.L.
        • Mehta N.R.
        • Hamosh P.
        Lipid composition of preterm human milk and its digestion by the infant.
        in: Schaub J. Composition and Physiological Properties of Human Milk. Elsevier Science Publishers (Biomedical Division), Amsterdam1985: 153-162
        • Kohlmeier M.
        • Stricker G.
        • Schlierf G.
        Influences of normal and prudent diets on biliary and serum lipids in healthy women.
        Am. J. Clin. Nutr. 1985; 42: 1201-1205
        • Olefsky J.
        • Farquhar J.W.
        • Reaven G.M.
        Sex difference in the kinetics of triglyceride metabolism in normal and hypertriglyceridaemic human subjects.
        Eur. J. Clin. Invest. 1974; 4: 121-127
        • Kissebah A.H.
        • Adams P.W.
        • Wynn V.
        Plasma free fatty acid and triglyceride transport kinetics in man.
        Clin. Sci. Mol. Med. 1974; 47: 259-278
        • Krauss R.M.
        • Lindgren F.T.
        • Wingerd J.
        • Bradley D.D.
        • Ramcharan S.
        Effects of estrogens and progestins on high density lipoproteins.
        Lipids. 1978; 14: 113-118
        • Knapp R.H.
        • Walden C.E.
        • Wahl P.W.
        • Berglin R.
        • Chapman M.
        • Irvine S.
        • Albers J.J.
        Effect of postpartum lactation on lipoprotein lipids and apoproteins.
        J. Clin. Endocrinol. Metab. 1985; 60: 542-5478
        • Adlof R.O.
        • Emken E.A.
        Synthesis of methyl cis-9-octadecenoate- 14, 14, 15, 15, 17, 18-d6.
        J. Labelled Compd. Radiopharm. 1978; 15: 97-104
        • Adlof R.O.
        • Emken E.A.
        Preparation of methyl cis-9,cis-12-octadecadienoate- 16, 16, 17, 17-d4.
        Chem. Phys. Lipids. 1981; 29: 3-9
        • Adlof R.O.
        • Emken E.A.
        A versatile procedure for the preparation of plamitic acid-d2 and stearic acid-d6.
        J. Labelled Compd. Radiopharm. 1980; 18: 419-426
        • Lindgren F.T.
        • Jensen L.D.
        • Hatch F.T.
        Nelson G.J. Blood Lipids and Lipoproteins: Quantitation, Composition, and Metabolism. Wiley-Interscience, New York1972: 181-274 (Chapter 5)
        • Peter H.W.
        • Wolf H.U.
        A new method for the in situ determination of phospholipids after thin-layer separation.
        J. Chromatogr. 1973; 82: 15-30
        • French J.A.
        • Anderson D.W.
        Separation and quantitative recovery of lipid classes: a convenient thinlayer chromatographic method.
        J. Chromatogr. 1973; 80: 133-136
        • Kates M.
        Techniques of Lipidology: Isolation, Analysis and Identification of Lipids. American Elsevier Publishing Co., Inc., New York1972: 361-362
        • Berry J.E.
        • Cevallos W.H.
        • Wade Jr., R.R.
        Lipid class and fatty acid composition of intact peripheral nerve during Wallerian degeneration.
        J. Am. Oil Chem. Soc. 1965; 42: 492-500
        • Kuksis A.
        Fatty acid composition of glycerolipids of animal tissue. Handbook of Lipid Research.
        in: Kuksis A. Chapter 8, Fatty Acids and Glycerides. 1. Plenum Press, New York1978: 381-442
        • Lindgren F.T.
        • Nichols A.V.
        Fatty acid composition of the serum lipoproteins.
        Ann. N.Y. Acad. Sci. 1961; 94: 55-70
        • Rizek R.L.
        • Welsh S.C.
        • Marston R.M.
        • Jackson E.M.
        Levels and sources of fat in the U.S. food supply and in diets of individuals.
        in: Perkins E.G. Visek W.J. Dietary Fats and Health. American Oil Chemists' Society, Champaign, IL1983: 13-43 (Chapter 2)
        • Spector A.A.
        • Mathur S.N.
        • Kaduce T.L.
        Role of acylcoenzyme Axholesterol O-acyltransferase in cholesterol metabolism.
        Prog. Lipid Res. 1979; 18: 31-53
        • Friedman H.I.
        • Nyland B.
        Intestinal fat digestion, absorption and transport. A Review.
        J. Clin. Nutr. 1980; 33: 1108
        • Glomset J.A.
        Lecithin.cholesterol acyltransferase.
        Prog. Biochem. Pharmacol. 1979; 15: 41-66
        • Glomset J.A.
        • Norum K.R.
        • Gjone E.
        Familial lecithin:cholesterol acyltransferase deficiency.
        in: 5th Ed. The Metabolic Basis of Inherited Disease. 31. McGraw- Hill, New York1983: 643-654
        • Tso P
        • Scobey M.
        The role of phosphatidylcholine in the absorption and transport of dietary fat.
        in: Kuksis A. Fat Absorption. 1. CRC Press Inc., Boca Raton, FL1986: 177-195
        • Van den Bosch H.
        Phosphoglyceride metabolism.
        Annu. Rev. Biochem. 1974; 43: 243-277
        • Balint J.A.
        • Kyriakides E.C.
        • Spitzer H.L.
        • Morrison E.S.
        Lecithin fatty acid composition in bile and plasma of man, dogs, rats and oxen.
        J. Lipid Res. 1965; 6: 96-99
        • Easter D.J.
        • Patton S.
        • McCarthy R.D.
        Metabolism of phospholipid in mammary gland. 1. The supply of phospholipid for milk synthesis in the rat and goat.
        Lipids. 1971; 6: 844-849
        • Rao G.
        • Abraham S.
        Fatty acid desaturation by mammary gland microsomes from lactating mice.
        Lipids. 1973; 9: 269-271
        • MacDonald T.M.
        • Kinsella J.E.
        Stearyl-CoA desaturase of bovine mammary microsomes.
        Arch. Biochem. Biophysics. 1973; 156: 223-231
        • Emken E.A.
        • Rohwedder W.K.
        • Adlof R.O.
        • Rakoff H.
        • Gulley R.M.
        Metabolism in humans of cis-12, trans-15-octadecadienoic acid relative to palmitic, stearic, oleic and linoleic acids.
        Lipids. 1987; 22: 495-504
        • Baudet M.F.
        • Esteva O.
        • Delplanque B.
        • Winchenne N.
        • Jacotot B.
        Effect of three diets on plasma lipids and lipoproteins in fasting and post-prandial humans after short-term diet.
        Lipids. 1980; 15: 216-223