Transbilayer movement of cholesterol in the human erythrocyte membrane.

      This paper is only available as a PDF. To read, Please Download here.
      The rate of transbilayer movement of cholesterol was measured in intact human erythrocytes. Suspended erythrocytes were incubated briefly with [3H]cholesterol in ethanol at 4 degrees C, or with liposomes containing [3H]cholesterol over 6 hr at 4 degrees C to incorporate the tracer into the outer leaflet of erythrocyte plasma membranes. The erythrocytes were then incubated at 37 degrees C to allow diffusion of cholesterol across the membrane bilayer. Cells were treated briefly with cholesterol oxidase to convert a portion of the outer leaflet cholesterol to cholestenone, and the specific radioactivity of cholestenone was determined over the time of tracer equilibration. The decrease in specific radioactivity of cholestenone reflected transbilayer movement of [3H]cholesterol. The transbilayer movement of cholesterol had a mean half-time of 50 min at 37 degrees C in cells labeled with [3H]cholesterol in ethanol, and 130 min at 37 degrees C in cells labeled with [3H]cholesterol exchanged from liposomes. The cells were shown, by the absence of hemolysis, to remain intact throughout the assay. The presence of 1 mM Mg2+ in the assay buffer was essential to prevent hemolysis of cells treated with cholesterol oxidase perturbed the cells, resulting in an accelerated rate of apparent transbilayer movement. Our data are also consistent with an asymmetric distribution of cholesterol in erythrocyte membranes, with the majority of cholesterol in the inner leaflet.

      REFERENCES

        • Spady D.K.
        • Bilheimer D.W.
        • Dietschy J.M.
        Rates of receptor-dependent and -independent low density lipoprotein uptake in the hamster.
        Proc. Natl. Acad. Sci. USA. 1983; 80: 3499-3503
        • Carew T.E.
        • Pittman R.C.
        • Steinberg D.
        Tissue sites of degradation of native and reductively methylated [14C]sucrose-labeled low density lipoprotein in rats: contribution of receptor-dependent and receptor-independent pathways.
        J. Biol. Chem. 1982; 257: 8001-8008
        • Pittman R.C.
        • Carew T.E.
        • Attie A.D.
        • Witztum J.L.
        • Watanabe Y.
        • Steinberg D.
        Receptor-dependent and receptor-independent degradation of low density lipoprotein in normal rabbits and in receptor-deficient mutant rabbits.
        J. Biol. Chem. 1982; 257: 7994-8000
        • Kesaniemi Y.A.
        • Witztum J.L.
        • Steinbrecher U.P.
        Receptor-mediated catabolism of low density lipoprotein in man: quantitation using glucosylated low density lipoprotein.
        J. Clin. Invest. 1983; 71: 950-959
        • Rothblat G.H.
        • Arbogast L.Y.
        • Ray E.K.
        Stimulation of esterified cholesterol accumulation in tissue culture cells exposed to high density lipoproteins enriched in free cholesterol.
        J. Lipid Res. 1978; 19: 350-358
        • Gwynne J.T.
        • Hess B.
        The role of high density lipoproteins in rat adrenal cholesterol metabolism and steroidogenesis.
        J. Biol. Chem. 1980; 255: 10875-10883
        • Bamberger M.
        • Glick J.M.
        • Rothblat G.H.
        Hepatic lipase stimulates the uptake of high density lipoprotein cholesterol by hepatoma cells.
        J. Lipid Res. 1983; 24: 869-876
        • Fielding P.E.
        • Fielding C.J.
        • Havel R.J.
        • Kane J.P.
        • Tim P.
        Cholesterol net transport, esterification, and transfer in human hyperlipidemic plasma.
        J. Clin. Invest. 1983; 71: 449-460
        • Bloj B.
        • Zilversmit D.B.
        Complete exchangeability of cholesterol in phosphatidylcholine/cholesterol vesicles of different degrees of unsaturation.
        Biochemistry. 1977; 16: 3943-3948
        • Bloj B.
        • Zilversmit D.B.
        Transposition and distribution of cholesterol in rat erythrocytes (39975).
        Proc. Soc. Exp. Biol. Med. 1977; 156: 539-543
        • Kirby C.J.
        • Green C.
        Transbilayer migration ('flip-flop') of cholesterol in erythrocyte membranes.
        Biochem. J. 1977; 168: 575-577
        • Lange Y
        • Cohen C.M.
        • Poznansky M.J.
        Transmembrane movement of cholesterol in human erythrocytes.
        Proc. Natl. Acad. Sci. USA. 1977; 74: 1538-1542
        • Patzer E.J.
        • Shaw J.M.
        • Moore N.F.
        • Thompson T.E.
        • Wagner R.R.
        Transmembrane movement and distribution of cholesterol in the membrane of vesicular stomatitis virus.
        Biochemistry. 1978; 17: 4192-4200
        • Giraud F.
        • Claret M.
        A study of cholesterol transfers between erythrocytes and lipid vesicles.
        FEBS Lett. 1979; 103: 186-191
        • Lange Y
        • Dolde J.
        • Steck T.L.
        The rate of transmembrane movement of cholesterol in the human erythrocyte.
        J. Biol. Chem. 1981; 256: 5321-5323
        • McLean L.R.
        • Phillips M.C.
        Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles.
        Biochemistry. 1981; 20: 2893-2900
        • Clejan S.
        • Bittman R.
        Kinetics of cholesterol and phospholipid exchange between Mycoplasma gallisepticum cells and lipid vesicles: alterations in membrane cholesterol and protein content.
        J. Biol. Chem. 1984; 259: 441-448
        • Lange Y.
        • Ramos B.V.
        Analysis of the distribution of cholesterol in the intact cell.
        J. Biol. Chem. 1983; 258: 15130-15134
        • Hamilton Jr., R.L.
        • Goerke J.
        • Guo L.S.S.
        • Williams M.C.
        • Havel R.J.
        Unilamellar liposomes made with the French pressure cell: a simple preparative and semiquantitative technique.
        J. Lipid Res. 1980; 21: 981-992
        • Cleland W.W.
        Statistical analysis of enzyme kinetic data.
        Methods Enzymol. 1979; 63: 103-138
        • Lange Y.
        Molecular dynamics of bilayer lipids.
        in: Small D.M. The Physical Chemistry of Lipids: from Alkanes to Phospholipids. Plenum Press, New York1986: 523-554
        • Houslay M.D.
        • Stanley K.K.
        Dynamics of Biological Membranes: Influence on Synthesis, Structure and Function. John Wiley & Sons, Ltd., Chichester1982: 39-91
        • Houslay M.D.
        • Stanley K.K.
        Dynamics of Biological Membranes: Influence on Synthesis, Structure and Function. John Wiley & Sons Ltd., Chichester1982: 92-151
        • Lenard J.
        • Rothman J.E.
        Transbilayer distribution and movement of cholesterol and phospholipid in the membrane of influenza virus.
        Proc. Natl. Acad. Sci. USA. 1976; 73: 391-395
        • Poznansky M.
        • Lange Y.
        Transbilayer movement of cholesterol in dipalmitoyllecithin-cholesterol vesicles.
        Nature. 1976; 259: 420-421
        • Poznansky M.J.
        • Lange Y.
        Transbilayer movement of cholesterol in phospholipid vesicles under equilibrium and non-equilibrium conditions.
        Biochim. Biophys. Acta. 1978; 506: 256-264
        • Bruckdorfer K.R.
        • Sherry M.K.
        The solubility of cholesterol and its exchange between membranes.
        Biochim. Biophys. Acta. 1984; 769: 187-196
        • Smith R.J.M.
        • Green C.
        The rate of cholesterol 'flip-flop' in lipid bilayers and its relation to membrane sterol pools.
        FEBS Lett. 1974; 42: 108-111
        • Barenholz Y
        • Yechiel E.
        • Cohen R.
        • Deckelbaum R.J.
        Importance of cholesterol-phospholipid interaction in determining dynamics of normal and abetalipoproteinemia red blood cell membranes.
        Cell Biophys. 1981; 3: 115-126
        • Bruckdorfer K.R.
        • Demel R.A.
        • De Gier J.
        • Van Deenen L.L.M.
        The effect of partial replacements of membrane cholesterol by other steroids on the osmotic fragility and glycerol permeability of erythrocytes.
        Biochim. Biophys. Acta. 1969; 183: 334-345
        • Lange Y
        • Matthies H.
        • Steck T.L.
        Cholesterol oxidase susceptibility of the red cell membrane.
        Biochim. Biophys. Acta. 1984; 769: 551-562
        • Fisher K.A.
        Analysis of membrane halves: cholesterol.
        Proc. Natl. Acad. Sci. USA. 1976; 73: 173-177
        • Schroeder F.
        Use of a fluorescent sterol to probe the transbilayer distribution of sterols in biological membranes.
        FEBS Lett. 1981; 135: 127-130
        • Hale J.E.
        • Schroeder F.
        Asymmetric transbilayer distribution of sterol across plasma membranes determined by fluorescence quenching of dehydroergosterol.
        Eur. J. Biochem. 1982; 122: 649-661
        • Clejan S.
        • Bittman R.
        • Rottem S.
        Effects of sterol structure and exogenous lipids on the transbilayer distribution of sterols in the membrane of Mycoplasma capricolum.
        Biochemistry. 1981; 20: 2200-2204
        • Clejan S.
        • Bittman R.
        Distribution and movement of sterols with different side chain structures between the two leaflets of the membrane bilayer of mycoplasma cells.
        J. Biol. Chem. 1984; 259: 449-455
        • Van Duijn G.
        • Dekker J.
        • Leunissen-Bijvelt J.
        • Verkleij A.J.
        • de Kruijff B.
        Influence of trinitrophenylation on the structure and dynamics of phosphatidylethanolamine-containing model membranes.
        Biochemistry. 1985; 24: 7640-7650
        • Van Duijn G.
        • Luiken J.
        • Verkleij A.J.
        • de Kruijff B.
        Relation between lipid polymorphism and trans bilayer movement of lipids in rat liver microsomes.
        Biochim. Biophys. Acta. 1986; 863: 193-204
        • Bamberger M.
        • Lund-Katz S.
        • Phillips M.C.
        • Rothblat G.H.
        Mechanism of the hepatic lipase induced accumulation of high-density lipoprotein cholesterol by cells in culture.
        Biochemistry. 1985; 24: 3693-3701
        • Nestler J.E.
        • Bamberger M.
        • Rothblat G.H.
        • Strauss III, J.E.
        Metabolism of high density lipoproteins reconstituted with [3H]cholesteryl ester and [14C]cholesterol in the rat, with special reference to the ovary.
        Endocrinology. 1985; 117: 502-510
        • Johnson W.J.
        • Bamberger M.J.
        • Latta R.A.
        • Rapp P.E.
        • Phillips M.C.
        • Rothblat G.H.
        The bidirectional flux of cholesterol between cells and lipoproteins: effects of phospholipid depletion of high density lipoprotein.
        J. Biol. Chem. 1986; 261: 5766-5776