Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes

      This paper is only available as a PDF. To read, Please Download here.
      The alteration of structural and biological properties of human plasma low density lipoprotein (LDL) exposed to oxidative conditions is in part ascribed to lipid peroxidation. The objective of this investigation was to measure quantitatively several parameters in oxidizing LDL indicative for lipid peroxidation. Exposure of freshly prepared EDTA-free LDL to an oxygen-saturated buffer led to a complete depletion of alpha- and gamma-tocopherol within 6 hr, thereafter lipid peroxidation commenced as indicated by the kinetics of the loss of linoleic (18:2) and arachidonic (20:4) acids, the formation of aldehydic lipid peroxidation products and fluorescent apoB. Within 24 hr of oxidation, on average 79 nmol of 18:2 (initial 345) and 12.8 nmol of 20.4 (initial 25.6) were oxidized per mg of LDL and the sample contained in total 7.1 nmol of aldehydes with the following molar distribution: 36.6% malonaldehyde, 25% hexanal, 8.9% propanal, 8.2% 4-hydroxynonenal, 7.6% butanal, 4.1% 2.4-heptadienal, 3.4% pentanal, 3.4% 4-hydroxyhexenal, and 2.5% 4-hydroxyoctenal. Malonaldehyde was predominantly (93%) in the aqueous phase, whereas the other aldehydes remained mostly (34-98%) within the LDL particle, where the total aldehyde concentration was in the range of 12 mM. Oxidized LDL exhibited a 1.6-fold enhanced electrophoretic mobility. Similarily, native LDL incubated for 5 hr with aldehydes showed increased electrophoretic mobility. At equal concentrations (5 mM) 4-hydroxynonenal was most effective, followed by 2,4-heptadienal, hexanal, and malonaldehyde. This study reports for the first time the rate and extent of the change of LDL constituents occurring during lipid peroxidation.


        • Goldstein J.L.
        • Brown M.S.
        Low-density lipoprotein pathway and its relation to atherosclerosis.
        Annu. Rev. Biochem. 1978; 46: 897-930
        • Steinbrecher U.P.
        • Parthasaraty S.
        • Leake D.S.
        • Witztum J.L.
        • Steinberg D.
        Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.
        Proc. Natl. Acad. Sci. USA. 1984; 81: 3883-3887
        • Ball R.Y.
        • Bindmann J.P.
        • Carpenter K.L.H.
        • Mitchinson M.J.
        Oxidized low density lipoprotein induces ceroid accumulation by murine peritoneal macrophages in vitro.
        Atherosclerosis. 1986; 60: 173-181
        • Fowler S.
        • Shio H.
        • Haley N.J.
        Characterization of lipid-laden aortic cells from cholesterol-fed rabbits. IV. Investigation of macrophage-like properties of aortic cell populations.
        Lab. Invest. 1979; 41: 372-378
        • Henriksen T
        • Mahoney E.M.
        • Steinberg D.
        Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density lipoproteins.
        Proc. Natl. Acad. Sci. USA. 1981; 78: 6499-6503
        • Morel D.W.
        • DiCorleto P.E.
        • Chisolm G.M.
        Endothelial and smooth muscle cells alter low density lipoprotein in vitro by free radical oxidation.
        Arteriosclerosis. 1984; 4: 357-364
        • Heinecke J.W.
        • Baker L.
        • Rosen H.
        • Chait A.
        Superoxide-mediated modification of low density lipoprotein by arterial smooth muscle cells.
        J. Clin. Invest. 1986; 77: 757-761
        • Cathcart M.K.
        • Morel D.W.
        • Chisholm G.M.
        Monocytes and neutrophils oxidize low density lipoprotein making it cytotoxic.
        J. Leukocyte Biol. 1985; 38: 341-350
        • Parthasaraty S.
        • Steinbrecher U.P.
        • Barnett J.
        • Witztum J.L.
        • Steinberg D.
        Essential role of phospholipase A2 activity in endothelial cell-induced modification of low density lipoprotein.
        Proc. Natl. Acad. Sci. USA. 1985; 82: 3000-3004
        • Fogelman A.M.
        • Shechter I.
        • Saeger J.
        • Hokom M.
        • Child J.S.
        • Edwards P.A.
        Malondialdehyde alteration of low density lipoproteins leads to cholesteryl ester accumulation in human monocyte-macrophages.
        Proc. Natl. Acad. Sci. USA. 1980; 77: 2214-2218
        • Haberland M.E.
        • Fogelman A.M.
        • Edwards P.A.
        Specificity of receptor-mediated recognition of malondialdehyde-modified low density lipoprotein.
        Proc. Natl. Acad. Sci. USA. 1982; 79: 1712-1716
        • Jürgens G.
        • Lang J.
        • Esterbauer H.
        Modification of human low density lipoprotein by the lipid peroxidation product 4-hydroxynonenal.
        Biochim. Biophys. Acta. 1986; 875: 103-114
        • Weisgraber K.H.
        • Innerarity T.L.
        • Mahley R.W.
        Role of the lysine residues of plasma lipoproteins in high affinity binding to cell surface on human fibroblasts.
        J. Biol. Chem. 1978; 253: 9053-9062
        • Jessup W.
        • Jürgens G.
        • Lang J.
        • Esterbauer H.
        • Dean R.T.
        The interaction of 4-hydroxynonenal-modified low density lipoproteins with the fibroblast apo B/E receptor.
        Biochem. J. 1986; 234: 245-248
        • Esterbauer H.
        • Weger W.
        Uber die Wirkung von Aldehyde auf gesunde und maligne Zellen. 3. Mitteilung: Synthese von homologen 4-Hydroxy-2-alkenalen.
        Monatsh. Chem. 1967; 98: 1994-2000
        • Herak J.N.
        • Udovicic L.
        • Pifat G.
        • Brnjas-Kraljevic J.
        • Jürgens G.
        • Holasek A.
        An ESR study of the effect of an electrostatic field on binding of divalent cations to the surface of serum low-density lipoproteins.
        Biochim. Biophys. Acta. 1986; 876: 200-209
        • Schuh J.
        • Fairclough G.F.
        • Haschemeyer R.H.
        Oxygen-mediated heterogenity of apo-low-density lipoprotein.
        Proc. Natl. Acad. Sci. USA. 1978; 75: 3173-3177
        • Esterbauer H.
        Lipid peroxidation products: formation, chemical properties and biological activities.
        in: Poli G. Cheeseman K.H. Dianzani M.U. Slater T.F. Free Radicals in Liver Injury. IRL Press, Oxford, England1985: 29-47
        • Lehmann S.
        • Martin H.L.
        Improved direct determination of alphaand gamma-tocopherols in plasma and platelets by liquid chromatography, with fluorescence detection.
        Clin. Chem. 1982; 28: 1784-1787
        • Esterbauer H.
        • Cheeseman K.
        • Dianzani M.
        • Poli G.
        • Slater T.F.
        Separation and characterization of the aldehydic products of lipid peroxidation stimulated by ADP-Fe2+ in rat liver microsomes.
        Biochem. J. 1982; 208: 129-140
        • Lang J.
        • Celotto C.
        • Esterbauer H.
        Quantitative determination of the lipid peroxidation product 4- hydroxynonenal by high performance liquid chromatography.
        Anal. Biochem. 1985; 150: 369-378
        • Folch J.
        • Lees M.
        • Sloane Stanley G.H.
        A simple method for the isolation and purification of total lipids from animal tissues.
        J. Biol. Chem. 1957; 226: 497-509
        • Pownall H.J.
        • Shepherd J.
        • Mantulin W.W.
        • Sklar L.A.
        • Gotto Jr., A.M.
        Effect of saturated and polyunsaturated fat diets on the composition and structure of human low density lipoproteins.
        Atherosclerosis. 1980; 36: 299-314
        • Vega G.L.
        • Groszek E.
        • Wolf R.
        • Grundy S.M.
        Influence of polyunsaturated fats on composition of plasma lipoproteins and apolipoproteins.
        J. Lipid Res. 1982; 23: 811-822
        • Slater T.F.
        Review article. Free-radical mechanism in tissue injury.
        Biochem. J. 1984; 222: 1-15
        • Schauenstein E.
        • Esterbauer H.
        • Zollner H.
        Aldehydes in Biological Systems.
        in: Their Natural Occurrence and Biological Activities. Pion. Lim., London1977: 25-102
        • Benedetti A.
        • Comporti M.
        • Esterbauer H.
        Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids.
        Biochim. Biophys. Acta. 1980; 620: 281-296
        • Esterbauer H.
        Aldehydic products of lipid peroxidation.
        in: McBrien D.C.H. Slater T.F. Free Radicals, Lipid Peroxidation and Cancer. Academic Press, London1982: 101-128
        • Frankel E.N.
        Volatile lipid oxidation products.
        Prog. Lipid Res. 1982; 22: 1-33
        • Smith L.L.
        Cholesterol Autoxidation. Plenum Press, New York, London1981: 233-237
        • Poli G.
        • Dianzani M.U.
        • Cheeseman K.H.
        • Slater T.F.
        • Lang J.
        • Esterbauer H.
        Separation and characterization of the aldehydic products of lipid peroxidation stimulated by carbon tetrachloride or ADP - iron in isolated rat hepatocytes and in rat liver microsomal suspensions.
        Biochem. J. 1985; 227: 629-638
        • Esterbauer H.
        • Lang J.
        • Zadravec S.
        • Slater T.F.
        Detection of malonaldehyde by high-performance lipid chromatography.
        Methods Enzymol. 1984; 105: 319-328
        • Hessler J.R.
        • Morel D.W.
        • Lewis L.J.
        • Chisolm G.M.
        Lipoprotein oxidation and lipoprotein-induced cytotoxicity.
        Arteriosclerosis. 1983; 3: 215-222
        • Kwon T.W.
        • Watts B.M.
        Malondialdehyde in aqueous solution and its role as a measure of lipid oxidation in foods.
        J. Food Sci. 1964; 29: 294-302
        • Jürgens G.
        • Lang J.
        • Esterbauer H.
        • Holasek A.
        Modification of human low density lipoprotein by 4- hydroxynonenal.
        IRCS Med. Sci. 1984; 12: 252-253
        • Krokan H.
        • Grafstrom R.C.
        • Sundquist K.
        • Esterbauer H.
        • Harris C.C.
        Cytotoxicity, thiol depletion and inhibition of O-6-methylguanine-DNA-methyltransferase by various aldehydes in cultured human bronchial fibroblasts.
        Carcinogenesis. 1985; 6: 1755-1759
        • Koller E.
        • Quehenberger O.
        • Jürgens G.
        • Wolfbeis O.S.
        • Esterbauer H.
        Investigation of human plasma low density lipoprotein by three-dimensional fluorescence spectroscopy.
        FEBS Lett. 1986; 198: 229-234
        • Koller E.
        • Jürgens G.
        • Quehenberger O.
        • Esterbauer H.
        Fluorescence properties of native 4-hydroxynonenal-modified and autoxidized low density lipoprotein.
        in: Rotilio G. Superoxide and Superoxide Dismutase in Chemistry, Biology and Medicine. Elsevier Science Publishers, Amsterdam1986: 116-118
        • Beppu M.
        • Murakami K.
        • Kikugawa K.
        Fluorescent and cross-linked proteins of human erythrocyte ghosts formed by reaction with hydroperoxylinoleic acid, malonaldehyde and monofunctional aldehydes.
        Chem. Pharm. Bull. 1986; 34: 781-788
        • Tsuchida M.
        • Miura T.
        • Mizutani K.
        • Aibara K.
        Fluorescent substances in mouse and human sera as a parameter of in vivo lipid peroxidation.
        Biochim. Biophys. Acta. 1985; 834: 196-204
        • Koster J.F.
        • Slee R.G.
        Lipid peroxidation of rat liver microsomes.
        Biochim. Biophys. Acta. 1980; 620: 489-499
        • Morel D.W.
        • Hessler J.R.
        • Chisolm G.M.
        Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipids.
        J. Lipid Res. 1983; 24: 1070-1076
        • Slater T.F.
        Free Radical Mechanisms in Tissue Injury. Pion. Lim., London1972: 38-43
        • Pryor W.A.
        • Stanley J.P.
        • Blair E.
        Autoxidation of polyunsaturated fatty acids: a suggested mechanism for the formation of TBA-reactive materials from prostaglandin-like endoperoxides.
        Lipids. 1976; 11: 370-379
        • Dianzani M.U.
        • Ugazio G.
        Lipid peroxidation.
        in: Slater T.F. Biochemical Mechanism of Liver Injury. Academic Press, London, New York1978: 669-707
        • Esterbauer H.
        • Benedetti A.
        • Lang J.
        • Fulceri R.
        • Fauler G.
        • Comporti M.
        Studies on the mechanism of formation of 4-hydroxynonenal during microsomal lipid peroxidation.
        Biochim. Biophys. Acta. 1986; 876: 154-166
        • Hoff H.F.
        • Gaubatz J.W.
        Isolation, purification and characterization of a lipoprotein containing apo B from human aorta.
        Atherosclerosis. 1982; 42: 273-297
        • Koster J.F.
        • Slee R.G.
        • Montfoort A.
        • Lang J.
        • Esterbauer H.
        Comparison of the inactivation of microsomal glucose-6-phosphatase by in situ lipid peroxidationderived 4-hydroxynonenal and exogenous 4-hydroxynonenal.
        Free Radical Res. Commun. 1986; 1: 273-287
        • Haberland M.E.
        • Olch C.L.
        • Fogelman A.M.
        Role of lysines in mediating interaction of modified low density lipoproteins with the scavenger receptor of human monocyte macrophages.
        J. Biol. Chem. 1984; 259: 11305-11311