Intravenous lipid emulsions: removal mechanisms as compared to chylomicrons.

      This paper is only available as a PDF. To read, Please Download here.
      We have compared the metabolism of chylomicrons and a labeled emulsion, similar to those used for parenteral nutrition. Both were labeled in their triglyceride moieties and by a core label. It is known that chylomicron triglycerides are cleared by two processes: removal of triglycerides from the particles through lipolysis and removal of whole or partly lipolyzed particles. It has been proposed that emulsion droplets are cleared by the same pathways. After intravenous injection to postprandial rats, triglycerides were cleared less rapidly from the emulsion than from the chylomicrons (half-lives of 6.4 and 4.0 min), whereas the core labels were cleared at the same rate (half-lives around 7.5 min). This suggests that there was less lipolysis of the emulsion droplets which was further supported by the finding that less label appeared in the plasma free fatty acids (FFA). In adipose tissue of fed rats given chylomicrons, the ratio between fatty acid and core label was above 6, showing that fatty acids had been taken up after lipoprotein lipase-mediated hydrolysis. In contrast, for rats given emulsion, that ratio was only 1.2 showing that nearly as much emulsion droplets as emulsion-derived fatty acids were present in the tissue. In the liver the ratio was 0.55 after chylomicrons but 0.93 after emulsion. In further support of more lipolysis, fatty acids were oxidized more rapidly from chylomicrons than from emulsion. These data suggest that a large fraction of the emulsion droplets was removed from plasma with little or no preceding lipolysis. A substantial proportion, more than 50%, of this uptake occurred in extrahepatic tissues.

      REFERENCES

        • Carpentier Y.A.
        Intravascular metabolism of fat emulsions: the Arvid Wretlind lecture, ESPEN 1988.
        Clin. Nutr. 1989; 8: 115-125
        • Lutz O.
        • Meraïhi Z.
        • Mura J-L.
        • Frey A.
        • Riess G.H.
        • Bach A.C.
        Fat emulsion particle size: influence on the clearance rate and the tissue lipolytic activity.
        Am. J. Clin. Nutr. 1989; 50: 1370-1381
        • Tong M.F.
        • Kuksis A.
        Effect of different neutral phospholipids on apolipoprotein binding by arti- ficial lipid particles in vivo.
        Biochem. Cell Biol. 1986; 64: 826-835
        • Iriyama K.
        • Nishiwaki H.
        • Terashima H.
        • Tonouchi H.
        • Miki C.
        • Suzuki H.
        • Carpentier Y.A.
        Apolipoprotein GI1 modifications associated with an infusion of artificial lipid partitcles.
        J. Parenter. Enteral Nutr. 1988; 12: 60-62
        • Olivecrona T.
        • Hultin M.
        • Nordenstrijm J.
        The effect of medium- and long-chain triglyceride infusion on lipoprotein and hepatic lipases.
        In Fett in der Parenteralen EnAhrung Experimentelle und Kliiche Aspekte MCT-Haltiger Fettemulsionen. J. Eckart and G. Wolfram, editors. Zuckschwerdt, Miinchen, Bem, Wien, New York. 1993; : 9-16
        • Carlson L.A.
        • Hallberg D.
        Studies on the elimination of exogenous lipids from the blood stream. The kinetics of the elimination of a fat emulsion and of chylomicrons in the dog after a single injection.
        Acta Physiol. Scand. 1963; 59: 52-61
        • Mahley R.W.
        • Hussain M.M.
        Chylomicron and chylomicron remnant catabolism.
        Curr. Opin. Lipidol. 1991; 2: 170-176
        • Vilar6 S.
        • Llobera M.
        Uptake and metabolism of Intralipid by rat liver: an electron-microscopic study.
        ].Nutr. 1988; 118: 932-940
        • Redgrave T.G.
        • Maranhao R.C.
        Metabolism of protein-free lipid emulsion models of chylomicrons in rats.
        Biochim. Biophys. Acta. 1985; 835: 104-112
        • Lenzo N.P.
        • Martins I.
        • Mortimer B.C.
        • Redgrave T.G.
        Effects of phospholipid composition on the metabolism of triacylglycerol, cholesteryl ester and phosphatidylcholine from lipid emulsions injected intravenously in rats.
        Biochim. Biophys. Acta. 1988; 960: 111-118
        • Maranhao R.C.
        • Tercyak A.M.
        • Redgrave T.G.
        Effects of cholesterol content on the metabolism of protein-free emulsion models of lipoproteins.
        Biochim. Biophys. Acta. 1986; 875: 247-255
        • Redgrave T.G.
        • Vassiliou G.G.
        • Callow M.J.
        Cholesterol is necessary for triacylglycerol-phospholipid emulsions to mimic the metabolism of lipoproteins.
        Biochim. Biophys. Acta. 1987; 941: 154-157
        • Mortimer B.C.
        • Simmonds W.J.
        • Cockman S.J.
        • Stick R.V.
        • Redgrave T.G.
        The effect of monostearoylglycerol on the metabolism of chylomicronlike lipid emulsions injected intravenously in rats.
        Biochim. Biophys. Acta. 1990; 1046: 46-56
        • Hultin M.
        • Miillertz A.
        • Zundel M.A.
        • Olivecrona G.
        • Hansen T.T.
        • Deckelbaum R.J.
        • Carpentier Y.A.
        • Olivecrona T.
        Metabolism of emulsions containing medium- and long-chain triglycerides or interesterified triglycerides.
        ]. Lipid Res. 1994; 35: 1850-1860
        • Deckelbaum R.J.
        • Hamilton J.A.
        • Moser A.
        • Bengtsson-Olivecrona G.
        • Butbul E.
        • Carpentier Y.A.
        • Gutman A.
        • Olivecrona T.
        Medium-chain vs longchain triacylglycerol emulsion hydrolysis by lipoprotein lipase and hepatic lipase: implications for the mechanism of lipase action.
        Biochmistry. 1990; 49: 1136-1142
        • Hultin M.
        • Bengtsson-Olivecrona G.
        • Olivecrona T.
        Release of lipoprotein lipase to plasma by triacylglycerol emulsions. Comparison to the effect of heparin.
        Biochim. Biophys. Acta. 1992; 1145: 97-103
        • Dole V.P.
        A relation between nonesterified fatty acids in plasma and the metabolism of g1ucose.
        J. Clin. Invest. 1956; 35: 150-154
        • Bollman J.
        • Cain J.
        • Grindlay J.
        Techniques for the collection of lymph from the liver, small intestine, or thoracic duct of the rat.
        J. Lab. Clin. Med. 1948; 33: 1348-1352
        • BengtssonGlivecrona G.
        • Olivecrona T.
        Assay of lipoprotkin lipase and hepatic lipase.
        In Lipoprotein Analysis C. Converse and E. R. Skinner, editors. Oxford University Press, Oxford England. 1991; : 169-185
        • Folch J.
        • Lees M.
        • Sloane Stanley G.H.
        A simple method for the isolation and purificaton of total lipids from animal tissues.
        J. Biol Chem. 1957; 426: 497-509
        • Olivecrona T.
        • Belfrage P.
        Mechanism for removal of chyle triglyceride from the circulating blood as studied with [C14]glycerol and [H-3]palmatic acid labelled chyle.
        Biochim. Biophys. Acta. 1965; 98: 81-93
        • Berrnan M.
        Kinetic analysiis of tumover data.
        Prog. Biochem. Pharmacol. 1979; 15: 67-108
        • BengtssonGlivecrona G.
        • Olivecrona T.
        Phospholipase activity of milk lipoprotein lipase.
        Method Enzymol. 1991; 197: 345-356
        • Brown M.L.
        • Hesler C.
        • Tall A.R
        Plasma enzymes and transfer proteins in cholesterol metabolism.
        Curr opin. Lipidol. 1990; 1: 122-127
        • Belfrage P.
        • Borgstrijm B.
        • Olivecrona T.
        The tissue distribution of radioactivity following the injection of varying levels of fatty acid labeled chylomicrons in the rat.
        Acta Physiol scand. 1963; 58: 111-113
        • Quarfordt S.
        • Goodman D.S.
        Heterogeneity in the rate of plasma clearance of chylomicrons of different size.
        Biochim. Biophys. Acta. 1966; 116: 382-385
        • Bengtsson G.
        • Olivecrona T.
        Lipoprotein lipase: some effects of activator proteins.
        Eur.J. Biochem. 1980; 106: 549-555
        • Erkelens D.W.
        • Brunzell J.D.
        • Bierman E.L.
        Availability of apolipoprotein CII in relation to the maximal removal capacity for an infused triglyceride emulsion 'in man.
        Metabolism. 1979; 48: 495-501
        • Scow R.O
        • Blanchette-Mackie E.J.
        • Smith L.C.
        Role of capillary endothelium in the clearance of chylomicrons. A model for lipid transport from blood by lateral diffusion incell membranes.
        Circ. Res. 1976; 39: 149-162
        • Zinder O.
        • Mendelson C.R.
        • Blanchette-Mackie E.J.
        • Scow R.0.
        Lipoprotein lipase and uptake of chylomicron triacylglycerol and cholesterol by perfused rat mammary gland.
        Biochim. Biophys. Acta. 1976; 431: 526-537
        • Fielding C.J.
        Metabolism of cholesterol-rich chylomicrons: mechanism of binding and uptake of cholesteryl esters by the vascular bed of the perfused rat heart.
        J. Clin. Invest. 1978; 64: 141-151
        • Hussain M.M.
        • Mahley R.W.
        • Boyles J.K.
        • Fainaru M.
        • Brecht W.J.
        • Lindquist P.A.
        Chylomicronchylomicron remnant clearance by liver and bone marrow in rabbits.
        Factors that modify tissuespecific uptake.J. Biol Chem. 1989; 264: 9571-9582
        • Hussain M.M.
        • Mahley R.W.
        • Boyles J.K.
        • Lindquist P.A.
        • Brecht W.J.
        • Innerarity T.L.
        Chylomicron uptake by bone marrow in different animal species.
        J. Biol. Chem. 1989; 464: 17931-17938
        • Bragdon J.H.
        • Gordon R.S.
        Tissue distribution of C“ after the intravenous injection of labeled chylomicrons and unesterified fatty acids in the rat.
        J. Clin. Invest. 1958; 37: 574-578
        • Redgrave T.G.
        • Zech L.A.
        A kinetic model of chylomicron core lipid metabolism in rats: the effect of a single meal.
        J. Lipid Res. 1987; 48: 473-482
        • Quarfordt S.H.
        • Oswald B.S.
        • Landis B.A.
        • DeFaria E.
        • Yamaguchi Y.
        Rat plasma cholesterol after particulate triacylglycerol clearance.
        Biochim. Biophys. Acta. 1991; 1084: 247-250
        • Quarfordt S.H.
        • DeFaria E.
        • Landis B.A.
        • Bollinger R.R.
        • Yamaguchi Y.
        Transport of free fatty acid and triglyceride in anhepatic rats.
        Hepatology. 1991; 14: 911-919
        • Mortimer B.C.
        • Kenrick M.A.
        • Holthouse D.J.
        • Stick R.V.
        • Redgrave T.G.
        Plasma clearance of model lipoproteins containing saturated and polyunsaturated monoacylglycerols injected intravenously in the rat.
        Biochim. Biophys. Acta. 1992; 1127: 67-73
        • Redgrave T.G.
        • Rakic V.
        • Mortimer B.C.
        • Mamo J.C.
        Effects of sphingomyelin and phosphatidylcholine acyl chains on the clearance of triacylglycerol-rich lipoproteins from plasma. Studies with lipid emulsions in rats.
        Biochim. Biophys. Acta. 1992; 1126: 65-72
        • Belcher J.D.
        • Rudel L.L.
        • Waite M.
        Metabolism of radiolabelled chylomicron lipids in intact and hepatectomized rats.
        Comp. Biochem. Physiol. B. 1985; 81: 87-96
        • Staprans I.
        • Rapp J.H.
        • Pan X-M.
        • Ong D.L.
        • Feingold K.R.
        Testosterone regulates metabolism of plasma chylomicrons in rats.
        Arteriosclerosis. 1990; 10: 591-596
        • Redgrave T.G.
        Catabolism of chylomicron triacylglycerol and cholesteryl ester in genetically obese rats.
        J. Lipid Res. 1977; 18: 604-612
        • Blomhoff R.
        • Helgerud P.
        • Rasmussen M.
        • Bep T.
        • Norum K.R.
        In vivo uptake of chylomicron H-retinyl ester by rat liver: evidence for retinol transfer from parenchymal to nonparenchymal cells.
        Proc. Natl Acad. Sci. USA. 1982; 79: 7326-7330
        • Green M.H.
        • Green J.B.
        • Berg T.
        • Norum K.R.
        • Blomhoff R.
        Vitamin A metabolism in rat liver: a kinetic model.
        Am.J Physiol. 1993; 464: 509-521
        • Quarfordt S.H.
        • Goodman D.S.
        Metabolism of doubly-labeled chylomicron cholesteryl esters in the rat.
        J Lipid Res. 1967; 8: 264-273
        • Redgrave T.G.
        • Kodak D.R.
        • Small D.M.
        The effect of triacyl-sn-glycerol structure on the metabolism of chylomicrons and triacylglycerol-rich emulsions in the rat (published erratum appears inJ.
        Biol Chem. 1988. 263: 11607).J. Biol. Chem. 1988; 263: 5118-5123
        • Jackle S.
        • Huber C.
        • Moestrup S.
        • Gliemann J.
        • Beisiegel U.
        In vivo removal of PVLDL, chylomicron remnants, and a2-macroglobulin in the rat.
        J Lipid Res. 1993; 34: 309-315
        • Mamo J.C.
        • Elsegood C.L.
        • Umeda Y.
        • Hirano T.
        • Redgrave T.G.
        Effect of probucol on plasma clearance and organ uptake of chylomicrons and VLDLs in normal and diabetic rats.
        Arteriosch, Thromb. 1993; 13: 231-239
        • Ly H.L.
        • Mortimer B.C.
        • Baker E.
        • Redgrave T.G.
        Clearance from plasma of lymph chylomicrons and chylomicron remnants labelled with 1251-tyramine-cellobiose.
        Biochem.J. 1992; 286: 937-943
        • Green M.H.
        • Massaro E.R.
        • Green J.B.
        Multicompartmental analysis of the effects of dietary fat saturation and cholesterol on absorptive lipoprotein metabolism in the rat.
        Am.J Clin. Nutr. 1984; 40: 82-94
        • Olivecrona T.
        • Fex G.
        Metabolism of plasma lipids in partially hepatectomized rats.
        Biochim. Biophys. Acta. 1970; 202: 259-268