Advertisement

Turnover of deoxycholic acid in the rabbit*

Open AccessPublished:October 01, 1962DOI:https://doi.org/10.1016/S0022-2275(20)40380-3
      This paper is only available as a PDF. To read, Please Download here.
      A method for studying the turnover of deoxycholic acid in the rabbit is described. The mean values for half-life, pool size, and daily production of deoxycholic acid were 6.8 days, 700 mg, and 73.4 mg, respectively, in 26 rabbits on a diet of conventional commercial food pellets. Of the bile acid pool, 97–98% was present in liver, gallbladder, and gastro-intestinal tract. A comparatively large amount (10%) was present in the stomach. Fecal excretion was the main excretory pathway for bile acids. An amount corresponding to 10% of the daily synthesis of deoxycholic acid was excreted in the urine. The concentration of bile acids in blood was calculated to be 0.26–3.10 mg/100 ml of whole blood.

      REFERENCES

        • Mosbach E.H.
        • Halpern E.
        • Brunder J.
        Federation Proc. 1956; 15: 525
        • Hellström K.
        • Sjövall J.
        • Wigand G.
        J. Lipid Research. 1962; 3: 405
        • Emås S.
        Gastroenterology. 1960; 39: 771
        • Bergström S.
        • Rottenberg M.
        • Voltz J.
        Acta Chem. Scand. 1953; 7: 481
        • Sjövall J.
        Clin. Chim. Acta. 1959; 4: 652
        • Geiger J.W.
        • Wright L.B.
        Biochem. Biophys. Res. Commun. 1960; 2: 282
      1. Sjövall, J. Acta Chem. Scand., in press.

        • Jeffay H.
        • Alvarez J.
        Anal. Chem. 1961; 33: 612
        • Kelly R.G.
        • Peets E.A.
        • Gordon S.
        • Buyske D.A.
        Anal. Biochem. 1961; 2: 267
        • Lindstedt S.
        Acta Physiol. Scand. 1957; 40: 1
        • Sjövall J.
        Acta Physiol. Scand. 1953; 29: 232
        • Lewis B.
        S. African J. Lab. Clin. Med. 1957; 3: 316
        • Goldsmith G.A.
        • Hamilton J.G.
        • Miller O.N.
        A.M.A. Arch. Internal Med. 1960; 105: 512
        • Mosbach E.H.
        • Kalinsky H.J.
        • Halpern E.
        • Kendall F.E.
        Arch. Biochem. Biophys. 1954; 51: 401
        • Mosbach E.H.
        • Zomzely C.
        • Kendall F.E.
        Arch. Biochem. Biophys. 1954; 48: 95
        • Lindstedt S.
        • Norman A.
        Acta Physiol. Scand. 1956; 38: 121
        • Portman O.W.
        • Murphy P.
        Arch. Biochem. Biophys. 1958; 76: 367
        • Norman A.
        Näringsforskning. 1961; 4: 89
        • Lindstedt S.
        • Sjövall J.
        Acta Chem. Scand. 1957; 11: 421
        • Hellström K.
        • Sjövall J.
        Acta Chem. Scand. 1960; 14: 1763
        • Gustafsson B.E.
        • Norman A.
        • Sjövall J.
        Arch. Biochem. Biophys. 1960; 91: 93
        • Olson H.M.
        • Madsen H.
        Vidensk. Meddel. Dansk Naturh. Fören. 1943; 107: 37
        • Grundy S.M.
        • Sjövall J.
        Proc. Soc. Exp. Biol. Med. 1961; 107: 306
        • Portman O.W.
        • Shah S.
        Arch Biochem. Biophys. 1962; 96: 516