Advertisement
Research Article| Volume 33, ISSUE 5, P711-725, May 1992

Download started.

Ok

Genetic and dietary interactions in the regulation of HMG-CoA reductase gene expression.

Open AccessPublished:May 01, 1992DOI:https://doi.org/10.1016/S0022-2275(20)41435-X
      This paper is only available as a PDF. To read, Please Download here.
      Inbred strains of mice exhibit large genetic variations in hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase activity. A tissue-specific genetic variation between the strains BALB/c and C57BL/6, resulting in about 5-fold higher levels in hepatic reductase activity in strain C57BL/6, was examined in detail. The activity difference between these two strains could be explained entirely by differences in hepatic reductase mRNA levels. In genetic crosses, the variation segregated as a single major Mendelian element. Surprisingly, the mode of inheritance was recessive since F1 mice exhibited the BALB/c levels of enzyme activity. Despite the fact that the rates of hepatic sterol synthesis also differed between the strains by a factor of about five, the altered hepatic reductase expression did not significantly influence plasma lipoprotein levels. The response to a high cholesterol, high fat diet between the strains was remarkably different. Thus, in BALB/c mice, both hepatic reductase activity and mRNA levels were affected only slightly, if at all, by cholesterol feeding, while in strain C57BL/6 mice both were reduced more than 10-fold by cholesterol feeding. Several lines of evidence, including analysis of cis-acting regulatory elements, the nonadditive mode of inheritance, and genetic studies of the HMG-CoA reductase gene locus on mouse chromosome 13, support the possibility that the variation in reductase expression is not due to a mutation of the structural gene but, rather, is determined by a trans-acting factor controlling reductase mRNA levels. The variation provides a striking example, at the molecular level, of the importance of dietary-genetic interactions in the control of cholesterol metabolism.

      REFERENCES

        • Chin D.J.
        • Gil G.
        • Russell D.W.
        • Liscum L.
        • Luskey K.L.
        • Basu S.K.
        • Okayama H.
        • Berg P.
        • Goldstein J.L.
        • Brown M.S.
        Nucleotide sequence of 3-hydroxy-3-methylglutaryl coenzyme A reductase, a glycoprotein of endoplasmic reticulum.
        Nature. 1984; 308: 613-617
        • Chin D.J.
        • Gil G.
        • Faust J.R.
        • Goldstein J.L.
        • Brown M.S.
        • Luskey K.
        Sterols accelerate degradation of hamster 3-hydroxy-3-methylglutaryl coenzyme A reductase encoded by a constitutively expressed cDNA.
        Mol. Cell. Biol. 1985; 5: 634-641
        • Edwards P.A.
        • Kampner E.S.
        • Lau S.S.F.
        • Erickson S.K.
        Functional size of rat hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase as determined by radiation inactivation.
        J. Biol. Chem. 1985; 260: 10278-10282
        • Goldstein J.L.
        • Brown M.S.
        Regulation of the mevalonate pathway.
        Nature. 1990; 343: 425-430
        • Clarke C.F
        • Edwards P.A.
        • Lan S.F.
        • Tanaka R.D.
        • Fogelman A.M.
        Regulation of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase mRNA levels in rat liver.
        Proc. Natl. Acad. Sci. USA. 1983; 79: 7704-7708
        • Osborne T.R
        • Gil G.
        • Goldstein J.L.
        • Brown M.S.
        Operator constitutive mutation of 3-hydroxy-3-methylglutaryl coenzyme A reductase promoter abolishes protein binding to sterol regulatory element.
        J. Biol. Chem. 1988; 263: 3380-3387
        • Sinensky M.
        • Logel J.
        Defective macromolecule biosynthesis and cell-cycle progression in a mammalian cell starved for mevalonate.
        Proc. Natl. Acad. Sci. USA. 1985; 82: 3257-3261
        • Nakanishi M.
        • Goldstein J.L.
        • Brown M.Y.
        Multivalent control of 3-hydroxy-3-methylglutaryl coenzyme A reductase. Mevalonate-derived product inhibits translation of mRNA and accelerates degradation of enzyme.
        J. Biol. Chem. 1988; 263: 8929-8937
        • Simonet W.S.
        • Ness G.C.
        Post-transcriptional regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase mRNA in rat liver.
        J. Biol. Chem. 1989; 264: 569-573
        • Chang T.Y
        • Limanek J.S.
        • Chang C.C.Y.
        Evidence indicating that inactivation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by low density lipoprotein or by 25-hydroxycholesterol requires mediator pro-tein(s) with rapid turnover rate.
        J. Biol. Chem. 1981; 256: 6174-6180
        • Edwards P.A.
        • Lan S.F.
        • Tanaka R.D.
        • Fogel-man A.M.
        Mevalonolactone inhibits the rate of synthesis and enhances the rate of degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in rat hepatocytes.
        J. Biol. Chem. 1983; 258: 7272-7275
        • Gil G.
        • Faust J.R.
        • Chin D.J.
        • Goldstein J.L.
        • Brown M.S.
        Membrane-bound domain of the HMG-CoA reductase is required for sterol enhanced degradation of the enzyme.
        Cell. 1985; 41: 249-258
        • Dotan F
        • Shecter I.
        Isolation and purification of a rat liver 3-hydroxy-3-methylglutaryl coenzyme A reductase activating protein (RAP).
        J. Biol. Chem. 1987; 35: 17058-17064
        • Brown M.S.
        • Goldstein J.L.
        The LDL receptor and HMG-CoA reductase —two membrane molecules that regulate cholesterol homeostasis.
        Curr. Top. Cell. Regul. 1985; 26: 3-15
        • Clarke C.F
        • Fogelman A.M.
        • Edwards P.A.
        Transcriptional regulation of the 3-hydroxy-3-methylglu-taryl coenzyme A reductase gene in rat liver.
        J. Biol. Chem. 1984; 259: 10439-10447
        • Packie R.M.
        • Kandutsch A.A.
        Rates of sterol synthesis and hydroxymethylglutaryl coenzyme A reductase levels, and the effects cholest-4-en-3-one on these parameters, in livers of inbred strains of mice.
        Biochem. Genet. 1970; 4: 203-214
        • Paigen B.
        • Mitchell D.
        • Reue K.
        • Morrow A.
        • Lusis A.J.
        • LeBoeuf R.C.
        Ath-1, a gene determining atherosclerosis susceptibility and high density lipoprotein levels in mice.
        Proc. Natl. Acad. Sci. USA. 1987; 84: 3763-3767
        • Lusis A.J.
        • Taylor B.A.
        • Quon D.
        • Zollman S.
        • LeBoeuf R.C.
        Genetic factors controlling structure and expression of apolipoprotein B and E in mice.
        J. Biol. Chem. 1987; 262: 7594-7604
        • LeBoeuf R.C
        • Doolittle M.H.
        • Montcalm A.
        • Martin D.C.
        • Reue K.
        • Lusis A.J.
        Phenotypic characterization of the Ath-1 gene controlling high density lipoprotein levels and susceptibility to atherosclerosis.
        J. Lipid Res. 1990; 31: 91-101
        • Rudel L.L.
        • Morris M.D.
        Determination of cholesterol using o-phthalaldehyde.
        J. Lipid Res. 1973; 14: 364-366
        • Galletti T.
        An improved colorimetric micromethod for the determination of serum glycerides.
        Clin. Chim. Acta. 1967; 15: 184-186
        • Bachorik P.S.
        • Albers J.J.
        Precipitation methods for quantification of lipoproteins.
        Methods Enzymol. 1986; 129: 78-100
        • Bradford M.M.
        A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
        Anal. Biochem. 1976; 72: 248-254
        • Edwards P.A.
        • Gould R.G.
        Turnover rate of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase as determined by use of cycloheximide.
        J. Biol. Chem. 1972; 247: 1520-1524
        • Edwards P.A.
        • Lemongello P.
        • Fogelman A.M.
        Improved methods for the solubilization and assay of hepatic 3-hydroxy-3-methylglutaryl coenzyme A reductase.
        J. Lipid Res. 1979; 20: 40-46
        • Chirgwin J.M.
        • Przybyla A.E.
        • MacDonald R.J.
        • Rutter W.J.
        Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease.
        Biochemistry. 1979; 18: 5294-5299
        • Chin D.J.
        • Luskey K.L.
        • Faust J.R.
        • MacDonald R.J.
        • Brown M.S.
        • Goldstein J.L.
        Molecular cloning of 3-hydroxy-3-methylglutaryl coenzyme A reductase and evidence for regulation of its mRNA.
        Proc. Natl. Acad. Sci. USA. 1982; 79: 7704-7708
        • Kirchgessner T.G.
        • LeBoeuf R.C.
        • Langner C.A.
        • Zollman S.
        • Chang C.H.
        • Taylor B.A.
        • Schotz M.C.
        • Gordon J.I.
        • Lusis A.J.
        Genetic and developmental regulation of the lipoprotein lipase gene: loci both proximal and distal to the structural gene control enzyme expression.
        J. Biol. Chem. 1989; 264: 1473-1482
        • Taylor B.A.
        Recombinant inbred strains.
        in: Morse H.C. Origins of Inbred Mice. Academic Press, New-York1978: 423-438
        • Doolittle M.H.
        • LeBoeuf R.C.
        • Warden C.H.
        • Bee L.M.
        • Lusis A.J.
        A polymorphism affecting apolipoprotein A-II translational efficiency determines high density lipoprotein size and composition.
        J. Biol. Chem. 1990; 265: 16380-16388
        • Shapiro D.J.
        • Rodwell V.W.
        Diurnal variation and cholesterol regulation of hepatic HMG-CoA reductase activity.
        Biochem. Biophys. Res. Commun. 1969; 37: 867-872
        • Spady D.K.
        • Dietschy J.M.
        Sterol synthesis in vivo in 18 tissues of the squirrel monkey, guinea pig, rabbit, hamster and rat.
        J. Lipid Res. 1983; 24: 303-315
        • Bailey D.W.
        Recombinant-inbred strains —an aid to finding identity, linkage and function of histocompatibility and other genes.
        Transplantation. 1971; 11: 325-327
        • Lusis A.J.
        • LeBoeuf R.C.
        Genetic control of plasma lipid transport: mouse model 1.
        Methods Enzymol. 1986; 128: 877-894
        • Elliott R.W.
        • Daniel W.L.
        • Taylor B.A.
        • Novak E.K.
        Linkage of loci affecting a murine liver protein and arylsulfatase B to chromosome 13.
        J. Hered. 1985; 76: 243-246
        • Sundaresan S.
        • Yang-Feng T.L.
        • Francke U.
        Genes for HMG-CoA reductase and serotonin la receptor are on mouse chromosome 13.
        Somat. Cell Mol. Genet. 1989; 15: 465-469
        • Mehrabian M.
        • Callaway K.A.
        • Clarke C.A.
        • Tanaka R.D.
        • Greenspan M.
        • Lusis A.J.
        • Sparkes R.S.
        • Mohandas T.
        • Edmond J.
        • Fogelman A.M.
        • Edwards P.A.
        Regulation of rat liver 3-hydroxy-3-methyl-glutaryl coenzyme A synthase and the chromosomal localization of the human.
        gene. J. Biol. Chem. 1986; 261: 16249-16255
        • Jelinek D.F
        • Andersson S.
        • Slaughter C.A.
        • Russell D.W.
        Cloning and regulation of cholesterol 7α-hydroxylase, the rate limiting enzyme in bile acid synthesis.
        J. Biol. Chem. 1990; 265: 8190-8197
        • Dueland S.
        • Lusis A.J.
        • Machlader D.
        • Davis R.A.
        Altered regulation of HMG-CoA reductase and cholesterol 7α-hydroxylase in mice.
        Arteriosclerosis. 1990; 10: 785a
        • Faust J.R.
        • Luskey K.L.
        • Chin D.J.
        • Goldstein J.L.
        • Brown M.S.
        Regulation of synthesis and degradation of 3-hydroxy-3-methylglutaryl coenzyme A reductase by low density lipoprotein and 25-hydroxycholesterol in UT-1 cells.
        Proc. Natl. Acad. Sci. USA. 1982; 79: 5205-5209
        • Luskey K.L.
        • Stevens B.
        Human 3-hydroxy-3-methylglutaryl coenzyme A reductase.
        J. Biol. Chem. 1985; 260: 10271-10277
        • Sinensky M.
        • Logel J.
        • Torgot R.
        Complementary recessive 25-hydroxycholesterol-resistant somatic cell mutants — assay of 25-hydroxycholesterol binding activity.
        J. Cell Physiol. 1982; 113: 314-319
        • Chang T.Y.
        • Chang C.C.Y.
        Revertants of a Chinese hamster ovary cell resistant to suppression by an analogue of cholesterol isolation and partial biochemical characterization.
        Biochemistry. 1982; 21: 5316-5323
        • Leonard S.
        • Sinensky M.
        Somatic cell genetics and the study of cholesterol metabolism.
        Biochim. Biophys. Ada. 1988; 947: 101-112
        • Metherall J.E.
        • Goldstein J.L.
        • Luskey K.L.
        • Brown M.S.
        Loss of transcriptional repression of three sterol-regulated genes in mutant hamster cells.
        J. Biol. Chem. 1989; 263: 18480-18487
        • Dawson P.A.
        • Metherall J.E.
        • Ridgeway N.D.
        • Brown M.S.
        • Goldstein J.L.
        Genetic distinction between sterol-mediated transcriptional and post-transcrip-tional control of 3-hydroxy-3-methylglutaryl coenzyme A reductase.
        J. Biol. Chem. 1991; 266: 9128-9134
        • Panini S.R.
        • Lutz R.J.
        • Wenger L.
        • Miyake J.
        • Leonard S.
        • Andalibi A.
        • Lusis A.J.
        • Sinensky M.
        Detective elongation of fatty acids in a recessive 25-hydroxycholesterol-resistant mutant cell line.
        J. Biol. Chem. 1990; 265: 14118-14126
        • Angelin B.
        • Einarsson K.
        Regulation of HMG-CoA reductase in human liver.
        in: Preiss B. Regulation of Human HMG-CoA Reductase. Academic Press, New York1985: 281-300
        • Gil G.
        • Smith J.
        • Goldstein J.L.
        • Slaughter C.
        • Orth K.
        • Brown M.S.
        • Osborne T.F.
        Multiple genes encode nuclear factor 1-like proteins that bind to the promoter for 3-hydroxy-3-methylglutaryl coenzyme A reductase.
        Proc. Natl. Acad. Sci. USA. 1988; 85: 8963-8967
        • Lamm L.U.
        • Olaison B.
        Report of the committee on the genetic constitution of chromosomes 5 and 6.
        Cytogenet. Cell. Genet. 1985; 40: 128-155
        • Mohandas T.
        • Heinzmann C.
        • Sparkes R.S.
        • Wasmuth J.
        • Edwards P.
        • Lusis A.J.
        Assignment of the human 3-hydroxy-3-methylglutaryl coenzyme A reductase gene ql3-q23 region of chromosome 5.
        Somat. Cell Mol. Genet. 1986; 12: 89-94
        • Frank S.L.
        • Taylor B.A.
        • Lusis A.J.
        Linkage of the mouse LDL receptor gene on chromosome 9.
        Genomics. 1989; 5: 646-648
        • Thompson S.L.
        • Burrows R.
        • Laub R.J.
        • Krisans S.K.
        Cholesterol synthesis in rat liver peroxisomes. Conversion of mevalonic acid to cholesterol.
        J. Biol. Chem. 1987; 262: 17420-17425
        • Ho K.J.
        • Biss K.
        • Mikkelson B.
        • Lewis L.A.
        • Taylor C.B.
        The Masai of East Africa: some unique biological characteristics.
        Arch. Pathol. 1971; 91: 387-410
        • Feldman S.A.
        • Ho K.J.
        • Lewis L.A.
        • Taylor C.B.
        Lipid and cholesterol metabolism in Alaskan arctic eskimos.
        Arch. Pathol. 1972; 94: 42-58
        • Berg K.
        Impact of medical genetics on research and practices in the area of cardiovascular disease.
        Clin. Genet. 1989; 36: 299-312
        • Taylor B.A.
        Recombinant inbred strains.
        in: Lyon M.F. Searle A.G. Genetic Variants and Strains of the Laboratory Mouse. 2nd Edition. Oxford University Press, New York1990: 773-796
        • Levanon D
        • Hseih E.L.
        • Francke U.
        • Pawro P.A.
        • Ridgeway N.
        • Brown M.S.
        • Goldstein J.L.
        cDNA cloning of human oxysterol binding protein and localization of the gene to human chromosome 11 and mouse chromosome 19.
        Genomics. 1990; 7: 65-74