Advertisement
Research Article| Volume 33, ISSUE 5, P745-754, May 1992

Download started.

Ok

A missense (Asp250—-Asn) mutation in the lipoprotein lipase gene in two unrelated families with familial lipoprotein lipase deficiency.

Open AccessPublished:May 01, 1992DOI:https://doi.org/10.1016/S0022-2275(20)41438-5
      This paper is only available as a PDF. To read, Please Download here.
      We have identified the molecular basis for familial lipoprotein lipase (LPL) deficiency in two unrelated families with the syndrome of familial hyperchylomicronemia. All 10 exons of the LPL gene were amplified from the two probands' genomic DNA by polymerase chain reaction. In family 1 of French descent, direct sequencing of the amplification products revealed that the patient was heterozygous for two missense mutations, Gly188—-Glu (in exon 5) and Asp250—-Asn (in exon 6). In family 2 of Italian descent, sequencing of multiple amplification products cloned in plasmids indicated that the patient was a compound heterozygote harboring two mutations, Arg243—-His and Asp250—-Asn, both in exon 6. Studies using polymerase chain reaction, restriction enzyme digestion (the Gly188—-Glu mutation disrupts an Ava II site, the Arg243—-His mutation, a Hha I site, and the Asp250—-Asn mutation, a Taq I site), and allele-specific oligonucleotide hybridization confirmed that the patients were indeed compound heterozygous for the respective mutations. LPL constructs carrying the three mutations were expressed individually in Cos cells. All three mutant LPLs were synthesized and secreted efficiently; one (Asp250—-Asn) had minimal (approximately 5%) catalytic activity and the other two were totally inactive. The three mutations occurred in highly conserved regions of the LPL gene. The fact that the newly identified Asp250—-Asn mutation produced an almost totally inactive LPL and the location of this residue with respect to the three-dimensional structure of the highly homologous human pancreatic lipase suggest that Asp250 may be involved in a charge interaction with an alpha-helix in the amino terminal region of LPL. The occurrence of this mutation in two unrelated families of different ancestries (French and Italian) indicates either two independent mutational events affecting unrelated individuals or a common shared ancestral allele. Screening for the Asp250—-Asn mutation should be included in future genetic epidemiology studies on LPL deficiency and familial combined hyperlipidemia.

      REFERENCES

        • Brunzell J.D.
        Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndrome.
        in: Scriver C.R. Beaudet A.L. Sly W.S. Valle D. The Metabolic Basis of Inherited Disease. McGraw-Hill Book Co, New York1989: 1165-1180
        • Deeb S.S.
        • Peng R.
        Structure of the human lipoprotein lipase gene.
        Biochemistry. 1989; 28: 4131-4135
        • Kirchgessner T.G.
        • Chuat J.C.
        • Heinzmna C.
        • Etienne J.
        • Guilhot S.
        • Svenson K.
        • Ameis D.
        • Pilon C.
        • DAuriol L.
        • Anadalibi A.
        • Schotz M.I.
        • Galibert F.
        • Lusis A.J.
        Organization of the human lipoprotein lipase gene and evolution of the lipase family.
        Proc. Natl. Acad. Sci. USA. 1989; 86: 9647-9651
        • Oka K.
        • Tkalcevic G.T.
        • Nakano T.
        • Tucker H.
        • Ishimura-Oka K.
        • Brown W.V.
        Structure and polymorphic map of human lipoprotein lipase gene.
        Biochim. Biophys. Acta. 1990; 1049: 21-26
        • Datta S.
        • Luo C-C.
        • Li W-H.
        • VanTuinen P.
        • Ledbet-ter D.H.
        • Brown M.A.
        • Chen S-H.
        • Liu S-W.
        • Chan L.
        Human hepatic lipase, cloned cDNA sequence, restriction fragment length polymorphisms, chromosomal localization, and evolutionary relationships with lipoprotein lipase and pancreatic lipase.
        J. Biol. Chem. 1988; 263: 1107-1110
        • Hide W.A.
        • Chan L.
        • Li W-H.
        Structure and evolution of the lipase superfamily.
        J. Lipid Res. 1992; 33: 167-178
        • Brady L.
        • Brzozowski A.M.
        • Derewenda Z.S.
        • Dodson E.
        • Dodson G.
        • Tolley S.
        • Turkenburg J.P.
        • Christiansen L.
        • Huge-Jensen B.
        • Norskey L.
        • Thim L.
        • Menge U.
        A serine protease triad forms the catalytic centre of a triacylglycerol lipase.
        Nature. 1990; 343: 767-770
        • Winkler F.K.
        • DArcy A.
        • Hunziker W.
        Structure of human pancreatic lipase.
        Nature. 1990; 343: 771-774
        • Langlois S.
        • Deeb S.
        • Brunzell J.D.
        • Kastelein J.J.P.
        • Hayden M.R.
        A major insertion accounts for a significant proportion of mutations underlying human lipoprotein lipase deficiency.
        Proc. Natl. Acad. Sci. USA. 1989; 86: 948-952
        • Devlin R.H.
        • Deeb S.
        • Brunzell J.
        • Hayden M.R.
        Partial gene duplication involving exon Alu interchange results in lipoprotein lipase deficiency.
        Am. J. Hum. Genet. 1990; 46: 112-119
        • Gotoda T
        • Murase T.
        • Ishibashi S.
        • Shimano M.
        • Harada K.
        • Yamada N.
        Splicing, nonsense and missense mutations in familial lipoprotein lipase deficiency.
        Arteriosclerosis. 1990; 10: 833a
        • Emi M.
        • Hata A.
        • Robertson M.
        • Iverius R.H.
        • Hegele R.
        • Lalouel J.M.
        Lipoprotein lipase deficiency resulting from a nonsense mutation in exon 3 of the lipoprotein lipase gene.
        Am. J. Hum. Genet. 1990; 47: 107-111
        • Funke H.
        • Wiebusch H.
        • Paulweber B.
        • Assmann G.
        Identification of the molecular defect in a patient with type I hyperlipidemia.
        Arteriosclerosis. 1990; 10: 830a
        • Henderson H.E.
        • Devlin R.
        • Petersen J.
        • Brunzell J.D.
        • Hayden M.R.
        Frameshift mutation in exon 3 of the lipoprotein lipase gene causes a premature stop codon and lipoprotein lipase deficiency.
        Mol. Biol. Med. 1990; 7: 511-517
        • Emi M.
        • Wilson D.E.
        • Iverius P.H.
        • Wiu L.
        • Hata A.
        • Hegele R.
        • Williams R.R.
        • Lalouel J.M.
        Missense mutation (Gly → Glu188) of human lipoprotein lipase imparting function deficiency.
        J. Biol. Chem. 1990; 265: 5910-5916
        • Beg O.U
        • Meng M.S.
        • Skarlatos S.I.
        • Previato L.
        • Brunzell J.D.
        • Brewer Jr., H.B.
        • Fojo S.S.
        Lipoprotein lipase Bethesda: a single ami no acid substitution (Ala176 → Thr) leads to abnormal heparin binding and loss of enzymatic activity.
        Proc. Natl. Acad. Sci. USA. 1990; 87: 3474-3478
        • Monsalve M.V.
        • Henderson H.E.
        • Roederer G.
        • Julien P.
        • Deeb S.
        • Kastelein J.J.P.
        • Peritz L.
        • Devlin R.
        • Bruin T.
        • Murthy M.R.V.
        • Gagne C.
        • Davignon J.
        • Lupien P.J.
        • Brunzell J.D.
        • Hayden M.R.
        A missense mutation at codon 188 of human lipoprotein lipase gene is a frequent cause of lipoprotein lipase deficiency in persons of different ancestries.
        J. Clin. Invest. 1990; 86: 728-734
        • Bruin T
        • Kastelein J.J.P.
        • Monsalve M.V.
        • Stuyt P.
        • Stalenhoef A.
        • Brunzell J.D.
        • Hayden M.R.
        A novel missense mutation in the gene for lipoprotein lipase (LPL) underlying severe hyperchylomicronemia in a kindred of Dutch descent. 55th Meeting of the European Atherosclerosis Society. 17-19, Oray, Belgium1990 (Abstract #91)
        • Hata A.
        • Emi M.
        • Lue G.
        • Basderant A.
        • Gambert P.
        • Iverius P.H.
        • Lalouel J.M.
        Compound hetero-zygote for lipoprotein lipase deficiency: Ser →Thr244 and transition in 3' splice site of intron 2 (AG → AA) in the lipoprotein lipase gene.
        Am. J. Hum. Genet. 1990; 47: 721-726
        • Dichek H.L.
        • Fojo S.S.
        • Beg O.U.
        • Skarlatos S.I.
        • Brunzell J.D.
        • Cutler G.B.
        • Brewer Jr., H.B.
        Identification of two separate allelic mutations in the lipoprotein lipase gene of a patient with the familial hyperchylomicronemia syndrome.
        J. Biol. Chem. 1991; 266: 473-477
        • Ameis D.
        • Kobayashi J.
        • Davis R.C.
        • Ben-Zeev O.
        • Malloy M.J.
        • Kane J.P.
        • Lee G.
        • Wong H.
        • Havel R.J.
        • Schotz M.C.
        Familial chylomicronemia (Type I hyperlipoproteinemia) due to a single missense mutation in the lipoprotein lipase gene.
        J. Clin. Invest. 1991; 87: 1165-1170
        • Henderson H.E.
        • Ma Y.
        • Hassan M.F.
        • Monsalve M.V.
        • Winkler F.
        • Gubernator K.
        • Marias A.D.
        • Brunzell J.D.
        • Hayden M.R.
        Ami no acid substitution (He196 → Thr) in exon 5 of the lipoprotein lipase deficiency in three probands support for a multicentric origin.
        J. Clin. Invest. 1991; 87: 2005-2011
        • Faustinella R
        • Chang A.
        • Van Biervliet V.P.
        • Rosseneu M.
        • Vinaimont N.
        • Smith L.C.
        • Chen S-H.
        • Chan L.
        Catalytic triad residue mutation (Asp156 → Gly) causing familial lipoprotein lipase deficiency: coin-heritance with a nonsense mutation (Ser447 → Ter) in a Turkish family.
        J. Biol. Chem. 1991; 266: 14418-14424
        • Ma Y
        • Henderson H.E.
        • Van Murthy M.R.
        • Roedera G.
        • Monsalve M.V.
        • Clarke L.A.
        • Normand T.
        • Julien P.
        • Gagne C.
        • Lambert M.
        • Davignon J.
        • Lupien P.J.
        • Brunzell J.
        • Hayden M.R.
        A mutation in the human lipoprotein lipase gene as the most common cause of familial chylomicronemia in French Canadians.
        N. Engl. J. Med. 1991; 324: 1761-1766
        • Kern P.A.
        • Martin R.A.
        • Carty J.
        • Goldberg I.J.
        • Ong J.M.
        Identification of lipoprotein lipase im-munoreactive protein in pre- and postheparin plasma from normal subjects and patients with Type I hyperlipoproteinemia.
        J. Lipid Res. 1990; 31: 17-26
        • Semenkovich C.R
        • Luo C-C.
        • Nakanishi M.K.
        • Chen S-H.
        • Smith L.C.
        • Chan L.
        In vitro expression and site-specific mutagenesis of the cloned human lipoprotein lipase gene. Potential N-linked gylcosylation site asparagine 43 is important for both enzyme activity and secretion.
        J. Biol. Chem. 1990; 265: 5429-5433
        • Faustinella R
        • Smith L.C.
        • Semenkovich C.F.
        • Chan L.
        Structural and functional role of highly conserved serines in human lipoprotein lipase.
        J. Biol. Chem. 1991; 266: 9481-9485
        • Taylor J.W
        • Oh J.
        • Eckstein F.
        The rapid generation of oligonucleotide-directed mutations at high frequency using phosphothioate-modified DNA.
        Nucleic Acids Res. 1985; 13: 8765-8785
        • Wong G.G.
        • Witek J.S.
        • Temple P.A.
        • Wilkens K.M.
        • Leary A.C.
        • Luxenberg D.P.
        • Jones S.S.
        • Brown E.L.
        • Kay R.M.
        • Orr E.C.
        • Shoemaker C.
        • Golde D.W.
        • Kaufman R.J.
        • Hewick R.M.
        • Wang E.A.
        • Clark S.C.
        Human GM-CSF: molecular cloning of the complementary DNA and purification of the natural and recombinant proteins.
        Science. 1985; 228: 810-815
        • Selden R.F.
        • Howie K.B.
        • Rowe M.E.
        • Goodman H.M.
        • Moore D.D.
        Human growth hormone as a reporter gene in regulation studies employing transient gene expression.
        Mol. Cell. Biol. 1986; 6: 3173-3179
        • Babirak S.P.
        • Iverius P-H.
        • Fujimoto W.Y.
        • Brunzell J.D.
        Detection and characterization of the heterozygote state for lipoprotein lipase deficiency.
        Arteriosclerosis. 1989; 9: 326-334
        • Hayden M.R.
        • Ma Y.
        • Brunzell J.
        • Henderson H.E.
        Genetic variants affecting human lipoprotein and hepatic lipases.
        Curr. Opin. Lipidol. 1991; 2: 104-109