Recycling of vitamin E in human low density lipoproteins.

Open AccessPublished:March 01, 1992DOI:
      This paper is only available as a PDF. To read, Please Download here.
      Oxidative modification of low density lipoproteins (LDL) and their unrestricted scavenger receptor-dependent uptake is believed to account for cholesterol deposition in macrophage-derived foam cells. It has been suggested that vitamin E that is transported by LDL plays a critical role in protecting against LDL oxidation. We hypothesize that the maintenance of sufficiently high vitamin E concentrations in LDL can be achieved by reducing its chromanoxyl radicals, i.e., by vitamin E recycling. In this study we demonstrate that: i) chromanoxyl radicals of endogenous vitamin E and of exogenously added alpha-tocotrienol, alpha-tocopherol or its synthetic homologue with a 6-carbon side-chain, chromanol-alpha-C6, can be directly generated in human LDL by ultraviolet (UV) light, or by interaction with peroxyl radicals produced either by an enzymic oxidation system (lipoxygenase + linolenic acid) or by an azo-initiator, 2,2'-azo-bis(2,4-dimethylvaleronitrile) (AMVN; ii) ascorbate can recycle endogenous vitamin E and exogenously added chromanols by direct reduction of chromanoxyl radicals in LDL; iii) dihydrolipoic acid is not efficient in direct reduction of chromanoxyl radicals but recycles vitamin E by synergistically interacting with ascorbate (reduces dehydroascorbate thus maintaining the steady-state concentration of ascorbate); and iv) beta-carotene is not active in vitamin E recycling but may itself be protected against oxidative destruction by the reductants of chromanoxyl radicals. We suggest that the recycling of vitamin E and other phenolic antioxidants by plasma reductants may be an important mechanism for the enhanced antioxidant protection of LDL.


        • Parthasarathy S.
        • Printz D.J.
        • Boyd D.
        • Joy L.
        • Steinberg D.
        Macrophage oxidation of low density lipoprotein generates a form recognized by the scavenger receptor.
        Arteriosclerosis. 1986; 6: 505-510
        • Steinberg D.
        • Parthasarathy S.
        • Carew T.F.
        • Khoo J.C.
        • Witztum J.L.
        Beyond cholesterol: modifications of low-density lipoprotein that increase its atherogenicity.
        N. Engl. J. Med. 1989; 320: 915-924
        • Steinbrecher U.P.
        • Zhang H.
        • Lougheed M.
        Role of oxidatively modified LDL in atherosclerosis.
        Free Radical Biol. Med. 1990; 9: 155-168
        • Quehenberger O.
        • Roller E.
        • Jurgens G.
        • Ester-bauer H.
        Investigation of lipid peroxidation in human low density lipoproteins.
        Free Radical Res. Commun. 1987; 3: 233-242
        • Goldstein J.L.
        • Ho Y.K.
        • Basu S.K.
        • Brown M.S.
        Binding site on macrophages that mediates the uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition.
        Proc. Natl. Acad. Sci. USA. 1979; 76: 333-337
        • Breugnot C.
        • Maziere C.
        • Salmon S.
        • Auclair M.
        • San-tus R.
        • Morliere P.
        • Lenaers A.
        • Maziere J.C.
        Phenothiazines inhibit copper and endothelial cell-induced peroxidation of low density lipoprotein—a comparative study with probucol, butylated hydroxytoluene and vitamin E..
        Biochem. Pharmacol. 1990; 40: 1975-1980
        • Morel D.W.
        • Chisolm G.M.
        Antioxidant treatment of diabetic rats inhibits lipoprotein oxidation and cytotoxicity.
        J. Lipid. Res. 1989; 30: 1827-1834
        • Esterbauer H.
        • Dieber-Rothenderm M.
        • Striegl G.
        • Waeg G.
        Role of vitamin E in preventing the oxidation of low-density lipoprotein.
        Am. J. Clin. Nutr. 1991; 53: S314-S321
        • Jessup W.
        • Rankin S.M.
        • de Whalley C.V.
        • Hoult R.S.
        • Scott J.
        • Leake D.S.
        a-Tocopherol consumption during low density-lipoprotein oxidation.
        Biochem. J. 1990; 265: 399-405
        • Knipping G.
        • Rothneder M.
        • Striegl G.
        • Esterbauer H.
        Antioxidants and resistance against oxidation of porcine LDL subfractions.
        J. Lipid. Res. 1990; 31: 1965-1972
        • Bjorkhem I.
        • Henriksson-Freyschuss A.
        • Breuer O.
        • Diczfalusy U.
        • Berglund L.
        • Henriksson P.
        The antioxidant butylated hydroxytoluene protects against atherosclerosis.
        Arterioscler. Thromb. 1991; 11: 15-22
        • Jessup W.
        • Dean R.T.
        • de Whalley C.V.
        • Rankin S.M.
        • Leak D.S.
        The role of oxidative modification and antioxidants in LDL metabolism and atherosclerosis.
        Adv. Exp. Med. Biol. 1990; 264: 139-142
        • Zimethbaum P.
        • Eder H.
        • Frishman W.
        Probucol: pharmacology and clinical application.
        J. Clin. Pharmacol. 1990; 30: 3-9
        • Kawai-Kobayashi R
        • Yoshida A.
        Effect of dietary ascorbic acid and vitamin E on metabolic changes in rats and guinea pigs exposed to PCB.
        J. Nutr. 1986; 116: 98-106
        • Stacker R.
        • Bowry V.W.
        • Frei B.
        Ubiquinol-10 protects human low density lipoprotein more efficiently against lipid peroxidation than does α-tocopherol.
        Proc. Natl. Acad. Sci. USA. 1991; 88: 1646-1650
        • Esterbauer H.
        • Jürgens G.
        • Quethenberger O.
        • Roller E.
        Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes.
        J. Lipid Res. 1987; 28: 495-509
        • Ragan V.E.
        • Serbinova E.A.
        • Packer L.
        Antioxidant effects of ubiquinones in microsomes and mitochondria are mediated by tocopherol recycling.
        Biochem. Biophys. Res. Commun. 1990; 169: 851-857
        • Ragan V.E.
        • Serbinova E.A.
        • Packer L.
        Recycling and antioxidant activity of tocopherol homologues of differing hydrocarbon chain length in liver microsomes.
        Arch. Biochem. Biophys. 1990; 282: 221-225
        • Sato R
        • Niki E.
        • Shimasaki H.
        Free radical-mediated chain oxidation of low density lipoprotein and its synergistic inhibition by vitamin E and vitamin C..
        Arch. Biochem. Biophys. 1990; 279: 402-405
        • Rrauss R.M.
        • Burke D.J.
        Identification of multiple subclasses of plasma low density lipoproteins in normal humans.
        J. Lipid Res. 1982; 23: 97-104
        • Steinbrecher U.P.
        Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products.
        J. Biol. Chem. 1987; 262: 3603-3608
        • Lang J.R
        • Gohil R.
        • Packer L.
        Simultaneous determination of tocopherols, ubiquinols and ubiquinones in blood, plasma, tissue homogenates and subcellular fractions.
        Anal. Biochem. 1986; 157: 106-116
        • Terao R
        • Niki E.
        Damage to biological tissues induced by radical initiator 2,2'-azobis(2-amidinopropane) dihydrochloride and its inhibition by chain-breaking antioxidants.
        J. Free Radical Biol. Med. 1986; 2: 193-201
        • Doba T.
        • Burton G.W.
        • Ingold R.U.
        Antioxidant and co-antioxidant activity of vitamin C..
        Biochim. Biophys. Acta. 1985; 835: 298-303
        • Chamulitrat W.
        • Mason R.P.
        Lipid peroxyl radical intermediates in the peroxidation of polyunsaturated fatty acids by lipoxygenase.
        J. Biol. Chem. 1989; 264: 20968-20973
        • Steinbrecher U.P.
        • Parthasarathy S.
        • Leake D.S.
        • Witztum J.L.
        • Steinberg D.
        Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.
        Proc. Natl. Acad. Sci. USA. 1984; 81: 3883-3887
        • Parthasarathy S.
        • Wieland E.
        • Steinberg D.
        A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein.
        Proc. Natl. Acad. Sci. USA. 1989; 86: 1046-1050
        • Sparrow C.P.
        • Parthasarathy S.
        • Steinberg D.
        Enzymatic modification of low density lipoprotein by purified lipoxygenase plus phospholipase A2 mimics cell-mediated oxidative modification.
        J. Lipid. Res. 1988; 29: 745-753
        • Jessup W.
        • Darley-Usmar V.
        • O'Leary V.
        • Bedwell S.
        5-Lipoxygenase is not essential in macrophage-mediated oxidation of low-density lipoprotein.
        Biochem. J. 1991; 278: 163-169
        • Jialal I.
        • Vega G.L.
        • Grundy S.M.
        Physiologic levels of ascorbate inhibit the oxidative modification of low density lipoprotein.
        Atherosclerosis. 1990; 82: 185-191
        • Jialal I.
        • Grundy S.M.
        Preservation of the endogenous antioxidants in low density lipoprotein by ascorbate but not probucol during oxidative modification.
        J. Clin. Invest. 1991; 87: 597-601
        • McCay P.B.
        Vitamin E: interaction with free radicals and ascorbate.
        Annu. Rev. Nutr. 1985; 5: 323-340
        • Reddy C.C.
        • Scholz R.W.
        • Thomas C.E.
        • Mas-saro E.J.
        Vitamin E dependent reduced glutathione inhibition of rat microsomal lipid peroxidation.
        Life Sci. 1982; 31: 571-576
        • Kagan V.E.
        • Serbinova E.A.
        • Packer L.
        Generation and recycling of radicals from pheonolic antioxidants.
        Arch. Biochem. Biophys. 1990; 280: 33-39
        • Kalyanaraman B.
        • Antholine W.E.
        • Par-thasarathy S.
        Oxidation of low-density lipoprotein by Cu2+ and lipoxygenase: an electron spin resonance study.
        Biochim. Biophys. Acta. 1990; 1035: 286-292
        • Tyrell R.M.
        • Pidoux M.
        Action spectra of human skin cells: estimates of the relative cytotoxicity of the middle ultraviolet, near ultraviolet and violet regions of sunlight on epidermal keratinocytes.
        Cancer Res. 1987; 47: 1825-1829
        • Salmon S.
        • Maziere J.C.
        • Santus R.
        • Morliere P.
        • Bouchemal N.
        UVB-induced photoperoxidation of lipids of human low and high density lipoproteins. A possible role of tryptophan residues.
        Photochem. Photobiol. 1990; 52: 541-545
        • Dousset N.
        • Negre-Salvayre A.
        • Lopez M.
        • Salvayre R.
        • Douste-Blazy L.
        Ultraviolet-treated lipoproteins as a model system for the study of the biological effects of lipid peroxides on cultures cells. I. Chemical modifications of ultraviolet-treated low-density lipoproteins.
        Biochim. Biophys. Acta. 1990; 1045: 219-223
        • Cathcart M.K.
        • McNally A.K.
        • Chisolm G.M.
        Lipoxygenase-mediated transformation of human low density lipoprotein to an oxidized and cytotoxic complex.
        J. Lipid. Res. 1991; 32: 63-70
        • Serbinova E.A.
        • Kagan V.E.
        • Han D.
        • Packer L.
        Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-toco-pherol and alpha-tocotrienol.
        Free Radical Biol. Med. 1991; 11: 263-275
        • Packer J.E.
        • Slater T.F.
        • Wilson R.L.
        Direct observation of a free radical interaction between vitamin E and vitamin C..
        Nature. 1979; 278: 737-738
        • Scarpa M.
        • Rigo A.
        • Maiorino M.
        • Ursini F.
        • Gregolin C.
        Formation of α-tocopherol radical and recycling of α-tocopherol by ascorbate during peroxidation of phosphatidylcholine liposomes.
        Biochim. Biophys. Acta. 1984; 801: 215-219
        • Haenen G.R.M.M.
        • Bast A.
        Protection against lipid peroxidation by a microsomal glutathione-dependent labile factor.
        FEBS Lett. 1983; 179: 24-28
        • Bast A.
        • Haenen G.R.M.M.
        Interplay between dihydrolipoic acid and glutathione in the protection against microsomal lipid peroxidation.
        Biochim. Biophys. Acta. 1988; 963: 558-561
        • Scholich H.
        • Murphy M.E.
        • Sies H.
        Antioxidant activity of dihydrolipoate against microsomal lipid peroxidation and its dependence on α-tocopherol.
        Biochim. Biophys. Acta. 1989; 1001: 256-261
        • Kagan V.E.
        • Khan S.
        • Swanson C.
        • Shvedova A.
        • Serbinova E.
        • Packer L.
        Antioxidant action of thioc-tic acid and dihydrolipoic acid.
        Free Radical Biol. Med. 1991; 9: 15
        • Searls R.L.
        • Sanadi D.R.
        α-Ketoglutaric dehydrogenase. 8. Isolation and some properties of a flavoprotein component.
        J. Biol. Chem. 1960; 235: 2485-2491
        • Rao R.D.N.
        • Fischer V.
        • Mason R.P.
        Glutathione and ascorbate reduction of the acetaminophen radical formed by peroxidase.
        J. Biol. Chem. 1990; 265: 844-S47
        • Melhorn R.
        Ascorbate- and dehydroascorbic acid-mediated reduction of free radicals in the human erythrocyte.
        J. Biol. Chem. 1991; 266: 2724-2731
        • Bonomi F.
        • Pagani S.
        Removal of ferritin-bound iron by DL-dihydrolipoate and DL-dihydro-lipoamide.
        Eur. J. Biochem. 1986; 155: 295-300
        • Altenkirch H.
        • Stoltenburg-Didinger G.
        • Wagner H.M.
        • Herrmann J.
        • Walter G.
        Effects of lipoic acid in hexacarbon-induced neuropathy.
        Neurotoxicol. Teratol. 1990; 12: 619-622
        • Kagan V.E.
        • Witt E.
        • Goldman R.
        • Scita G.
        • Packer L.
        Ultraviolet light-induced generation of vitamin E radicals and their recycling. A possible photosensitizing effect of vitamin E in skin.
        Free Radical Res. Commun. 1992; 16: 51-64