Advertisement

Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression

Open AccessPublished:May 01, 1996DOI:https://doi.org/10.1016/S0022-2275(20)42003-6
      This paper is only available as a PDF. To read, Please Download here.
      The three types of peroxisome proliferator-activated receptors (PPAR), termed alpha, delta (or beta), and gamma, belong to the nuclear receptor superfamily. Although peroxisome proliferators, including fibrates and fatty acids, activate the transcriptional activity of these receptors, only prostaglandin J2 derivatives have been identified as natural ligands of the PPAR gamma subtype that also binds thiazolidinedione antidiabetic agents with high affinity. PPARs heterodimerize with retinoic X receptor (RXR) and alter the transcription of target genes after binding to response elements or PPREs, consisting of a direct repeat of the nuclear receptor hexameric DNA recognition motif (PuGGTCA) spaced by 1 nucleotide (DR-1). Upon activation by fatty acids (FAs) and drugs that affect lipid metabolism, PPARs control the expression of genes implicated in intra- and extracellular lipid metabolism, most notably those involved in peroxisomal beta-oxidation. PPARs partially mediate the inductive effects of fibrates and fatty acids on high density lipoprotein (HDL) cholesterol levels by regulating the transcription of the major HDL apolipoproteins, apoA-I and apoA-II. The hypotriglyceridemic action of fibrates and certain fatty acids also involves PPAR and is constituted of: 1) increased hydrolysis of plasma triglycerides due to induction of LPL and reduction of apoC-III expression; 2) stimulation of cellular fatty acid uptake and conversion to acyl-CoA derivatives due to increased expression of genes for fatty acid transport protein and acyl-CoA synthetase; 3) increased peroxisomal and mitochondrial beta-oxidation; and 4) decreased synthesis of fatty acids and triglycerides and decreased production of very low density lipoprotein (VLDL). Hence, both enhanced catabolism of triglyceride-rich particles and reduced secretion of VLDL particles contribute to the hypolipidemic effect of fibrates and fatty acids. Finally, PPARs appear to be involved in differentiation processes because activation of PPAR gamma 2 triggers adipocyte differentiation and stimulates expression of several genes critical to adipogenesis. It is suggested that PPARs are key messengers responsible for the translation of nutritional and pharmacological stimuli into changes in gene expression and differentiation pathways.

      REFERENCES

        • Lock E.A.
        • Mitchell A.M.
        • Elcombe C.R.
        Biochemical mechanisms of induction of hepatic peroxisome proliferation.
        Annu. Rev. Pharmacol. Toxicol. 1989; 29: 145-163
        • Reddy J.K.
        • Lalwani N.D.
        Carcinogenesis by hepatic peroxisome proliferators: evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans.
        CRC Crit. Rev. Toxicol. 1983; 12: 1-58
        • Osmundsen H.
        • Bremer J.
        • Pedersen J.I.
        Metabolic aspects of peroxisomal ?-oxidation.
        Biochim. Biophys. Acta. 1991; 1085: 141-158
        • Bieri F.
        • Lhuguenot J.C.
        Toxicity of peroxisome proliferators.
        Biochitnie. 1993; 75: 263-268
        • Osmundsen H.
        Peroxisomal ?-oxidation of long chain fatty acids: effects of high fat diets.
        Ann. NY Acad. Sei. 1982; 386: 13-29
        • Lalwani N.D.
        • Alvares K.
        • Reddy M.K.
        • Reddy M.N.
        • Parikh I.
        • Reddy j.K.
        Peroxisome proliferator-binding protein: identification and partial characterization of nafenopin-, clofibric acid-, and ciprofibrate-binding proteins from rat liver.
        Proc. Natl. Acad. Sei. USA. 1987; 84: 5242-5246
        • Isseman I.
        • Green S.
        Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators.
        Nature. 1990; 347: 645-650
        • Dreyer C.
        • Krey G.
        • Keller H.
        • Givel F.
        • Helftenbein G.
        • Wahli W.
        Control of the peroxisomal ?-oxidation pathway by a novel family of nuclear hormone receptors.
        Cell. 1992; 68: 879-887
        • G?ttlicher M.
        • Widmark E.
        • Li Q.
        • Gustafsson j.A.
        Fatty acids activate chimera of the clofibric acid-activated receptor and the glucocorticoid receptor.
        Proc. Natl. Acad. Sci. USA. 1992; 89: 4653-4657
        • Schmidt A.
        • Endo N.
        • Rutledge S.J.
        • Vogel R.
        • Shinar D.
        • Rodan G.A.
        Identification of a new member of the steroid hormone receptor superfamily that is activated by a peroxisome proliferator and fatty acids.
        Mol. Endocrinol. 1992; 6: 1634-1641
        • Sher T.
        • Yi H.F.
        • McBride W.
        • Gonzalez F.J.
        cDNA cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor.
        Biochemistry. 1993; 32: 5598-5604
        • Zhu Y.
        • Alvares K.
        • Huang Q.
        • Rao M.S.
        • Reddy j.K.
        Cloning of a new member of the peroxisome proliferator activated receptor gene family from mouse liver.
        J. Biol. Chem. 1993; 268: 26817-26820
        • Tontonoz P.
        • Hu E.
        • Graves R.A.
        • Budavari A.I.
        • Spiegelman B.M.
        mPPARy2: tissue-specific regulator of an adipocyte enhancer.
        Genes & Dev. 1994; 8: 1224-1234
        • Kliewer S.A.
        • Forman B.M.
        • Blumberg B.
        • Ong E.S.
        • Borgmeyer U.
        • Mangelsdorf D.J.
        • Umesono K.
        • Evans R.M.
        Differential expression and activation of a family of murine peroxisome proliferator-activated receptors.
        Proc. Natl. Acad. Sci. USA. 1994; 91: 7355-7359
        • Amri E-Z.
        • Bonino F.
        • Ailhaud G.
        • Abumrad N.A.
        • Grimaldi P.A.
        Cloning of a protein that mediates transcriptional effects of fatty acids in preadipocytes.
        J. Biol. Chem. 1995; 270: 2367-2371
        • Greene M.E.
        • Blumberg B.
        • McBride O.W.
        • Yi H.F.
        • Kronquist K.
        • Kwan K.
        • Hsieh L.
        • Greene G.
        • Nimer S.D.
        Isolation of the human peroxisome proliferator activated receptor gamma cDNA: expression in hematopoietic cells and chromosomal mapping.
        Gene Expr. 1995; 4: 281-299
        • Lee S.S.T.
        • Pineau T.
        • Drago J.
        • Lee E.J.
        • Owens J.W.
        • Kroetz D.L.
        • Fernandez-Salguero P.M.
        • Westphal H.
        • Gonzalez F.J.
        Targeted disruption of the a isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators.
        Mol. Cell. Biol. 1995; 15: 3012-3022
        • Evans R.M.
        The steroid and thyroid hormone receptor superfamily.
        Science. 1988; 240: 889-895
        • Tsai M-J.
        • O?Malley B.
        Molecular mechanisms of action of steroid/thydroid receptor superfamily members.
        Annu. Rev. Biochem. 1994; 63: 451-486
        • Mangelsdorf D.J.
        • Thummel C.
        • Beato M.
        • Herrlich P.
        • Sch?tz G.
        • Umesono K.
        • Blumberg B.
        • Kastner P.
        • Mark E.
        • Chambon P.
        • Evans R.M.
        The nuclear receptor superfamily: the second decade.
        Cell. 1995; 83: 835-839
        • Mangelsdorf D.J.
        • Evans R.M.
        The RXR heterodimers and orphan receptors.
        Cell. 1995; 83: 841-850
        • Chen F.
        • Law S.N.
        • O'Malley B.W.
        Identification of two mPPAR related receptors and evidence for the existence of five subfamily members.
        Biochem. Bio-phys. Res. Commun. 1993; 196: 671-677
        • Green S.
        • Wahli W.
        Peroxisome proliferator activated receptors: finding the orphan a home.
        Mol. Cell Endocrinol. 1994; 100: 149-153
        • Aperlo C.
        • Pognonec P.
        • Saladin R.
        • Auwerx J.
        • Boulukos K.
        Isolation and characterization of the hamster peroxisomal proliferator activated receptor hPPARy, a member of the nuclear hormone receptor superfamily.
        Gene. 1995; 162: 297-302
        • Tontonoz P.
        • Graves R.A.
        • Budavari A.I.
        • Erdjument-Bromage H.
        • Lui M.
        • Hu E.
        • Tempst P.
        • Spiegelman B.M.
        Adipocyte-specific transcription factor ARF6 is a heterodimeric complex of two nuclear hormone receptors, PPARy and RXRa.
        Nucleic Acids Res. 1994; 22: 5628-5634
        • Tontonoz P.
        • Hu E.
        • Spiegelman B.M.
        Stimulation of adipogenesis in fibroblasts by PPARy2, a lipid-activated transcription factor.
        Cell. 1994; 79: 1147-1156
        • Zhu Y.
        • Qi C.
        • Korenberg J.R.
        • Chen X-N.
        • Noya D.
        • Rao M.S.
        • Reddy J.K.
        Structural organization of mouse peroxisome proliferator activated receptor y (mPPARy) gene: alternative promoter use and different splicing yield two mPPARy isoforms.
        Proc. Natl. Acad. Sci. USA. 1995; 92: 7921-7925
        • Gearing K.L.
        • Crickmore A.
        • Gustafsson J.A.
        Structure of the mouse peroxisome proliferator activated receptor a gene.
        Biochem. Biophys. Res. Commun. 1994; 199: 255-263
        • Leid M.
        • Kastner P.
        • Chambon P.
        Multiplicity generates diversity in the retinoic acid signaling pathways.
        Trends Biochem. Sci. 1992; 17: 427-433
        • Krey G.
        • Keller H.
        • Mahfoudi A.
        • Medin J.
        • Ozato K.
        • Dreyer C.
        • Wahli W.
        Xenopus peroxisome proliferator activated receptors: genomic organization, response element recognition, heterodimer formation with retinoid X receptor and activation by fatty acids.
        J. Steroid Biochem. Mol. Biol. 1993; 47: 65-73
        • Dreyer C.
        • Keller H.
        • Mahfoudi A.
        • Laudet V.
        • Krey G.
        • Wahli W.
        Positive regulation of peroxisomal P-oxidation pathway by fatty acids through activation of peroxisome proliferator-activated receptors (PPAR).
        Biol. Cell. 1993; 77: 67-77
        • Apfel R.
        • Benbrook D.
        • Lernhardt E.
        • Ortiz M.A.
        • Salbert G.
        • Pfahl M.
        A novel orphan receptor specific for a subset of thyroid hormone-responsive elements and its interaction with the retinoid/thyroid hormone receptor subfamily.
        Mol. Cell. Biol. 1994; 14: 7025-7035
        • Willy P.J.
        • Umesono K.
        • Ong E.S.
        • Evans R.M.
        • Heyman R.A.
        • Mangelsdorf D.J.
        LXR, a nuclear receptor that defines a distinct retinoid response pathway.
        Genes & Dev. 1995; 9: 1033-1045
        • Luisi B.F.
        • Xu W.X.
        • Otwinowski Z.
        • Freedman L.P.
        • Yamamoto K.R.
        • Sigler P.B.
        Crystallographic analysis of the interaction of the glucocorticoid receptor with DNA.
        Nature. 1991; 352: 497-505
        • Schwabe J.W.
        • Chapman L.
        • Finch J.T.
        • Rhodes D.
        The crystal structure of the estrogen receptor DNA-binding domain bound to DNA; how receptors discriminate between their response elements..
        Cell. 1993; 75: 567-578
        • Green S.
        • Chambon P.
        Nuclear receptors enhance our understanding of transcriptional regulation.
        Trends Genet. 1988; 4: 309-314
        • Yu R.T.
        • McKeown M.
        • Evans R.M.
        • Umesono K.
        Relationship between Drosophila gap gene tailles and vertebrate nuclear receptor Tlx.
        Nature. 1994; 370: 375-379
        • Desvergne B.
        • Wahli W.
        PPAR: a key nuclear factor in nutrient/gene interactions.
        In Inducible Gene Expression . P. Bauerle, editor. Birkhauser, Boston . Vol. 1994; 1: 142-176
        • Forman B.M.
        • Yang C.R.
        • Au M.
        • Casanova J.
        • Ghysdael J.
        • Samuels H.H.
        A domain containing leucine-zipper-like motifs mediate novel in vivo interactions between the thyroid hormone and retinoic acid receptors.
        Mol. Endocrinol. 1989; 3: 1610-1626
        • Barettino D.
        • Vivanco Ruiz M.M
        • Stunnen-berg H.G.
        Characterization of the ligand-dependent transactivation domain of the thyroid hormone receptor.
        EMBOJ. 1994; 13: 3039-3049
        • Tora L.
        • White J.
        • Brou C.
        • Tasset D.
        • Webster N.
        • Scheer E.
        • Chambon P.
        The human estrogen receptor has two independent nonacidic transcriptional activation functions.
        Cell. 1989; 59: 477-487
        • Nagpal S.
        • Friant S.
        • Nakshatri H.
        • Chambon P.
        RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodi-merization in vivo.
        EMBO J. 1993; 12: 2349-2360
        • Beekman J.M.
        • Allan G.F.
        • Tsai S.Y.
        • Tsai M-J.
        • O?Malley B.W.
        Transcriptional activation by the estrogen receptor.
        Mol. Endocrinol. 1993; 7: 1266-1274
        • Lees J.A.
        • Fawell S.E.
        • Parker M.G.
        Identification of two transactivation domains in the mouse oestrogen receptor.
        Nucleic Acids Res. 1989; 17: 5477-5488
        • Allan G.F.
        • Leng X.H.
        • Tsai S.Y.
        • Weigel N.L.
        • Edwards D.P.
        • Tsai M-J.
        • O'Malley B.W.
        Hormone and antihormone induce distinct conformational changes which are central to steroid receptor activation.
        J. Biol. Chem. 1992; 267: 19513-19520
        • Kurokawa R.
        • DiRenzo J.
        • Boehm M.
        • Sugarman J.
        • Gloss B.
        • Rosenfeld M.G.
        • Heyman R.A.
        • Glass C.K.
        Regulation of retinoid signalling by receptor polarity and allosteric control of ligand binding.
        Nature. 1994; 371: 528-531
        • Forman B.M.
        • Umesono K.
        • Chen J.
        • Evans R.
        Unique response pathways are established by allosteric interactions among nuclear hormone receptors.
        Cell. 1995; 81: 541-550
        • Beck F.
        • Plummer S.
        • Senior P.V.
        • Byrne S.
        • Green S.
        • Brammar W.J.
        The ontogeny of peroxisome-proliferator-activated receptor gene expression in the mouse and rat.
        Proc. R. Soc. Lond. [Biol]. 1992; 247: 83-87
        • Braissant O.
        • Foufelle F.
        • Scotto C.
        • Dauca M.
        • Wahli W.
        Differential expression of peroxisome pro-liferator-activated receptors: tissue distribution of PPARa, P and y in the adult rat.
        Endocrinology. 1996; 137: 354-366
        • Keller H.
        • Dreyer C.
        • Medin J.
        • Mahfoudi A.
        • Ozato K.
        • Wahli W.
        Fatty acids and retinoids control lipid metabolism through activation of peroxisome proliferator-activated receptor-retinoid X receptor heterodimers.
        Proc. Natl. Acad. Sci. USA. 1993; 90: 2160-2164
        • Gebel T.
        • Arand M.
        • Oesch F.
        Induction of the peroxisome proliferator activated receptor by fenofi-brate in rat liver.
        FEBS Lett. 1992; 309: 37-40
        • Lemberger T.
        • Staels B.
        • Saladin R.
        • Desvergne B.
        • Auwerx J.
        • Wahli W.
        Regulation of the peroxisome proliferator-activated receptor alpha gene by glucocorticoids.
        J. Biol. Chem. 1994; 269: 24527-24530
        • Steineger H.H.
        • Sorensen H.N.
        • Tugwood J.D.
        • Skrede S.
        • Spydevold O.
        • Gautvik K.M.
        Dex-amethasone and insulin demonstrate marked and opposite regulation of the steady-state mRNA level of the peroxisomal proliferator-activated receptor (PPAR) in hepatic cells. Hormonal modulation of fatty acid-induced transcription.
        Eur.J. Biochem. 1994; 225: 967-974
        • Lemberger T.
        • Saladin R.
        • Vasquez M.
        • Assimacopou-los F.
        • Staels B.
        • Desvergne B.
        • Wahli W.
        • Auwerx J.
        Expression of the peroxisome proliferator-activated receptor a gene is stimulated by stress and follows a diurnal rhythm.
        J. Biol. Chem. 1996; 271: 1764-1769
        • Neat C.E.
        • Thomassen S.
        • Osmundsen H.
        Induction of peroxisomal p-oxidation in rat liver by high fat diet.
        Biochem. J. 1980; 186: 369-371
        • Flatmark T.
        • Nilsson A.
        • Kvannes J.
        • Eikhom T.S.
        • Fukami M.H.
        • Kryvi H.
        • Christiansen E.N.
        On the induction of the enzyme systems for peroxisomal β-oxi-dation of fatty acids in rat livers by diets rich in partially hydrogenated fish oil.
        Biochim. Biophys. Acta. 1988; 962: 122-130
        • De Craemer D.
        • Vamecq J.
        • Roels F.
        • Vallee L.
        • Pauwels M.
        • Van den Branden C.
        Peroxisomes in liver, heart, and kidney of mice fed a commercial fish oil preparation: original data and review on peroxisomal changes induced by high fat diets.
        J. Lipid Res. 1994; 35: 1241-1250
        • Thomas H.
        • Schadt L.
        • Knehr M.
        • Oesch F.
        Effects of diabetes and starvation on the activity of raty liver epoxide hydrolases, gluthathione S-transferase and peroxisomal P-oxidation.
        Biochem. Pharmacol. 1989; 38: 4291-4297
        • Orellana M.
        • Fuentes O.
        • Rosenbluth H.
        • Lara M.
        • E V.
        Modulation of rat liver peroxisomal and microsomal fatty acid oxidation by starvation.
        FEBS Lett. 1992; 310: 193-196
        • Isseman I.
        • Prince R.A.
        • Tugwood J.D.
        • Green S.
        The peroxisome proliferator-activated receptor: retinoic X receptor heterodimer is activated by fatty acids and fibrate hypolipidaemic drugs.
        J. Mol. Endocrinol. 1993; 11: 37-47
        • Bronfman M.
        • Amigo L.
        • Morales M.N.
        Activation of hypolipidemic drugs to acyl-coenzyme A thioesters.
        Biochem. J. 1986; 239: 781-784
        • Raman N.
        • DiRusso C.
        Analysis of acyl-coenzyme A binding to the transcription factor FadR and identification of ami no acid residues in the carboxyl terminus required for ligand binding.
        J. Biol. Chem. 1995; 270: 1092-1097
        • Hertz R.
        • Berman I.
        • Bar-Tana J.
        Transcriptional activation by amphipathic carboxylic peroxisomal proliferators is induced by the free acid rather than the acyl-CoA derivative.
        Eur.J. Biochem. 1994; 221: 611-615
        • Lehmann J.M.
        • Moore L.B.
        • Smith-Oliver T.A.
        • Wilkison W.O.
        • Willson T.M.
        • Kliewer S.A.
        An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor y (PPARy).
        J Biol. Chem. 1995; 270: 12953-12956
        • Yu K.
        • Bayona W.
        • Kallen C.B.
        • Harding H.P.
        • Ravera C.P.
        • McMahon G.
        • Brown M.
        • Lazar M.A.
        Differential activation of peroxisome proliferator-acti-vated receptors by eicosanoids.
        J. Biol. Chem. 1995; 270: 23975-23983
        • Forman B.M.
        • Tontonoz P.
        • Chen J.
        • Brun R.P.
        • Spiegelman B.M.
        • Evans R.M.
        15-Deoxy-A12,14 prostaglandin J2 is a ligand for the adipocyte determination factor PPARy.
        Cell. 1995; 83: 803-812
        • Kliewer S.A.
        • Lenhard J.M.
        • Willson T.M.
        • Patel I.
        • Morris D.C.
        • Lehman J.M.
        A prostaglandin J2 metabolite binds peroxisome proliferator-activated re-ceptoryand promotes adipocyte differentiation.
        Cell. 1995; 83: 813-819
        • Denner L.A.
        • Weigel N.L.
        • Maxwell B.L.
        • Schrader W.T.
        • O?Malley B.W.
        Regulation of progesterone receptor-mediated transcription by phosphorylation.
        Science. 1990; 250: 1740-1743
        • Aronica S.M.
        • Katzenellenbogen B.S.
        Stimulation of estrogen receptor-mediated transcription and alteration in the phosphorylation state of the rat uterine estrogen receptor by estrogen, cyclic adenosine monophosphate, and insulin-like growth factor-I.
        Mol. Endocrinol. 1993; 7: 743-752
        • Power R.F.
        • Mani S.K.
        • Codina J.
        • Conneely O.M.
        • O'Malley B.W.
        Dopaminergic and ligand-independent activation of steroid hormone receptors.
        Science. 1991; 254: 1636-1639
        • Power R.F.
        • Lydon J.P.
        • Conneely O.M.
        • O'Malley B.W.
        Dopamine activation of an orphan of the steroid receptor superfamily.
        Science. 1991; 252: 1546-1548
        • Naar A.M.
        • Boutin J.M.
        • Lipkin S.M.
        • Yu V.C.
        • Holloway J.M.
        • Glass C.K.
        • Rosenfeld M.G.
        The orientation and spacing of core DNA-binding motifs dictate selective transcriptional responses to three nuclear receptors.
        Cell. 1991; 657: 1267-1279
        • Umesono K.
        • Murakami K.K.
        • Thompson C.C.
        • Evans R.M.
        Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors.
        Cell. 1991; 65: 1255-1266
        • Green S.
        Promiscuous liaisons.
        Nature. 1993; 361: 590-591
        • Gronemeyer H.
        • Moras D.
        How to finger DNA.
        Nature. 1995; 375: 190-191
        • Wilson T.E.
        • Fahrner T.J.
        • Johnston M.
        • Milbrandt J.
        Identification of the DNA binding site for NGFI-B by genetic selection in yeast.
        Science. 1991; 252: 1296-1300
        • Ohno C.K.
        • Ueda H.
        • Petkovich M.
        The Drosophila nuclear receptors FTZ-Fla and FTZ-Flp compete as monomers for binding to a site in the fushi tarazu gene.
        Mol. Cell. Biol. 1994; 14: 3166-3175
        • Ueda H.
        • Sun G-C.
        • Murata T.
        • Hirose S.
        A novel DNA-binding motif abuts the zinc finger domain of insect nuclear hormone receptor FTZ-F1 and mouse embryonal long terminal repeat-binding protein.
        Mol. Cell. Biol. 1992; 12: 5667-5672
        • Carlberg C.
        • van Huijsduijnen R.
        • Staple J.K.
        • DeLamarter J.F.
        • Becker-Andre M.
        RZRs, a new family of retinoid-related orphan receptors that function as both monomers and homodimers.
        Mol. Endocrinol. 1994; 8: 757-770
        • Giguere V.
        • Tini M.
        • Flock G.
        • Ong E.S.
        • Evans R.M.
        • Otulakowski G.
        Isoforms-specific amino-terminal domains dictate DNA-bindings properties of RORa, a novel family of orphan nuclear receptors.
        Genes & Dev. 1994; 8: 538-553
        • Laudet V.
        • Adelmant G.
        Lonesome orphans.
        Curr. Biol. 1995; 5: 124-127
        • Dumas B.
        • Harding H.P.
        • Choi H.S.
        • Lehmann K.A.
        • Chung M.
        • Lazar M.A.
        • Moore D.D.
        A new orphan member of the nuclear hormone receptor superfamily closely related to Rev-Erb.
        Mol. Endocrinol. 1994; 8: 996-1005
        • Enmark E.
        • Kainu T.
        • Pelto-Huikko M.
        • Gus-tafsson J.A.
        Identification of a novel member of the nuclear receptor superfamily which is closely related to Rev-erbA.
        Biochem. Biophys. R?s. Commun. 1994; 20: 49-56
        • Wilson T.E.
        • Paulsen R.E.
        • Padgett K.A.
        • Milbrandt J.
        Participation of non-zinc finger residues in DNA binding by two nuclear orphan receptors.
        Science. 1992; 256: 107-110
        • Perlmann T.
        • Jansson L.
        A novel pathway for vitamin A signalling mediated by RXR heterodimeriza-tion with NGFI-B and NURR-1.
        Genes and Dev. 1995; 9: 769-782
        • Kliewer S.A.
        • Umesono K.
        • Noonan D.J.
        • Heyman R.A.
        • Evans R.M.
        Convergence of 9-ew retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors.
        Nature. 1992; 358: 771-774
        • Berthou L.
        • Saladin R.
        • Yaqoob P.
        • Calder P.
        • Fruchart J.C.
        • Denefle P.
        • Auwerx J.
        • Staels B.
        Regulation of rat liver apolipoprotein A-I, apolipopro-tein A-II, and acyl-CoA oxidase gene expression by fibrates and dietary fatty acids.
        Eur. J. Biochem. 1995; 232: 179-187
        • Bogazzi F.
        • Hudson L.D.
        • Nikodem V.M.
        A novel heterodimerization partner for thyroid hormone receptor.Peroxisome proliferator-activated receptor.
        J. Biol. Chem. 1994; 269: 11683-11686
        • Hertz R.
        • Kalderon B.
        • Bar-Tana J.
        Thy-romimetic effect of peroxisome proliferators.
        Biochimie. 1993; 75: 257-261
        • Castelein H.
        • Gulick T.
        • Declercq P.E.
        • Mannaerts G.P.
        • Moore D.D.
        • Baes M.E.
        The peroxisome proliferator activated receptor regulates malic enzyme gene expression.
        J Biol. Chem. 1994; 269: 26754-26758
        • Cooney A.J.
        • Tsai S.Y.
        • O?Malley B.W.
        • Tsai M.J.
        Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin Ds, thyroid hormone, and retinoic acid receptors.
        Mol. Cell. Biol. 1992; 12: 4153-4163
        • Cooney A.J.
        • Leng X.
        • Tsai S.Y.
        • O?Malley B.W.
        • Tsai M-J.
        Multiple mechanisms of chicken ovalbumin upstream promoter transcription factor-dependent repression of transactivation by the vitamin-D, thyroid hormone, and retinoic acid receptors.
        J. Biol. Chem. 1993; 268: 4152-4160
        • Miyata K.
        • Zhang B.
        • Marcus S.L.
        • Capone J.P.
        • Rachubinski R.A.
        Chicken ovalbumin upstream promoter transcription factor (COUP-TF) binds to a peroxisome-responsive element and antagonizes peroxisome proliferator-mediated signaling.
        J. Biol. Chem. 1993; 268: 19169-19172
        • Palmer C.N.A.
        • Hsu M-H.
        • Muerhoff A.S.
        • Griffin K.J.
        • Johnson E.F.
        Interaction of the peroxisome proliferator-activated receptor a with the retinoid X receptor a unmasks a cryptic peroxisome proliferator response element that overlaps an ARP-l-binding site in the CYP4A6 promoter.
        J. Biol. Chem. 1994; 269: 18083-18089
        • Gulick T.
        • Cresci S.
        • Caira T.
        • Moore D.D.
        • Kelly D.P.
        The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression.
        Proc. Natl. Acad. Sci. 1994; 91: 11012-11016
        • Osumi T.
        • Wen J.K.
        • Hashimoto T.
        Two as-acting regulatory elements in the peroxisome prolif-erator-responsive element enhancer region of rat acyl-CoA oxidase gene.
        Biochem. Biophys. Res. Commun. 1991; 175: 866-871
        • Tugwood J.D.
        • Isseman I.
        • Anderson R.G.
        • Bun-dell K.R.
        • McPheat W.L.
        • Green S.
        The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl-CoA oxidase gene.
        EMBOJ. 1992; 11: 433-439
        • Zhang B.
        • Marcus S.L.
        • Sajjadi F.G.
        • Alvares K.
        • Reddy J.K.
        • Subramani S.
        • Rachubinski R.A.
        • Capone J.P.
        Identification of a peroxisome prolifera-tor-responsive element upstream of the gene encoding rat peroxisomal enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase.
        Proc. Natl. Acad. Sci. USA. 1992; 89: 7541-7545
        • Bardot O.
        • Aldridge T.C.
        • Latruffe N.
        • Green S.
        PPAR-RXR heterodimer activates a peroxisome proliferator response element upstream of the bifunctional enzyme gene.
        Biochem. Biophys. Res. Commun. 1993; 192: 37-45
        • Zhang B.
        • Marcus S.L.
        • Miyata K.S.
        • Subramani S.
        • Capone J.P.
        • Rachubinski R.A.
        Characterization of protein-DNA interactions within the peroxisome pro-liferator-responsive element of the rat hydratase-dehy-drogenase gene.
        J. Biol. Chem. 1993; 268: 12939-12945
        • Schoonjans K.
        • Watanabe M.
        • Suzuki H.
        • Mahfoudi A.
        • Krey G.
        • Wahli W.
        • Grimaldi P.
        • Staels B.
        • Yamamoto T.
        • Auwerx J.
        Induction of the acyl-coenzyme A synthetase gene by fibrates and fatty acids is mediated by a peroxisome proliferator response element in the C promoter.
        J. Biol. Chem. 1995; 270: 19269-19276
        • Muerhoff A.S.
        • Griffin K.J.
        • Johnson E.F.
        The peroxisome proliferator activated receptor mediates the induction of CYP4A6, a cytochrome P450 fatty add GJ-hydroxylase, by clofibric acid.
        J. Biol. Chem. 1992; 267: 19051-19053
        • Rodriguez J.C.
        • Gil-Gomez G.
        • Hegardt F.G.
        • Haro D.
        Peroxisome proliferator activated receptor mediates induction of the mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene by fatty acids.
        J Biol. Chem. 1994; 269: 18767-18772
        • Raisher B.R.
        • Gulick T.
        • Zhang Z.
        • Strauss A.W.
        • Moore D.D.
        • Kelly D.P.
        Identification of novel retinoid-responsive element in the promoter region of the medium-chain acyl-coenzyme A dehydrogenase gene.
        J. Biol. Chem. 1992; 267: 20264-20269
        • Carter M.E.
        • Gulick T.
        • Raisher B.D.
        • Caira T.
        • Ladias J.A.A.
        • Moore D.D.
        • Kelly D.P.
        Hepatocyte nuclear factor-4 activates medium chain acyl-CoA dehydrogenase gene transcription by interacting with a complex regulatory element.
        J. Biol. Chem. 1993; 268: 13805-13810
        • Carter M.E.
        • Gulick T.
        • Moore D.D.
        • Kelly D.P.
        A pleiotropic element in the medium-chain acyl-coenzyme A dehydrogenase gene promoter mediates transcriptional regulation by multiple nuclear receptor transcription factors and defines novel receptor-DNA binding motifs.
        Mol. Cell. Biol. 1994; 14: 4360-4372
        • Isseman I.
        • Prince R.
        • Tugwood J.
        • Green S.
        A role for fatty acids and liver fatty acid binding protein in peroxisome proliferation.
        Biochem. Soc. Trans. 1992; 20: 824-827
        • Kaikaus R.M.
        • Chan W.K.
        • Lysenko N.
        • Ortiz de Montellano P.R.
        • Bass N.
        Induction of peroxisomal fatty acid P-oxidation and liver fatty acid-binding protein by peroxisome proliferators. Mediation via the cytochrome P-450IVA1 05-hydroxylase pathway.
        J. Biol. Chem. 1993; 268: 9593-9603
        • Petty K.J.
        • Desvergne B.
        • Mitsuhashi T.
        • Nikodem V.M.
        Identification of a thyroid hormone response element in the malic enzyme gene.
        J Biol. Chem. 1990; 265: 7395-7400
        • Tontonoz P.
        • Hu E.
        • Devine J.
        • Beale E.G.
        • Spiegelman B.M.
        PPARy2 regulates adipose expression of the phosphoenolpyruvate carboxykinase gene.
        Mol. Cell. Biol. 1995; 15: 351-357
        • Vu-Dac N.
        • Schoonjans K.
        • Laine B.
        • Fruchart J.C.
        • Auwerx J.
        • Staels B.
        Negative regulation of the human apolipoprotein A-I promoter by fibrates can be attenuated by the interaction of the peroxisome prolif-erator-activated receptor with its response element.
        J. Biol. Chem. 1994; 269: 31012-31018
        • Vu-Dac N.
        • Schoonjans K.
        • Kosykh V.
        • Dallongeville J.
        • Fruchart J-C.
        • Staels B.
        • Auwerx J.
        Fibrates increase human apolipoprotein A-II expression through activation of the peroxisome proliferator-activated receptor.
        J. Clin. Invest. 1995; 96: 741-750
        • Staels B.
        • Vu-Dac N.
        • Kosykh V.
        • Saladin R.
        • Fruchart J-C.
        • Dallongeville J.
        • Auwerx J.
        Fibrates down-regulate apolipoprotein C-III expression independent of induction of peroxisomal acyl-Coenzyme A oxidase.
        J. Clin. Invest. 1995; 95: 705-712
        • Hertz R.
        • Bishara-Shieban J.
        • Bar-Tana J.
        Mode of action of peroxisome proliferators as hypolipidemic drugs, suppression of apolipoprotein C-III.
        J. Biol. Chem. 1995; 270: 13470-13475
      1. Schoonjans, K., B. Staels, S. Deeb, and J. Auwerx. 1996. PPARa and PPARy activators direct a tissue-specific transcriptional response via a PPRE in the lipoprotein lipase gene. Submitted.

        • Ing N.H.
        • Beekman J.M.
        • Tsai S.Y.
        • Tsai M.J.
        • O'Malley B.W.
        Members of the steroid hormone receptor superfamily interact with TFIIB (S300-II).
        J. Biol. Chem. 1992; 267: 17617-17623
        • Blanco J.C.G.
        • Wang I-M.
        • Tsai S.Y.
        • Tsai M-J.
        • O'Malley B.W.
        • Jurutka P.W.
        • Haussler M.R.
        • Ozato K.
        Transcription factor TFIIB and the vitamin D receptor cooperatively activate ligand-dependent transcription.
        Proc. Natl. Acad. Sci. 1995; 92: 1535-1539
        • Baniahmad A.
        • Ha I.
        • Reinberg D.
        • Tsai S.Y.
        • Tsai M.J.
        • O?Malley B.W.
        Interaction of human thyroid hormone receptor P with transcription factor TFIIB may mediate target gene derepression and activation by thyroid hormone.
        Proc. Natl. Acad. Sci. 1993; 90: 8832-8836
        • Jacq X.
        • Brou C.
        • Lutz Y.
        • Davidson I.
        • Chambon P.
        • Tora L.
        Human TAFII-30 is present in a distinct TFIID complex and is required for transcriptional activation by the estrogen receptor.
        Cell. 1994; 79: 107-117
        • Halachmi S.
        • Marden E.
        • Martin G.
        • MacKay H.
        • Abbondanza C.
        • Brown M.
        Estrogen receptor-associated proteins: possible mediators of hormone-induced transcription.
        Science. 1994; 264: 1455-1458
        • Lee J.W.
        • Ryan F.
        • Swaffield J.C.
        • Johnston S.A.
        • Moore D.D.
        Interaction of thyroid-hormone receptor with a conserved transcriptional mediator.
        Nature. 1995; 374: 91-94
        • Onate S.A.
        • Tsai S.Y.
        • Tsai M.J.
        • O'Malley B.W.
        Sequence and characterization of a coactivator for the steroid hormone receptor superfamily.
        Science. 1995; 270: 1354-1357
        • Horlein A.J.
        • Naar A.M.
        • Heinzel T.
        • Torchia J.
        • Gloss B.
        • Kurokawa R.
        • Ryan A.
        • Kamei Y.
        • S?derstr?m M.
        • Glass C.K.
        • Rosenfeld M.G.
        Ligand-independent repression by the thyroid hormone receptor mediated by a nuclear receptor co-repressor.
        Nature. 1995; 377: 397-404
        • Chen J.D.
        • Evans R.M.
        A transcriptional co-repressor that interacts with nuclear hormone receptors.
        Nature. 1995; 377: 454-457
        • Sakai D.
        • Helms S.
        • Carlstedt-Duke J.
        • Gustafsson J.A.
        • Rottman F.M.
        • Yamamoto K.R.
        Hormonemediated repression: a negative glucocorticoid response element from the bovine prolactin gene.
        Genes & Dev. 1988; 2: 1144-1154
        • Diamond M.I.
        • Miner J.N.
        • Yoshinaga S.K.
        • Yamamoto K.R.
        Transcription factor interactions: selectors of positive or negative regulation from a single DNA element.
        Science. 1990; 249: 1266-1272
        • Fielding C.J.
        • Fielding P.E.
        Molecular physiology of reverse cholesterol transport.
        J. Lipid Res. 1995; 36: 211-228
        • Puchois P.
        • Kandoussi A.
        • Fievet P.
        • Fourrier J.L.
        • Bertrand M.
        • Koren E.
        • Fruchart J.C.
        Apolipo-protein A-I-containing lipoproteins in coronary artery disease.
        Atherosclerosis. 1987; 68: 35-40
        • Rubin E.M.
        • Krauss R.M.
        • Spangler E.A.
        • Verstuyft J.G.
        • Clift S.M.
        Inhibition of early atherogenesis in transgenic mice by human apolipoprotein AI.
        Nature. 1991; 353: 265-267
        • Schultz J.R.
        • Verstuyft J.G.
        • Gong E.L.
        • Nichols A.V.
        • Rubin E.M.
        Protein composition determines the anti-atherogenic properties of HDL transgenic mice.
        Nature. 1993; 365: 762-764
        • Warden C.H.
        • Hedrick C.C.
        • Hedrick J.H.
        • Qiao J.H.
        • Castellani L.W.
        • Lusis A.J.
        Atherosclerosis in transgenic mice overexpressing apolipoprotein A-II.
        Science. 1993; 261: 469-472
        • Staels B.
        • AVan Tol A.
        • Andreu T.
        • Auwerx J.
        Fibrates influence the expression of genes involved in lipoprotein metabolism in a tissue-selective manner in the rat.
        Arterioscler. Thromb. 1992; 12: 286-294
        • Malmendier C.L.
        • Delcroix C.
        Effects of fenofibrate on high and low density lipoprotein metabolism in heterozygous familial hypercholesterolemia.
        Atherosclerosis. 1985; 55: 161-169
        • Mellies M.J.
        • Stein E.A.
        • Khoury P.
        • Lamkin G.
        • Glueck C.J.
        Effects of fenofibrate on lipids, lipoproteins and apolipoproteins in 33 subjects with primary hypercholesterolaemia.
        Atherosclerosis. 1987; 63: 57-64
        • Lussier-Cacan S.
        • Bard J-M.
        • Boulet L.
        • Nestruck A.C.
        • Grothe A-M.
        • Fruchart J-C.
        • Davignon J.
        Lipoprotein composition changes induced by fenofibrate in dysbetalipoproteinemia type III.
        Atherosclerosis. 1989; 78: 167-182
        • Bard J.M.
        • Parra H.J.
        • Camare R.
        • Luc G.
        • Ziegler O.
        • Dachet C.
        • Bruckert E.
        • Douste-Blazy P.
        • Drouin P.
        • Jacotot B.
        • De Gennes J.L.
        • Kellert U.
        • Fruchart J.C.
        A multicenter comparison of the effects of simvastatin and fenofibrate therapy in severe primary hypercholesterolemia, with particular emphasis on lipoproteins defined by their apolipoprotein composition.
        Metabolism. 1992; 41: 498-503
        • Widom R.L.
        • Ladias J.A.
        • Kouidou S.
        • Karatha-nasis S.K.
        Synergistic interactions between transcription factors control expression of the apolipoprotein A-I gene in liver cells.
        Mol. Cell. Biol. 1991; 11: 677-687
        • Ladias J.A.A.
        • Hadzopoulou-Cladaras M.
        • Kardassis D.
        • Cardot P.
        • Cheng J.
        • Zannis V.
        • Cladaras C.
        Transcriptional regulation of human apolipoprotein genes apoB, apoCIII, and apoAII by members of the steroid hormone receptor superfamily HNF-4, ARP-1, EAR-2, and EAR-3.
        J. Biol. Chem. 1992; 267: 15849-15860
        • Cardot P.
        • Chambaz J.
        • Kardassis D.
        • Cladaras C.
        • Zannis V.I.
        Factors participating in the liver-specific expression of the human apolipoprotein A-II gene and their significance for transcription.
        Biochemistry. 1993; 32: 9080-9093
        • Ikewaki K.
        • Zech L.A.
        • Kindt M.
        • Brewer H.B.J.
        • Rader D.J.
        Apolipoprotein A-II production rate is a major factor regulating the distribution of apolipoprotein A-I among HDL subclasses LpA-I and LpA-I:A-II in normolipidemic humans.
        Arterioscler. Thromb. Vase. Biol. 1995; 15: 306-312
        • Olivecrona T.
        • Bengtsson-Olivecrona G.
        Lipoprotein lipase from milk: the model enzyme in lipoprotein lipase research.
        in: Borensztajn J. In Lipoprotein Lipase. Evener Press, Chicago, IL1987: 15-58
        • Auwerx J.
        • Leroy P.
        • Schoonjans K.
        Lipoprotein lipase: recent contributions from molecular biology.
        Crit. Rev. Clin. Lab. Sci. 1992; 29: 243-268
        • Babirak S.P.
        • Brown B.S.
        • Brunzell J.D.
        Familial combined hyperlipidemia and abnormal lipoprotein lipase.
        Arterioscler. Thromb. 1992; 12: 1176-1183
        • Tsutsumi K.
        • Inoue Y.
        • Shima A.
        • Iwasaki K.
        • Kawa-mura M.
        • Murase T.
        The novel compound NO-1886 increases lipoprotein lipase activity with resulting elevation of high density lipoprotein cholesterol, and long-term administration inhibits atherogenesis in coronary arteries of rats with experimental atherosclerosis.
        J. Clin. Invest. 1993; 92: 411-417
        • Liu M.S.
        • Jirik F.R.
        • LeBoeuf R.C.
        • Henderson H.
        • Castellani L.W.
        • Lusis A.J.
        • Ma Y.
        • Forsythe I.J.
        • Zhang H.
        • Kirk E.
        • Brunzell J.D.
        • Hayden M.R.
        Alteration of lipid profiles in plasma of transgenic mice expressing human lipoprotein lipase.
        J. Biol. Chem. 1994; 269: 11417-11424
        • Wang C-S.
        • McConathy W.J.
        • Kloer H.U.
        • Alaupovic P.
        Modulation of lipoprotein lipase activity by apolipoproteins. Effect of apolipoprotein C-III.
        J. Clin. Invest. 1985; 75: 384-390
        • Schonfeld G.
        • Georges P.I.
        • Miller J.
        • Reilly P.
        • Witztum J.
        Apolipoprotein C-II and C-III levels in hyperlipoproteinemia.
        Metabolism. 1979; 28: 1001-1009
        • Stocks J.
        • Holdsworth G.
        • Galton D.J.
        Hyper-triglyceridaemia associated with an abnormal triglyceride-rich lipoprotein carrying excess apolipoprotein C-III.
        Lancet. 1979; ii: 667-671
        • Le N-A.
        • Gibson J.C.
        • Ginsberg H.N.
        Independent regulation of plasma apolipoprotein C-II and C-III concentrations in very low density and high density lipoproteins: implications for the regulation of the catabolism of these lipoproteins.
        J. Lipid Res. 1988; 29: 669-677
        • Malmendier C.L.
        • Lontie J-F.
        • Delcroix C.
        • Dubois D.Y.
        • Magot T.
        • De Roy L.
        Apolipoproteins C-II and C-III metabolism in hypertriglyceridemic patients. Effect of a drastic triglyceride reduction by combined diet restriction and fenofibrate administration.
        Atherosclerosis. 1989; 77: 139-149
        • Ginsberg H.N.
        • Le N-A.
        • Goldberg I.J.
        • Gibson J.C.
        • Rubinstein A.
        • Wang-Iverson P.
        • Norum R.
        • Brown W.V.
        Apolipoprotein B metabolism in subjects with deficiency of apolipoproteins CIII and AI: evidence that apolipoprotein CIII inhibits catabolism of triglyceride-rich lipoproteins by lipoprotein lipase in vivo.
        J. Clin. Invest. 1986; 78: 1287-1295
        • Rees A.
        • Shoulders C.C.
        • Stocks J.
        • Galton D.J.
        • Baralle F.E.
        DNA polymorphism adjacent to human apoprotein A-I gene: relation to hypertriglyceridemia.
        Lancet. 1983; i: 444-446
        • Dammerman M.
        • Sandkuijl L.A.
        • Halaas J.L.
        • Chung W.
        • Breslow J.L.
        An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3' untranslated region polymorphisms.
        Proc. Natl. Acad. Sci. 1993; 90: 4562-4566
        • Quarfordt S.H.
        • Michalopoulos G.
        • Schirmer B.
        The effect of human C apolipoproteins on the in vitro hepatic metabolism of triglyceride emulsions in the rat.
        J. Biol. Chem. 1982; 257: 14642-14647
        • Ito Y.
        • Azrolan N.
        • O?Connell A.
        • Walsh A.
        • Breslow J.L.
        Hypertriglyceridemia as a result of human apoC-III gene expression in transgenic mice.
        Science. 1990; 249: 790-793
        • Maeda N.
        • Li H.
        • Lee D.
        • Oliver P.
        • Quarfordt S.H.
        • Osada J.
        Targetted disruption of the apolipoprotein C-III gene in mice results in hypertriglyceridemia and protection from postprandial hypertriglyceridemia.
        J. Biol. Chem. 1994; 269: 23610-23616
        • de Silva H.V.
        • Lauer S.J.
        • Wang J.
        • Simonet W.S.
        • Weisgraber K.H.
        • Mahley R.W.
        • Taylor J.M.
        Overexpression of human apolipoprotein C-III in transgenic mice results in an accumulation of apolipoprotein B48 remnants that is corrected by excess apolipoprotein E..
        J. Biol. Chem. 1994; 269: 2324-2335
        • Kowal R.C.
        • Herz J.
        • Weisgraber K.H.
        • Mahley R.W.
        • Brown M.S.
        • Goldstein j. L.
        Opposing effects of apolipoproteins E and C on lipoprotein binding to low density lipoprotein receptor-related protein.
        J. Biol. Chem. 1990; 265: 10771-10779
        • Aalto-Setala K.
        • Fisher E.A.
        • Chen X.
        • Chajek-Shaul T.
        • Hayek T.
        • Zechner R.
        • Walsh A.
        • Ramakrishnan R.
        • Ginsberg H.N.
        • Breslow j. L.
        Mechanism of hypertriglyceridemia in human apolipoprotein (apo) CIII transgenic mice. Diminished very low density lipoprotein fractional catabolic rate associated with increased apo-CIII and reduced apoE on the particles.
        J. Clin. Invest. 1992; 90: 1889-1900
        • Heller F.
        • Harvengt C.
        Effects of clofibrate, bezafibrate, fenofibrate, and probucol on plasma lipolytic enzymes in normolipidaemic subjects.
        Eur. J. Clin. Pharmacol. 1983; 23: 57-63
        • Sommariva D.
        • Bonfiglioloi D.
        • Pogliaghi I.
        • Zanaboni L.
        • Balboni E.
        Effects of procetofen on serum lipids and lipoproteins and on post-heparin lipase activities in type II and in type IV hyperlipoproteinemic patients.
        Curr. Ther. Res. 1983; 34: 907-915
        • Levy E.
        • Thibault L.
        • Turgeon J.
        • Roy C.C.
        • Gurbindo C.
        • Lepage G.
        • Godard M.
        • Rivard G.E.
        • Seidman E.
        Beneficial effect of fish-oil supplements on lipids, lipoproteins, and lipoprotein lipase in patients with glycogen storage disease type I..
        Am. J. Clin. Nutr. 1993; 57: 922-929
        • Tikkanen M.J.
        Fibric acid derivatives.
        Curr. Opin. Lipidol. 1992; 3: 29-33
        • Larsen M.L.
        • Illingworth D.R.
        Triglyceridelowering agents: fibrates and nicotinic acid.
        Curr. Opin. Lipidol. 1993; 4: 34-40
        • Staels B.
        • Auwerx J.
        Perturbation of developmental gene expression in rat liver by fibric acid derivatives: lipoprotein lipase and alpha-fetoprotein as models.
        Development. 1992; 115: 1035-1043
        • Murphy M.C.
        • Zampelas A.
        • Puddicombe S.M.
        • Furlonger N.P.
        • Morgan L.M.
        • Williams C.M.
        Pretranslational regulation of the expression of the lipoprotein lipase gene by dietary fatty acids in the rat.
        Br. J. Nutr. 1993; 70: 727-736
        • Auwerx J.
        • Schoonjans K.
        • Fruchart J.C.
        • Staels B.
        Transcriptional control of triglyceride metabolism; fibrates change the expression of the LPL and apoC-III genes by activating the nuclear receptor PPAR.
        Atherosclerosis. 1995;
        • Frenkel B.
        • Bishara-Shieban J.
        • Bar-Tana J.
        The effect of beta, beta'-tetramethylhexadecanedioic acid (MEDICA 16) on plasma very-low-density lipoprotein metabolism in rats: role of apolipoprotein C-III.
        Biochem. J. 1994; 298: 409-414
        • Schaffer J.E.
        • Lodish H.F.
        Expression cloning and characterization of a novel long chain fatty acid transport protein.
        Cell. 1994; 79: 427-436
        • Suzuki H.
        • Kawarabayasi Y.
        • Kondo J.
        • Abe T.
        • Nishikawa K.
        • Kimura S.
        • Hashimoto T.
        • Yamamoto T.
        Structure and regulation of rat long-chain acyl-CoA synthetase.
        J. Biol. Chem. 1990; 265: 8681-8685
        • Schoonjans K.
        • Staels B.
        • Grimaldi P.
        • Auwerx J.
        Acyl-CoA synthetase mRNA expression is controlled by fibric-acid derivatives, feeding and liver proliferation.
        Eur.J. Biochem. 1993; 216: 615-622
        • Aarsland A.
        • Berge R.
        Peroxisome proliferating sulphur- and oxy-substituted fatty acid analogues are activated to acyl coenzyme A thioesters.
        Biochem. Pharmacol. 1990; 41: 53-61
        • Skrede S.
        • Narce M.
        • Bergseth S.
        • Bremer J.
        The effects of alkylthioacetic acids (3-thia fatty acids) on fatty acid metabolism in isolated hepatocytes.
        Biochim. Biophys. Acta. 1989; 1005: 296-302
        • Maragandakis M.E.
        • Hankin H.
        On the mode of action of lipid lowering agents. V.Kinetics of the inhibition in vitro of rat acetyl-CoA carboxylase.
        J Biol. Chem. 1971; 246: 348-354
        • Toussant N.J.
        • Wilson M.D.
        • Clarke S.D.
        Coordinate suppression of liver acetyl CoA carboxyki-nase and fatty acid synthase by polyunsaturated fat.
        J. Nutr. 1981; III: 146-163
        • Asiedu D.K.
        • Al-Shurbaji A.
        • Rustan A.C.
        • Bjorkhem I.
        • Berge R.K.
        Hepatic fatty acid metabolism as a determinant of plasma and liver triacylglycerol levels. Studies on tetradecylthioacetic and tetradecylthio-propionic acids.
        Eur.J. Biochem. 1995; 227: 715-722
        • Blake W.L.
        • Clarke S.D.
        Suppression of rat hepatic fatty acid synthase and S14 transcription by dietary polyunsaturated fat.
        J. Nutr. 1990; 120: 1727-1729
        • Rustan A.C.
        • Christiansen E.N.
        • Drevor C.A.
        Serum lipids, hepatic glycerolipid metabolism and peroxisomal fatty acid oxidation in rats fed omega-3 and oinega-6 fatty acids.
        Biochem. J. 1992; 283: 333-339
        • Kalderon B.
        • Hertz R.
        • Bar-Tana J.
        Tissue selective modulation of redox and phosphate potentials by beta, beta'-methyl-substituted hexadecanedioic acid.
        Endocrinology. 1992; 131: 1629-1635
        • Skrede S.
        • Bremer J.
        • Berge R.K.
        • Rustan A.C.
        Stimulation of fatty acid oxidation by a 3-thia fatty acid reduces triacylglycerol secretion in cultured rat hepatocytes.
        J. Lipid Res. 1994; 35: 1395-1404
        • Bar-Tana J.
        • Rose-Kahn G.
        • Frenkel B.
        • Shafer Z.
        • Fainaru M.
        Hypolipidaemic effect of beta, beta'-methyl-substituted hexadecanedioic acid (MEDICA 16) in normal and nephrotic rats.
        J. Lipid Res. 1988; 29: 431-441
        • Lamb R.G.
        • Koch J.C.
        • Bush S.R.
        An enzymatic explanation of the differential effects of oleate and gemfibrozil on cultured hepatocyte triacylglycerol and phosphatidylcholine biosynthesis and secretion.
        Bio chim. Biophys. Acta. 1993; 1165: 299-305
        • Flier J.S.
        The adipocyte: storage depot or node on the energy information superhighway.
        Cell. 1995; 80: 15-18
        • Christy R.J.
        • Yang V.W.
        • Ntambi J.M.
        • Geiman D.E.
        • schulz W.H.L
        • Friedman A.D.
        • Nakabeppu Y.
        • Kelly T.J.
        • Lane M.D.
        Differentiation-induced gene expression in 3T3-L1 preadipocytes: CCAAT/en-hancer binding protein interacts with and activates the promoters of two adipocyte-specific genes.
        Genes & Dev. 1989; 3: 1323-1335
        • Freytag S.O.
        • Geddes T.J.
        Reciprocal regulation of adipogenesis by Myc and C/EBPa.
        Science. 1992; 256: 379-382
        • Freytag S.O.
        • Paielli D.L.
        • Gilbert J.D.
        Ectopic expression of the CCAAT/enhancer-binding protein a promotes the adipogénie program in a variety of mouse fibroblastic cells.
        Genes & Dev. 1994; 8: 1654-1663
        • Wu Z.
        • Xie Y.
        • Bucher N.L.R.
        • Farmer S.R.
        Conditional ectopic expression of C/EBPp in NIH-3T3 cells induces PPARy and stimulates adipogenesis.
        Genes & Dev. 1995; 9: 2350-2363
        • Brandes R.
        • Hertz R.
        • Arad R.
        • Naishtat S.
        • Weil S.
        • Bar-Tana J.
        Adipocyte conversion of cultured 3T3-L1 preadipocytes by bezafibrate.
        Life Sci. 1987; 40: 935-941
        • Gharbi-Chibi J.
        • Teboul M.
        • Bismuth J.
        • Bonne J.
        • Torresani J.
        Increase of adipose differentiation by hypolipidemic fibrate drugs in ob 17 preadipocytes: requirement for thyroid hormones.
        Biochim. Biophys. Acta. 1993; 1177: 8-14
        • Amri E-Z.
        • Bertrand B.
        • Ailhaud G.
        • Grimaldi P.
        Regulation of adipose cell differentiation . I. Fatty acids are inducers of the aP2 gene expression.
        J. Lipid Res. 1991; 32: 1449-1456
        • Chawla A.
        • Lazar M.A.
        Peroxisome prolifera-tor and retinoid signaling pathways co-regulate preadipocyte phenotype and survival.
        Proc. Natl. Acad. Sci. 1994; 91: 1786-1790
        • Negrel R.
        • Gaillard D.
        • Ailhaud G.
        Prostacyclin as a potent effector of adipose-cell differentiation.
        Biochem.J. 1989; 257: 399-405
        • Gaillard D.
        • Negrel R.
        • Lagarde M.
        • Ailhaud G.
        Requirement and role of arachidonic acid in the differentiation of pre-adipose cells.
        Biochem. J. 1989; 257: 389-397