Inhibition of sterol biosynthesis in animal cells by 14 alpha-hydroxymethyl sterols.

      This paper is only available as a PDF. To read, Please Download here.
      The chemical syntheses of a number of 14 alpha-hydroxymethyl sterols and 14 alpha -hydroxymethyl-15 alpha-hydroxysterols and their derivatives have been pursued to permit evaluation of their activity in the inhibition of sterol biosynthesis in animal cells in culture. Described herein are chemical syntheses of 7 alpha,8 slpha-epoxy-14 alpha-methyl-5 alpha-cholestan-3 beta,15 alpha-diol, 14 alpha-methyl-5 alpha-cholestan-3 beta,7 alpha,15 alpha-triol, 3 beta,15 alpha-diacetoxy-14 alpha-methyl-5 alpha-cholestan-7 alpha-ol, 3 beta,15 alpha-diacetoxy-7 alpha,32-epoxy-14 alpha-methyl-5 alpha-cholestane, 14 alpha-hydroxymethyl-5 alpha-cholest-6-en-3 beta,15 alpha-diol, 14 alpha-hydroxymethyl-5 alpha-cholest-7-en-3 beta,15 alpha-diol, 7 alpha,32-epoxy-14 alpha-methyl-5 alpha-cholestan-3 beta,15 alpha-diol, 14 alpha-hydroxymethyl-5 alpha-cholest-6-en-3-one, 14 alpha-hydroxymethyl-5 alpha-cholest-7-en-3-one, and 14 alpha-hydroxymethyl-5 alpha-cholets-7-en-15 alpha-ol-3-one. The effects of eight of the above compounds and of 14 alpha-hydroxymethyl-5 alpha-cholest-8-en-3 beta-ol, 14 alpha-hydroxymethyl-5 alpha-cholest-7-en-3 beta-ol, 14 alpha-hydroxymethyl-5 alpha-cholest-6-en-3 beta-ol, and 7 alpha,32-epoxy-14 alpha-methyl-5 alpha-cholestan-3 beta-ol on the synthesis of digitonin-precipitalbe sterols and on levels of HMG-CoA reductase activity in L cells and in primary cultures of fetal mouse liver cells have been investigated. All of the 14 alpha-hydroxymethyl sterols and 14 alpha-hydroxymethyl-15 alpha-hydroxysterols were found to be potent inhibitors of sterol synthesis and to reduce the levels of HMG-CoA reductase activity in these cells. Since hydroxylation of the 14 alpha-methyl group of 14 alpha-methyl sterol precursors of cholesterol can be considered as an obligatory step in the biosynthesis of cholesterol, the finding that 14 alpha-hydroxymethyl sterols are potent inhibitors of cholesterol biosynthesis and cause a reduction in the levels of HMG-CoA reductase activity raises the possibility that oxygenated sterol precursors of cholesterol, such as 14 alpha-hydroxymethyl sterols, may play an important role in the regulation of cholesterol synthesis and in the regulation of processes dependent upon mevalonate and sterol formation.

      References

        • Kandutsch Α.Α.
        • Chen H.W.
        Inhibition of sterol synthesis in cultured mouse cells by 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol.
        J. Biol. Chem. 1973; 248: 8408-8417
        • Kandutsch Α.Α.
        • Chen H.W.
        Inhibition of sterol synthesis in cultured mouse cells by cholesterol derivatives oxygenated in the side chain.
        J. Biol. Chemin. 1974; : 6057-6061
        • Kandutsch Α.Α.
        • Chen H.W.
        Regulation of sterol synthesis in cultured cells by oxygenated derivatives of cholesterol.
        J. Cell. Physiol. 1975; 85: 415-424
        • Kandutsch Α.Α.
        • Chen H.W.
        • Heiniger H-J.
        Biological activity of some oxygenated sterols.
        Science. 1978; 201: 498-501
        • Bloch K.
        The biological synthesis of cholesterol.
        Science. 1965; 150: 19-28
        • Frantz Jr., I.D.
        • Schroepfer Jr., G.J.
        Sterol biosynthesis.
        Ann. Rev. Biochem. 1967; 36: 691-726
        • Schroepfer Jr., G.J.
        • Lutsky B.N.
        • Martin J.A.
        • Huntoon S.
        • Fourcans B.
        • Lee W-H.
        • Vermilion J.
        Recent investigations on the nature of sterol intermediates in the biosynthesis of cholesterol.
        Proc. Royal Soc. (London) B. 1972; 180: 125-146
        • Gaylor J.L.
        • Delwiche С.V.
        Investigation of the multienzymic system of microsomal cholesterol biosynthesis.
        Ann. New York Acad. Sci. 1973; 212: 122-138
        • Fried J.
        • Dudowitz A.
        • Brown J.W.
        Enzymatic conversion of 32-oxygenated Δ7-lanosterol derivatives and of Δ8(14)-4,4-dimethyl-cholestenol to cholesterol.
        Biochem. Biophys. Res. Commun. 1968; 32: 568-574
        • Trowbridge S.
        • Lu Y.C.
        • Shaw R.
        • Chan J.
        • Spike T.
        The enzymatic removal of carbon atom 32 of cholesterol precursors.
        Federation Proc. 1975; 34: 495
        • Gibbons G.F.
        • Mitropoulos K.A.
        • Pullinger С.R.
        Lanosterol 14α-demethylase. The metabolism of some potential intermediates by cell-free systems from rat liver.
        Biochem. Biophys. Res. Commun. 1976; 69: 781-789
        • Akhtar M.
        • Freeman C.W.
        • Wilton D.C.
        • Boar R.B.
        • Copsey D.B.
        The pathway for the removal of the 15α-methyl group of lanosterol. The role of lanost-8-en-3β,32-diol in cholesterol biosynthesis.
        Bioorg. Chem. 1977; 6: 473-481
        • Schroepfer Jr., G.J.
        • Pascal Jr., R.A.
        • Shaw R.
        • Kandutsch A.A.
        Inhibition of sterol biosynthesis by 14α-hydroxymethyl sterols.
        Biochem. Biophys. Res. Commun. 1978; 83: 1024-1031
        • Knapp Jr., F.F.
        • Schroepfer Jr., G.J.
        Chemical synthesis, spectral properties, and chromatography of 4α-methyl and 4β-methyl isomers of (24R)-24 - ethyl - 5α - cholestan -3ß-ol and (245) - 24 - ethyl-cholesta-5,22-dien-3β-ol.
        Steroids. 1975; 26: 339-357
        • Knapp Jr., F.F.
        • Wilson M.S.
        • Schroepfer Jr., G.J.
        Mass spectra fragmentation of 5α-hydroxysteroids.
        Chem. Phys. Lipids. 1976; 16: 31-59
        • Martin J.Α.
        • Huntoon S.
        • Schroepfer Jr., G.J.
        Enzymatic conversion of 14α-methyl-cholest-7-en-3β,15ξ-diol to cholesterol.
        Biochem. Biophys. Res. Commun. 1970; 39: 1170-1174
        • Spike T.E.
        • Martin J.A.
        • Huntoon S.
        • Wang A.H.J.
        • Knapp Jr., F.F.
        • Schroepfer Jr., G.J.
        Sterol synthesis. Chemical syntheses, structure determination, and metabolism of 14α-methyl-5α-cholest-7-en-3β,15β-diol and 14α-methyl-5α-cholest-7-en-3β,15α-diol.
        Chem. Phys. Lipids. 1978; 21: 31-58
        • Pascal Jr., R.Α.
        • Shaw R.
        • Schroepfer Jr., G.J.
        Chemical synthesis of three 14α-hydroxymethyl cholestenols.
        J. Lipid Res. 1979; 20: 570-578
      1. Schroepfer, G. J., Jr. 1974. Recent studies on the biosynthesis of cholesterol. Abstracts, 17th International Conference on the Biochemistry of Lipids. Milan, Italy. p. 28.

        • Schroepfer Jr., G.J.
        • Knapp Jr., F.F.
        • Shaw R.
        • Trowbridge S.
        • Chan J.
        • Spike T.
        • Lu Y.C.
        • Shapiro R.
        • Raulston D.
        • Chang P.
        • Emergy H.
        Studies in sterol synthesis.
        J. Amer. Oil. Chem. Soc. 1974; 51: A516
      2. Schroepfer, G. J., Jr. 1974. Metabolism of sterols and sphingolipids: major constituents of the membranes of eukaryotes. Abstracts, Southwest Regional A.C.S. Meeting Houston, Texas. A23.

        • Schroepfer Jr., G.J.
        • Parish E.J.
        • Chen H.W.
        • Kandutsch A.A.
        Inhibition of sterol biosynthesis in L cells and in mouse liver cells by 15-oxygenated sterols.
        J. Biol. Chem. 1977; 252: 8975-8980
        • Saucier S.E.
        • Kandutsch A.A.
        Inactive 3-hydroxy-3-methylglutaryl-CoA reductase in broken cell preparations of various mammalian tissues and cell cultures.
        Biochim. Biophys. Acta. 1979; 572: 541-556
        • Spike T.E.
        • Wang A.H-J.
        • Paul I.C.
        • Schroepfer Jr., G.J.
        Structure of a potential intermediate in cholesterol biosynthesis.
        J. Chem. Soc, Chem. Commun. 1974; : 477-478
        • Knight J.C.
        • Klein P.D.
        • Szczepanik P.A.
        The synthesis of tritium-labeled 14α-methyl-5α-cholest-7-en-3β-ol and its enzymatic demethylation.
        J. Biol. Chem. 1966; 241: 1502-1508
        • Woodward В.В.
        • Patchett A.A.
        • Barton D.H.B.
        • Ives D.A.J.
        • Kelley R.B.
        The synthesis of lanosterol (lanostadienol).
        J. Chem. Soc. 1957; : 1131-1144
        • Chan J.J.
        • Spike T.E.
        • Trowbridge S.T.
        • Schroepfer Jr., G.J.
        Sterol synthesis. Studies of the metabolism of 14α-methyl-5α-cholest-7-en-3β-ol.
        J. Lipid Res. 1980; 20: 1007-1019
        • Knight J.C.
        • Belletire J.L.
        • Pettit G.R.
        Steroids and related natural products. Part XLII. 14α-methyl cholestanes.
        J. Chem. Soc. 1967; : 2427-2432
        • Schroepfer Jr., G.J.
        • Raulston D.L.
        • Kandutsch A.A.
        Inhibition of sterol synthesis in L cells by 14α-ethyl-5α-cholest-7-en-15α-ol-3-one at nanomolar concentrations.
        Biochem. Biophys. Res. Commun. 1977; 79: 406-410
        • Schroepfer Jr., G.J.
        • Pascal Jr., R.A.
        • Kandutsch A.A.
        Inhibition of sterol synthesis in animal cells by 15-oxygenated sterols with the unnatural cis-C-D ring junction-5α, 14β-cholest-7-en-15α-ol-3-one and 5α,14β-cholest-7-en-15β-ol-3-one.
        Biochem. Pharmacol. 1979; 28: 249-252
        • Pascal Jr., R.Α.
        • Schroepfer Jr., G.J.
        Sterol synthesis. Chemical synthesis of 5α-cholest-7-en-3β,14α,diol.
        J. Lipid Res. 1980; 21: 118-122
        • Parish E.J.
        • Schroepfer Jr., G.J.
        Chemical synthesis of 5α-cholest-6,8(14)-dien-3β-ol-15-one and related 15-oxygenated sterols.
        Chem. Phys. Lipids. 1979; 25: 381-394
        • Schroepfer Jr., G.J.
        • Parish E.J.
        • Kandutsch A.A.
        Further studies on the inhibition of sterol biosynthesis in animal cells by 15-oxygenated sterols.
        Chem. Phys. Lipids. 1979; 25: 265-285
        • Fried J.
        • Brown J.W.
        • Borkenhagen L.
        32-Oxygenated lanostane derivatives from 3β-acetoxy-Δ7-lanostene via 7α,8α-epoxides.
        Tetrahedron Lett. 1965; : 2499-2504
        • Bhacca N.S.
        • Williams D.H.
        Applications of NMR Spectroscopy in Organic Chemistry.
        Illustrations from the Steroid Field. Holden-Day, San Francisco, CA1964: 13-24
        • Schroepfer Jr., G.J.
        • Parish E.J.
        • Chen H.W.
        • Kandutsch A.A.
        Inhibition of cholesterol biosynthesis in L cells and in primary cultures of liver cells by 15-oxygenated sterols.
        Federation Proc. 1976; 35: 1697
        • Schroepfer Jr., G.J.
        • Parish E.J.
        • Kandutsch A.A.
        14α-Ethyl-5α-cholest-7-en-3β,15α-diol, an extraordinary potent inhibitor of sterol synthesis in animal cells.).
        Amer. Chem. Soc. 1977; 99: 5494-5496
        • Schroepfer Jr., G.J.
        • Parish E.J.
        • Tsuda M.
        • Raulston D.L.
        • Kandutsch A.A.
        Inhibition of sterol biosynthesis in animal cells by 14α-alkyl substituted 15-oxygenated sterols.
        J. Lipid Res. 1980; 20: 994-998
        • Lee W.H.
        • Schroepfer Jr., G.J.
        Enzymatic conversion of Δ8(14)-cholesten-3β-ol to cholesterol.
        Biochem. Biophys. Res. Commun. 1968; 32: 635-638
        • Lutsky B.N.
        • Schroepfer Jr., G.J.
        Enzymatic conversion of Δ8,14-cholestadien-3β-ol to cholesterol.
        Biochem. Biophys. Res. Commun. 1968; 33: 492-496
        • Lee W.H.
        • Lutsky B.N.
        • Schroepfer Jr., G.J.
        5α-Cholest-8(14)-en-3β-ol, a possible intermediate in the biosynthesis of cholesterol. Enzymatic conversion to cholesterol and isolation from rat skin.
        J. Biol. Chem. 1969; 244: 5440-5448
        • Lutsky B.N.
        • Schroepfer Jr., G.J.
        Studies on the enzymatic conversion of 5α-cholesta-8,14-dien-Зβ-ol to cholesterol.
        J. Biol. Chem. 1970; 245: 6449-6455
        • Lutsky B.N.
        • Martin J.A.
        • Schroepfer Jr., G.J.
        Studies of the metabolism of 5α-cholesta-8,14-dien-3β-ol and 5α-cholesta-7,14-dien-3β-ol in rat liver homogenate preparations.
        J. Biol. Chem. 1971; 246: 6737-6744
        • Lutsky B.N.
        • Schroepfer Jr., G.J.
        Enzymatic conversion of cholest-8(14)-en-3β-ol to cholesta-8,14-dien-3β-ol.
        Lipids. 1971; 6: 957-959
        • Hsiung H.M.
        • Spike T.E.
        • Schroepfer Jr., G.J.
        Enzymatic conversion of 5α-cholesta-7,14-dien-Зβ-ol to 5α-cholesta-8,14-dien-3β-ol.
        Lipids. 1975; 10: 623-626
        • Huntoon S.
        • Fourcans B.
        • Parish E.J.
        • Emery H.
        • Knapp Jr., F.F.
        • Schroepfer Jr., G.J.
        Sterol synthesis. Chemical syntheses and metabolism of 5α-cholest-8(14)-en-3β,15β-diol and 5α-cholest-8(14)-en-3β,15α-diol.
        J. Biol. Chem. 1978; 253: 775-782
        • Chang P.
        • Schroepfer Jr., G.J.
        Sterol biosynthesis. Further studies of the metabolism of [3α-3H]-14α-hydroxymethyl-5α-cholest-7-en-3β-ol.
        Federation Proc. 1977; 36: 816
        • Akhtar M.
        • Watkinson I.A.
        • Rahimtula A.D.
        • Wilton D.C.
        • Munday K.A.
        The removal of the 14-methyl group in cholesterol biosynthesis.
        Chem. Commun. 1968; : 1406-1407
        • Gibbons G.F.
        • Good L.J.
        • Goodwin T.W.
        The stereochemistry of hydrogen elimination from C-15 during cholesterol biosynthesis.
        Chem. Commun. 1968; : 1458-1460
        • Canonica L.
        • Fiecchi A.
        • Galli Kienle Μ.
        • Scala A.
        • Galli G.
        • Grossi Paoletti E.
        • Paoletti R.
        The fate of the 15β-hydrogen of lanosterol in cholesterol biosynthesis.
        J. Amer. Chem. Soc. 1968; 90: 3597-3598
        • Canonica L.
        • Fiecchi A.
        • Galli Kienle M.
        • Scala A.
        • Galli G.
        • Grossi Paoletti E.
        • Paoletti R.
        Evidence for the biological conversion of Δ8,14 sterol dienes into cholesterol.
        J. Amer. Chem. Soc. 1968; 90: 6532-6534
        • Watkinson I.Α.
        • Akhtar M.
        The formation of an 8,14-diene system during cholesterol biosynthesis.
        Chem. Commun. 1969; : 206
        • Akhtar M.
        • Rahimtula A.D.
        • Watkinson I.A.
        • Wilton D.C.
        • Munday K.A.
        The status of C-6, C-7, C-15 and C-16 hydrogen atoms in cholesterol biosynthesis.
        Eur. J. Biochem. 1969; 9: 107-111
        • Akhtar M.
        • Watkinson I.A.
        • Rahimtula A.D.
        • Wilton D.C.
        • Munday K.A.
        The role of a cholesta-8,14-dien-3β-ol in cholesterol biosynthesis.
        Biochem. J. 1969; 111: 757-761
        • Akhtar M.
        • Rahimtula A.D.
        • Watkinson I.A.
        • Wilton D.C.
        • Munday K.A.
        The origin of the 14α-hydrogen in cholesterol biosynthesis.
        Chem. Commun. 1969; : 149-150
        • Alexander K.T.W.
        • Akhtar M.
        • Boar R.B.
        • McGuie J.F.
        • Barton D.H.R.
        The pathway for the removal of C-32 in cholesterol biosynthesis.
        Chem. Commun. 1971; : 1479-1481
        • Watkinson I.Α.
        • Wilton D.С.
        • Munday K.A.
        • Akhtar M.
        The formation and reduction of the 14,15-double bond in cholesterol biosynthesis.
        Biochem. J. 1971; 121: 131-137
        • Alexander K.
        • Akhtar M.
        • Boar R.B.
        • McGuie J.F.
        • Barton D.H.R.
        The removal of the 32-carbon atom as formic acid in cholesterol biosynthesis.
        Chem. Commun. 1972; : 383-385
        • Akhtar M.
        • Alexander K.
        • Boar R.B.
        • McGuie J.F.
        • Barton D.H.R.
        Chemical and enzymic studies on the characterization of intermediates during the removal of the 14α-methyl group in cholesterol biosynthesis.
        Biochem. J. 1978; 169: 449-463
        • Gibbons G.F.
        • Mitropoulos K.A.
        Inhibition of cholesterol biosynthesis by carbon monoxide: accumulation of lanosterol and 24,25-dihydrolano-sterol.
        Biochem. J. 1972; 127: 315-317
        • Gibbons G.F.
        • Mitropoulos K.A.
        The effect of carbon monoxide on the nature of the accumulated 4,4-dimethyl sterol precursors of cholesterol during its biosynthesis from [2–14C] mevalonic acid in vitro.
        Biochem. J. 1975; 132: 439-448
        • Gibbons G.F.
        The metabolic sequence by which some 4,4-dimethyl sterols are converted into cholesterol.
        Biochem. J. 1974; 144: 59-68
        • Mitropoulos Κ.Α.
        • Gibbons G.F.
        • Reeves Β.E.A.
        Lanosterol 14α-demethylase. Similarity of the enzyme system from yeast and rat liver.
        Steroids. 1976; 27: 821-829
        • Aoyama Y.
        • Yoshida
        Interaction of lanosterol to cytochrome P-450 purified from yeast microsomes: evidence for contribution of cytochrome P-450 to lanosterol metabolism.
        Biochem. Biophys. Res. Commun. 1978; 82: 33-38
        • Aoyama Y.
        • Yoshida Y.
        The 14α-demethylation of lanosterol by a reconstituted cytochrome P-450 system from yeast microsomes.
        Biochem. Biophys. Res. Commun. 1978; 85: 28-34
        • Schroepfer Jr., G.J.
        Conversion of zymosterol-14C and zymostenol-3H to cholesterol by rat liver homogenates and intact rats.
        J. Biol. Chem. 1961; 236: 1668-1673
        • Schroepfer Jr., G.J.
        • Frantz Jr., I.D.
        Conversion of Δ7-cholesterol-4–14C and 7-dehydrocholesterol-4–14C to cholesterol.
        J. Biol. Chem. 1961; 236: 3137-3140
        • Chen H.W.
        • Heiniger H-J.
        • Kandutsch A.A.
        Relationship between sterol synthesis and DNA synthesis in phytohemagglutinin-stimulated mouse lymphocytes.
        Proc. Nat. Acad. Sci., U.S.A. 1975; 72: 1950-1954