Advertisement

Lipid hydroperoxy and hydroxy derivatives in copper-catalyzed oxidation of low density lipoprotein.

Open AccessPublished:June 01, 1990DOI:https://doi.org/10.1016/S0022-2275(20)42744-0
      This paper is only available as a PDF. To read, Please Download here.
      Oxidation of low density lipoprotein (LDL) causes changes in the biological properties of LDL that may be important in atherogenesis. That LDL oxidation is accompanied by lipid peroxidation has been demonstrated, but previous analyses of the products of LDL oxidation have not included measurement of specific lipid hydroperoxy and hydroxy derivatives. In this study, LDL was isolated from plasma of normal volunteers and exposed to oxygenated buffer and 5 microM CuSO4 for 24 h. Oxidized LDL showed decreased linoleate (18:2) and arachidonate (20:4) content with increased concentrations of thiobarbituric acid reactive substances (TBARS) and hydroxy and hydroperoxy 18:2 and 20:4. The electrophoretic mobility of the LDL protein also was increased by oxidation. After reduction, the hydroxy fatty acids were characterized by gas chromatography-mass spectrometric analysis of the trimethylsilyl ether methyl ester derivatives. The hydroperoxy and hydroxy derivatives accounted for approximately 70% of the linoleate consumed during LDL oxidation and represented 45-fold more product than was measured by TBARS analysis. Numerous biological properties, including cytotoxic and chemoattractant activities of hydroperoxy and hydroxy fatty acids, have been reported, but the manner in which they may contribute to atherogenesis requires further study.

      REFERENCES

        • Quinn M.T.
        • Parthasarathy S.
        • Fong L.G.
        • Steinberg D.
        Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocytes/ macrophages during atherogenesis.
        Proc. Natl. Acad. Sci. USA. 1987; 84: 2995-2998
        • Brown M.S.
        • Goldstein J.L.
        Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis.
        Annu. Rev. Biochem. 1983; 52: 223-261
        • Morel D.W.
        • Hessler J.R.
        • Chisolm G.M.
        Low density lipoprotein cytotoxicity induced by free radical peroxidation of lipid.
        J. Lipid Res. 1983; 24: 1070-1076
        • Evenson S.A.
        • Galdal K.S.
        • Nilsen E.
        LDL-induced cytotoxicity and its inhibition by antioxidant treatment in cultured human endothelial cells and fibroblasts.
        Atherosclerosis. 1983; 49: 23-30
        • Gerrity R.G.
        The role of the monocyte in atherogenesis. II. Migration of foam cells from atherosclerotic lesions.
        Am. J. Pathol. 1981; 103: 191-200
        • Faggiotto A.
        • Ross R.
        • Harker L.
        Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation.
        Arteriosclerosis. 1984; 4: 323340
        • Bocan T.M.A.
        • Guyton J.R.
        Human aortic fibrolipid lesions: progenitor lesions for fibrous plaques, exhibiting early formation of the cholesterol-rich core.
        Am. J. Pathol. 1985; 120: 193-206
        • Bocan T.M.A.
        • Schifani T.A.
        • Guyton J.R.
        Ultrastructure of the human aortic fibrolipid lesions. Formation of the atherosclerotic lipid-rich core.
        Am. J. Pathol. 1986; 123: 413-424
        • Guyton J.R.
        • Klemp K.F.
        The lipid-rich core region of human atherosclerotic fibrous plaques. Prevalence of small lipid droplets and vesicles by electron microscopy.
        Am. J. Pathol. 1989; 134: 705-717
        • Faggiotto A.
        • Ross R.
        Studies of hypercholesterolemia in the nonhuman primate. II. Fatty streak conversion to fibrous plaque.
        Arteriosclerosis. 1984; 4: 341-356
        • Ridolfi R.L.
        • Hutchins G.M.
        The relationship between coronary artery lesions and myocardial infarcts: ulceration of atherosclerotic plaques precipitating coronary thrombosis.
        Am. Heart J. 1977; 93: 468-486
        • Olivia P.B.
        Pathophysiology of acute myocardial infarction.
        Ann. Intern. Med. 1981; 94: 236-250
        • Kita T.
        • Nagano Y.
        • Yokode M.
        • Ishii K.
        • Kume N.
        • Ooshima A.
        • Yoshida H.
        • Kawai C.
        Probucol prevents the progression of atherosclerosis in Watanabe heritable hyperlipidemic rabbit, an animal model for familial hypercholesterolemia.
        Proc. Natl. Acad. Sci. USA. 1987; 84: 5928-5931
        • Carew T.E.
        • Schwenke D.C.
        • Steinberg D.
        Antiatherogenic effect of probucol unrelated to its hypocho-lesterolemic effect: evidence that antioxidants in vivo can selectively inhibit low density lipoprotein degradation in macrophage-rich fatty streaks and slow the progression of atherosclerosis in the Watanabe heritable hyperlipidemic rabbit.
        Proc. Natl. Acad. Sci. USA. 1987; 84: 7725-7729
        • Esterbauer H.
        • Jürgens G.
        • Quehenberger O.
        • Koller E.
        Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes.
        J. Lipid Res. 1987; 28: 495-509
        • Steinbrecher U.P.
        Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products.
        J. Biol. Chem. 1987; 262: 3603-3608
        • Curzio M.
        • Esterbauer H.
        • DiMauro C.
        • Cecchini G.
        • Dianzani M.U.
        Chemotactic activity of the lipid peroxidation product 4-hydroxynonenal and homologous hydroxyalkenals.
        Biol. Chem. Hoppe-Seyler. 1986; 367: 321-329
        • Gardner H.W.
        Oxygen radical chemistry of polyunsaturated fatty acids.
        Free Rod. Biol. Med. 1989; 7: 65-86
        • Smith C.V.
        • Reilly M.H.
        Formation of pentane versus 1-pentanol in the ferrous sulfate-initiated decomposition of 15-hydroperoxyeicosatetraenoic acid in hypoxic and hyperoxic conditions.
        Biochem. Pharmacol. 1989; 38: 1362-1364
        • Boeynaems J.M.
        • Brash A.R.
        • Oates J.A.
        • Hubbard W.C.
        Preparation and assay of monohydroxy-eicosatetraenoic acids.
        Anal. Biochem. 1980; 104: 259-267
        • Havel R.J.
        • Eder H.A.
        • Bragdon J.H.
        The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum.
        J. Clin. Invest. 1955; 34: 1345-1353
        • Hughes H.
        • Smith C.V.
        • Horning E.C.
        • Mitchell J.R.
        HPLC and GC-MS determination of specific lipid peroxidation products in vivo.
        Anal. Biochem. 1983; 130: 431-436
        • Hughes H.
        • Smith C.V.
        • Tsokos-Kuhn J.O.
        • Mitchell J.R.
        Quantitation of lipid peroxidation products by gas chromatography-mass spectrometry.
        Anal. Biochem. 1986; 152: 107-112
        • Folch J.
        • Lees M.
        • Sloane Stanley G.H.
        A simple method for the isolation and purification of total lipids from animal tissues.
        J. Biol. Chem. 1957; 226: 497-509
        • Lowry O.H.
        • Rosebrough N.J.
        • Farr A.L.
        • Randall R.J.
        Protein measurement with the Folin phenol reagent.
        J. Biol. Chem. 1951; 193: 265-275
        • Steinbrecher U.P.
        • Parthasarathy S.
        • Leake D.S.
        • Witztum J.L.
        • Steinberg D.
        Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids.
        Proc. Natl. Acad. Sci. USA. 1984; 81: 3883-3887
        • Chan H.W.S.
        • Levett G.
        Autoxidation of methyl linoleate. Separation and analysis of isomeric mixtures of methyl linoleate to hydroperoxides and methyl hy-droxylinoleates.
        Lipids. 1977; 12: 99-104
        • Porter N.A.
        • Wolf R.A.
        • Yarbro E.M.
        • Weenen H.
        The autoxidation of arachidonic acid: formation of the proposed SRS-A intermediate.
        Biochem. Biophys. Res. Commun. 1979; 89: 1058-1064
        • Ohkawa H.
        • Ohishi N.
        • Yagi K.
        Reaction of linoleic acid hydroperoxide with thiobarbituric acid.
        J. Lipid Res. 1978; 19: 1053-1057
        • Heinecke J.W.
        • Rosen H.
        • Chait A.
        Iron and copper promote modification of low density lipoprotein by human arterial smooth muscle cells in culture.
        J. Clin. Invest. 1984; 74: 1890-1894
        • Niki E.
        • Saito T.
        • Kawakami A.
        • Kamiya Y.
        Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C..
        J. Biol. Chem. 1984; 259: 4177-4182
        • Nakao J.
        • Ooyama T.
        • Ito H.
        • Chang W-C.
        • Murota S-I.
        Comparative effect of lipoxygenase products of arachidonic acid on rat aortic smooth muscle cell migration.
        Atherosclerosis. 1982; 44: 339-342
        • Goetzl E.J.
        • Woods J.M.
        • Gorman R.R.
        Stimulation of human eísoinophil and neutrophil polymorphonuclear leukocyte chemotaxis and random migration by 12-L-hydroxy-5,8,10,14-eicosatetraenoic acid.
        J. Clin. Invest. 1977; 59: 179-183
        • Goetzl E.J.
        • Pickett W.C.
        The human PMN leukocyte chemotactic activity of complex hydroxy-eicosa-tetraenoic acids (HETEs).
        J. Immunol. 1980; 125: 1789-1791
        • Ross R.
        • Glomset J.A.
        Atherosclerosis and the arterial smooth muscle cell.
        Science. 1973; 180: 1332-1339
        • Faggiotto A.
        • Ross R.
        • Harker L.
        Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation.
        Arteriosclerosis. 1984; 4: 323-340
        • Palinski W.
        • Rosenfeld M.E.
        • Yla-Herttuala S.
        • Gurtner G.C.
        • Socher S.S.
        • Butler S.W.
        • Parthasarathy S.
        • Carew T.E.
        • Steinberg D.
        • Witztum J.L.
        Low density lipoprotein undergoes oxidative modification in vivo.
        Proc. Natl. Acad. Sci. USA. 1989; 86: 1372-1376
        • Kaneko T.
        • Honda S.
        • Nakano S.
        • Matsuo M.
        Lethal effects of a linoleic acid hydroperoxide and its autoxidation products, unsaturated aliphatic aldehydes, on human diploid fibroblasts.
        Chem. Biol. Interact. 1987; 63: 127-137
        • Yagi K.
        • Ohkawa H.
        • Ohishi N.
        • Yamashita M.
        • Nakashima T.
        Lesion of aortic intima caused by intravenous administration of linoleic acid hydroperoxide.
        J. Appl. Biochem. 1981; 3: 58-65
        • Harland W.A.
        • Gilbert J.D.
        • Steel G.
        • Brooks C.J.W.
        The occurrence of a new group of polar sterol esters in various stages of human atherosclerosis.
        Atherosclerosis. 1971; 13: 239-246
        • Haberland M.E.
        • Fong D.
        • Cheng L.
        Malon-dialdehyde-altered protein occurs in atheroma of Watanabe heritable hyperlipidemic rabbits.
        Science. 1988; 241: 215-218
        • Parthasarathy S.
        • Wieland E.
        • Steinberg D.
        A role for endothelial cell lipoxygenase in the oxidative modification of low density lipoprotein.
        Proc. Natl. Acad. Sci. USA. 1989; 86: 1046-1050