NanoSIMS imaging of fatty acid and cholesterol absorption by intestinal enterocytes

Kai Chen, Wenxin Song, Robert Russell, Alessandra Ferrari, Tamim Darwish, Peter Tontonoz, Stephen G. Young, Haibo Jiang

PII: S0022-2275(22)00123-7
DOI: https://doi.org/10.1016/j.jlr.2022.100290
Reference: JLR 100290

To appear in: Journal of Lipid Research

Received Date: 5 July 2022
Revised Date: 9 August 2022
Accepted Date: 12 August 2022


This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 THE AUTHORS. Published by Elsevier Inc on behalf of American Society for Biochemistry and Molecular Biology.
Images in Lipid Research

NanoSIMS imaging of fatty acid and cholesterol absorption by intestinal enterocytes

Kai Chen1,2, Wenxin Song3, Robert Russell4, Alessandra Ferrari3, Tamim Darwish4, Peter Tontonoz3, Stephen G. Young3, and Haibo Jiang1,2

From the 1Department of Chemistry, The University of Hong Kong, Hong Kong, China; 2School of Molecular Sciences, The University of Western Australia, Crawley, Australia; 3David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; 4National Deuteration Facility, ANSTO, Lucas Heights, Australia

Absorption of lipids by intestinal enterocytes is crucial for growth and development and is highly relevant to human metabolic diseases. Hence, the molecules and mechanisms for lipid absorption have been studied intensively. Electron microscopy has been useful for exploring intestinal lipid absorption (1), but high-resolution images of the absorption of specific lipids have been lacking.

We have studied the uptake of stable isotope–labeled lipids by intestinal enterocytes with correlative backscattered electron (BSE) and nanoscale secondary ion mass spectrometry (NanoSIMS) imaging. BSE images of sections of intestine provide ultrastructural morphology. NanoSIMS images of the same section show the elemental and isotopic content of the sections (e.g., 1H, 2H, 12C, 13C, 14N, 32S) at ~50-nm resolution, making it possible to define both enterocyte morphology and the location of stable isotope–labeled lipids within enterocytes (2). This correlative imaging methodology makes it possible to match high-resolution chemical information from NanoSIMS analyses with the ultrastructural detail of BSE images.

In the current study, a wild-type mouse was given (by gastric gavage) 20 mg of [13C]mixed fatty acids and 10 mg of [2H]cholesterol. After 3 h, the mouse was euthanized, and 500-nm-thick resin-embedded sections of the ileum were prepared for BSE/NanoSIMS imaging (3). In the upper row, BSE and NanoSIMS images show a villus (stained with thiocarbohydrazide and osmium tetroxide). The boxed area in the upper row is shown at higher magnification in the lower row. BSE images show the ultrastructure features of enterocytes, cells of the lamina propria, and a lacteal (La) containing chylomicrons (Chylo). Enterocytes had apical microvilli, electron-dense lipid droplets (LD), and chylomicrons (Chylo). A 32S/12C14N NanoSIMS image was useful for villus morphology. Lipid droplets and chylomicrons had a high 32S/12C14N ratio (reflecting 33S enrichment from thiocarbohydrazide). 13C/12C ratio images and 2H/1H images (superimposed on 12C13N images) show distributions of [13C]fatty acids and [2H]cholesterol. Both lipids were enriched in cytosolic lipid droplets and chylomicrons, but there were differences in the patterns of 13C and 2H enrichment. For example, [2H]cholesterol was preferentially enriched in the microvilli. Our correlative BSE/NanoSIMS approach will be very useful for investigating the impact of genetic interventions and drug therapy on lipid absorption in the intestine.

Equipment: NanoSIMS 50L (CAMECA), Verios XHR SEM (FEI)

Reagents: [13C]Mixed fatty acids (Cambridge Isotope Laboratories), [2H]cholesterol (uniformly labeled) was prepared by the ANSTO’s National Deuteration Facility, co-funded by the National Collaborative Research Infrastructure Strategy.

References Cited
Author Contribution
