Abstract
Key words
INTRODUCTION
Materials and Methods
A mathematical model for the binding of ligands to membrane sterols
where C and P form CPr complexes with a stoichiometry r = 1 or 2 (
where CL represents this association. The ligand is not in the membrane; therefore, the chemical activity of the unbound form, designated as Lu, is taken as its abundance. The association constant for the binding of cholesterol to ligand is
where n is the order of the oligomerization reaction. The equilibrium expression is

RESULTS
Binding of PFO to the cholesterol in POPC membranes
Curve | KP | (CL)n | KL | KN | Code |
---|---|---|---|---|---|
Panel A | |||||
A1 | 1 | 30 | 8 | 1 x 10111 | Black dash dot dot |
A2 | 48 | 30 | 8 | 1 x 10111 | Black line |
A3 | 480 | 30 | 32 | 1 x 10111 | Blue line |
A4 | 480 | 2 | 8 | 4 x 104 | Black dash |
A5 | 480 | 30 | 8 | 1 x 10111 | Red line |
A6 | 480 | 1 | 20 | 0 | Blue dash dot dot |
A7 | 480 | 30 | 1 | 1 x 10111 | Blue dash |
A8 | 480 | Uncomplexed cholesterol, right axis | Red dash | ||
Panel B | |||||
B1 | 120 | 30 | 8 | 1 x 10111 | Red dash |
B2 | 240 | 30 | 8 | 1 x 10111 | Blue line |
B3 | 240 | 30 | 4 | 1 x 10111 | Black dots |
B4 | 480 | 30 | 16 | 1 x 10102 | Blue dash |
B5 | 480 | 30 | 8 | 1 x 10111 | Red line |
B6 | 480 | 30 | 4 | 1 x 10120 | Pink line |
B7 | 960 | 30 | 16 | 1 x 10111 | Black dash |
B8 | 960 | 30 | 8 | 1 x 10111 | Black dash dot dot |
Curve | C:P | (CL)n | KL | KN | Code |
---|---|---|---|---|---|
1 | 1:2 | 2 | 10 | 1 x 105 | Blue dash |
2 | 1:2 | 30 | 1.1 | 1 x 10111 | Blue line |
3 | 1:1+1:2 | 30 | 14 | 1 x 10111 | Red line |
4 | 1:1 | 30 | 35 | 1 x 10111 | Black line |
5 | 1:2 | Uncomplexed cholesterol, right axis | Red dash | ||
6 | 1:1+1:2 | Uncomplexed cholesterol, right axis | Black dash |
Curve | KL | Code |
---|---|---|
1 | 24 | Blue line |
2 | 12 | Red line |
3 | 4 | Blue dash |
4 | 1 | Black line |
5 | Uncomplexed cholesterol, right axis | Red dash |
Binding of PFO to cholesterol in DOPC membranes

Binding of PFO to plasma membrane cholesterol

Binding of PFO to cholesterol in ER membranes

Curve | KA | KB | Code |
---|---|---|---|
1 | 10 | 5 | Dash dot dash |
2 | 21 | 10 | Solid line |
3 | 42 | 20 | Long dashes |
4 | 105 | 50 | Short dashes |
5 | Uncomplexed cholesterol, right axis | Dash dot dot dash |
DISCUSSION
Applications of the model to probes for plasma membrane cholesterol
- Blanchette-Mackie E.J.
- Dwyer N.K.
- Amende L.M.
- Kruth H.S.
- Butler J.D.
- Sokol J.
- Comly M.E.
- Vanier M.T.
- August J.T.
- Brady R.O.
- et al.
- Castellano B.M.
- Thelen A.M.
- Moldavski O.
- Feltes M.
- van der Welle R.E.
- Mydock-McGrane L.
- Jiang X.
- van Eijkeren R.J.
- Davis O.B.
- Louie S.M.
- Perera R.M.
- Covey D.F.
- Nomura D.K.
- Ory D.S.
- Zoncu R.
Application of the model to the binding of probes to endolysosomes
- Blanchette-Mackie E.J.
- Dwyer N.K.
- Amende L.M.
- Kruth H.S.
- Butler J.D.
- Sokol J.
- Comly M.E.
- Vanier M.T.
- August J.T.
- Brady R.O.
- et al.
Conclusions
Membrane | C:P | KP | (CL)n | KL | KN |
---|---|---|---|---|---|
POPC | 1:1 | 480 | 30 | 8 | 1 x 10111 |
DOPC | 1:1 + 1:2 | 930 | 30 | 14 | 1 x 10111 |
Plasma membrane | 1:1 + 1:2 | 5,000 + 930 | 30 | 12 | 1 x 10111 |
Endoplasmic reticulum | 1:1 + 1:2 | 21 + 10 | 30 | 14 | 1 x 10111 |
- Kinnebrew M.
- Woolley Rachel E.
- Ansell T.B.
- Byrne Eamon F.X.
- Frigui S.
- Luchetti G.
- Sircar R.
- Nachtergaele S.
- Mydock-McGrane L.
- Krishnan K.
- Newstead S.
- Sansom Mark S.P.
- Covey Douglas F.
- Siebold C.
- Rohatgi R.
- Palladino E.N.D.
- Bernas T.
- Green C.D.
- Weigel C.
- Singh S.K.
- Senkal C.E.
- Martello A.
- Kennelly J.P.
- Bieberich E.
- Tontonoz P.
- Ford D.A.
- Milstien S.
- Eden E.R.
- Spiegel S.
- Kinnebrew M.
- Woolley Rachel E.
- Ansell T.B.
- Byrne Eamon F.X.
- Frigui S.
- Luchetti G.
- Sircar R.
- Nachtergaele S.
- Mydock-McGrane L.
- Krishnan K.
- Newstead S.
- Sansom Mark S.P.
- Covey Douglas F.
- Siebold C.
- Rohatgi R.
Data availability
Uncited reference
Conflict of interest
Acknowledgments
Supplementary Data
REFERENCES
- Cholesterol-protein interaction: methods and cholesterol reporter molecules.Subcell Biochem. 2010; 51: 1-45
- How cholesterol interacts with proteins and lipids during its intracellular transport.Biochimica et Biophysica Acta (BBA) - Biomembranes. 2015; 1848: 1908-1926
Fantini, J., R. M. Epand, and F. J. Barrantes. 2019. Cholesterol-Recognition Motifs in Membrane Proteins. In Direct Mechanisms in Cholesterol Modulation of Protein Function. A. RosenhouseDantsker and A. N. Bukiya, editors. 3-25.
- Depletion with Cyclodextrin Reveals Two Populations of Cholesterol in Model Lipid Membranes.Biophys J. 2016; 110: 635-645
- A basic model for cell cholesterol homeostasis.Traffic. 2021; 22: 471-481
- Determination of membrane cholesterol partition coefficient using a lipid vesicle-cyclodextrin binary system: effect of phospholipid acyl chain unsaturation and headgroup composition.Biophys J. 2002; 83: 3408-3415
- Cholesterol homeostasis and the escape tendency (activity) of plasma membrane cholesterol.Prog Lipid Res. 2008; 47: 319-332
- Stability and Stoichiometry of Bilayer Phospholipid–Cholesterol Complexes: Relationship to Cellular Sterol Distribution and Homeostasis.Biochemistry. 2013; 52: 6950-6959
- Chemical activity of cholesterol in membranes.Biochemistry. 2000; 39: 8119-8124
- Cell cholesterol homeostasis: Mediation by active cholesterol.Trends in Cell Biology. 2010; 20: 680-687
- The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.Biophys J. 2018; 114: 904-918
- Active cholesterol 20 years on.Traffic. 2020; 21: 662-674
- Cholesterol homeostasis: How do cells sense sterol excess?.Chem Phys Lipids. 2016; 199: 170-178
- Continuous transport of a small fraction of plasma membrane cholesterol to endoplasmic reticulum regulates total cellular cholesterol.Elife. 2017; 6
- Pathways and Mechanisms of Cellular Cholesterol Efflux—Insight From Imaging.Frontiers in Cell and Developmental Biology. 2022; 10
- Modifications in perfringolysin O domain 4 alter the cholesterol concentration threshold required for binding.Biochemistry. 2012; 51: 3373-3382
- Switch-like responses of two cholesterol sensors do not require protein oligomerization in membranes.Biophys J. 2015; 108: 1459-1469
- Mechanistic Insights into the Cholesterol-dependent Binding of Perfringolysin O-based Probes and Cell Membranes.Sci Rep. 2017; 713793
- The use of anthrolysin O and ostreolysin A to study cholesterol in cell membranes.Methods Enzymol. 2021; 649: 543-566
- Localization of cholesterol in sphingomyelinase-treated fibroblasts.Biochem J. 1995; 308: 269-274
- Lipid droplet changes in proliferating and quiescent 3T3 fibroblasts.Histochem Cell Biol. 2008; 129: 611-621
- Fluorescence image screening for chemical compounds modifying cholesterol metabolism and distribution[S].Journal of Lipid Research. 2011; 52: 2084-2094
- Visualization of cholesterol deposits in lysosomes of Niemann-Pick type C fibroblasts using recombinant perfringolysin O.Orphanet J Rare Dis. 2014; 9: 64
- Complementary probes reveal that phosphatidylserine is required for the proper transbilayer distribution of cholesterol.J Cell Sci. 2015; 128: 1422-1433
- Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.Toxins (Basel). 2016; 8
- Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol.Nat Chem Biol. 2017; 13: 268-274
- STARD3 mediates endoplasmic reticulum-to-endosome cholesterol transport at membrane contact sites.EMBO J. 2017; 36: 1412-1433
- Movement of accessible plasma membrane cholesterol by the GRAMD1 lipid transfer protein complex.Elife. 2019; 8
- Intracellular and Plasma Membrane Cholesterol Labeling and Quantification Using Filipin and GFP-D4.Methods Mol Biol 1949. 2019; : 137-152
- Cellular cholesterol and how to find it.Biochim Biophys Acta Mol Cell Biol Lipids. 2021; 1866158989
- Studies on the biological properties of polyene antibiotics. Evidence for the direct interaction of filipin with cholesterol.J Biol Chem. 1972; 247: 1918-1929
- Perfringolysin O, a cholesterol-binding cytolysin, as a probe for lipid rafts.Anaerobe. 2004; 10: 125-134
- The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.Subcell Biochem. 2010; 51: 551-577
Wade, K. R., E. M. Hotze, and R. K. Tweten. 2015. Perfringolysin O and related cholesterol-dependent cytolysins: mechanism of pore formation. Comprehensive Sourcebook of Bacterial Protein Toxins, 4th Edition: 719-738.
- Cholesterol Exposure at the Membrane Surface Is Necessary and Sufficient to Trigger Perfringolysin O Binding.Biochemistry. 2009; 48: 3977-3987
- The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O).J Biol Chem. 2014; 289: 5467-5478
- Use of mutant 125I-perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells.Proc Natl Acad Sci U S A. 2013; 110: 10580-10585
- Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin.Elife. 2017; 6
- A novel sterol-binding protein reveals heterogeneous cholesterol distribution in neurite outgrowth and in late endosomes/lysosomes.Cell Mol Life Sci. 2022; 79: 324
- How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction.J Biol Chem. 2008; 283: 4632-4642
- Accessibility of Cholesterol in Endoplasmic Reticulum Membranes and Activation of SREBP-2 Switch Abruptly at a Common Cholesterol Threshold.Journal of Biological Chemistry. 2010; 285: 29480-29490
- Transmembrane protein (perfringolysin o) association with ordered membrane domains (rafts) depends upon the raft-associating properties of protein-bound sterol.Biophys J. 2013; 105: 2733-2742
- Studies on the competition of polyene antibiotics for sterols.J Antibiot (Tokyo). 1979; 32: 646-653
- The Cholesterol-dependent Cytolysin Membrane-binding Interface Discriminates Lipid Environments of Cholesterol to Support β-Barrel Pore Insertion.Journal of Biological Chemistry. 2015; 290: 17733-17744
- Side-Chain Oxysterols Modulate Cholesterol Accessibility through Membrane Remodeling.Biochemistry. 2014; 53: 3042-3051
- Comment on 'Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol.Elife. 2018; 7
- The solution structure and oligomerization behavior of two bacterial toxins: pneumolysin and perfringolysin O.Biophys J. 2004; 87: 540-552
- The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains.Eur J Biochem. 2002; 269: 6195-6203
Das, A., M. S. Brown, D. D. Anderson, J. L. Goldstein, and A. Radhakrishnan. 2014. Three pools of plasma membrane cholesterol and their relation to cholesterol homeostasis. Elife: e02882.
- Cholesterol oxidase as a probe for studying membrane organisation.Nature. 1978; 274: 394-395
- The effect of cholesterol and other intercalated amphipaths on the contour and stability of the isolated red cell membrane.J Biol Chem. 1980; 255: 9331-9337
- How cholesterol homeostasis is regulated by plasma membrane cholesterol in excess of phospholipids.Proc Natl Acad Sci U S A. 2004; 101: 11664-11667
- Switch-like Control of SREBP-2 Transport Triggered by Small Changes in ER Cholesterol: A Delicate Balance.Cell Metabolism. 2008; 8: 512-521
- Subcellular organelle lipidomics in TLR-4-activated macrophages.J Lipid Res. 2010; 51: 2785-2797
- Chemical potential measurements constrain models of cholesterol-phosphatidylcholine interactions.bioRxiv. 2022; (2022.2010.2008): 511420
- Activation of membrane cholesterol by 63 amphipaths.Biochemistry. 2009; 48: 8505-8515
- Failure of filipin to detect cholesterol-rich domains in smooth muscle plasma membrane.Nature. 1983; 303: 637-638
- Type-C Niemann-Pick disease: low density lipoprotein uptake is associated with premature cholesterol accumulation in the Golgi complex and excessive cholesterol storage in lysosomes.Proc Natl Acad Sci U S A. 1988; 85: 8022-8026
- Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport.Nature Cell Biology. 1999; 1: 113-118
- Dynamics of lysosomal cholesterol in Niemann-Pick type C and normal human fibroblasts.J Lipid Res. 2002; 43: 198-204
- Automated microscopy screening for compounds that partially revert cholesterol accumulation in Niemann-Pick C cells.J Lipid Res. 2006; 47: 284-301
- Lysosomal cholesterol activates mTORC1 via an SLC38A9-Niemann-Pick C1 signaling complex.Science. 2017; 355: 1306-1311
- Introducing inducible fluorescent split cholesterol oxidase to mammalian cells.Journal of Biological Chemistry. 2017; 292: 8811-8822
- ORP2 interacts with phosphoinositides and controls the subcellular distribution of cholesterol.Biochimie. 2019; 158: 90-101
- ER–lysosome contacts enable cholesterol sensing by mTORC1 and drive aberrant growth signalling in Niemann–Pick type C.Nature Cell Biology. 2019; 21: 1206-1218
- ORP2 Delivers Cholesterol to the Plasma Membrane in Exchange for Phosphatidylinositol 4, 5-Bisphosphate (PI(4,5)P2).Mol Cell. 2019; 73: 458-473 e457
- Lipid-mediated motor-adaptor sequestration impairs axonal lysosome delivery leading to autophagic stress and dystrophy in Niemann-Pick type C.Developmental Cell. 2021; 56: 1452-1468.e1458
- A role for sphingomyelin-rich lipid domains in the accumulation of phosphatidylinositol-4,5-bisphosphate to the cleavage furrow during cytokinesis.Mol Cell Biol. 2012; 32: 1396-1407
- Cellular cholesterol efflux mediated by cyclodextrins. Demonstration of kinetic pools and mechanism of efflux.J Biol Chem. 1996; 271: 16026-16034
- Cellular Localization and Trafficking of the Human ABCG1 Transporter.Biology (Basel). 2014; 3: 781-800
- The cholesterol absorption inhibitor ezetimibe acts by blocking the sterol-induced internalization of NPC1L1.Cell Metab. 2008; 7: 508-519
- High-resolution imaging and quantification of plasma membrane cholesterol by NanoSIMS.Proc Natl Acad Sci U S A. 2017; 114: 2000-2005
- Patched 1 reduces the accessibility of cholesterol in the outer leaflet of membranes.Elife. 2021; 10e70504
- Molecular basis of accessible plasma membrane cholesterol recognition by the GRAM domain of GRAMD1b.EMBO J. 2021; 40 (e106524): e106524
- Essentially all excess fibroblast cholesterol moves from plasma membranes to intracellular compartments.PLoS One. 2014; 9e98482
- C-terminal of ABCA1 separately regulates cholesterol floppase activity and cholesterol efflux activity.Bioscience Biotechnology and Biochemistry. 2020; 84: 764-773
- Changes in the asymmetric distribution of cholesterol in the plasma membrane influence streptolysin O pore formation.Sci Rep. 2019; 9: 4548
- Quantitative Measurement of Cholesterol in Cell Populations Using Flow Cytometry and Fluorescent Perfringolysin O.Methods Mol Biol. 2017; 1583: 85-95
- Sources of Variability in the Response of Labeled Microspheres and B Cells during the Analysis by a Flow Cytometer.Int J Mol Sci. 2021; 22
- Evaluation of the available cholesterol concentration in the inner leaflet of the plasma membrane of mammalian cells.Journal of Lipid Research. 2021; 62: 18
- Transverse distribution of plasma membrane bilayer cholesterol: Picking sides.Traffic. 2018; 19: 750-760
- Plasma membranes are asymmetric in lipid unsaturation, packing and protein shape.Nat Chem Biol. 2020; 16: 644-652
- Salmonella exploits host Rho GTPase signalling pathways through the phosphatase activity of SopB.Cellular Microbiology. 2018; 20e12938
- ORP2, a cholesterol transporter, regulates angiogenic signaling in endothelial cells.The FASEB Journal. 2020; 34: 14671-14694
- Kinetics of enzyme reactions with interaction between a substrate and a (metal) modifier.Biochemistry. 1969; 8: 1767-1779
- Retrospective on Cholesterol Homeostasis: The Central Role of Scap.Annu Rev Biochem. 2018; 87: 783-807
- Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators.The Journal of Steroid Biochemistry and Molecular Biology. 2015; 151: 102-107
- The Degron Architecture of Squalene Monooxygenase and How Specific Lipids Calibrate Levels of This Key Cholesterol Synthesis Enzyme.Adv Exp Med Biol. 2021; 21: 1-12
- Oxysterols provide innate immunity to bacterial infection by mobilizing cell surface accessible cholesterol.Nat Microbiol. 2020; 5: 929-942
- Cholesterol access in cellular membranes controls Hedgehog signaling.Nature Chemical Biology. 2020; 16: 1303-1313