x
Filter:
Filters applied
- Regular Research Articles
- phosphatidylethanolamineRemove phosphatidylethanolamine filter
- 2021 - 2022Remove 2021 - 2022 filter
- Journal of Lipid ResearchRemove Journal of Lipid Research filter
Author
- Alvarez-Jarreta, Jorge1
- Aoki, Junken1
- Arya, Arvind1
- Bentley, Kirsten1
- Blanksby, Stephen J1
- Bowman, Andrew P1
- Brown, Richard William1
- Buurma, Niklaas J1
- Dane, Adriaan D1
- Du, Yuwei1
- Ellis, Shane R1
- Geley, Stephan1
- Golderer, Georg1
- Griffiths, William J1
- Gunter, Jennifer H1
- He, Yuan1
- Heeren, Ron MA1
- Heyman, James1
- Jenkins, P Vince1
- Jiang, Huiran1
- Ju, Wen1
- Kano, Kuniyuki1
- Kawana, Hiroki1
- Keller, Markus A1
- Koch, Jakob1
Keyword
- PE5
- PC4
- phosphatidylcholine4
- CE3
- PG3
- phosphatidylglycerol3
- phosphatidylinositol3
- phosphatidylserine3
- PI3
- PS3
- PL2
- (L)PC[O]/[P]1
- (L)PE[O]/[P]1
- 1-acylglycerol-3-phosphate-O-acyltransferase1
- 3-isobutyl-1-methylxanthine1
- 31-deuterium-labeled palmitic acid1
- 35-deuterium-labeled stearic acid1
- 3T3-L11
- 9-deuterium-labeled oleic acid1
- AA1
- ACE21
- AGPAT1
- APC1
- AT1
Regular Research Articles
5 Results
- Research ArticleOpen Access
Identification and characterization of LPLAT7 as an sn-1-specific lysophospholipid acyltransferase
Journal of Lipid ResearchVol. 63Issue 10100271Published online: August 29, 2022- Hiroki Kawana
- Masaya Ozawa
- Takeaki Shibata
- Hirofumi Onishi
- Yukitaka Sato
- Kuniyuki Kano
- and others
Cited in Scopus: 0The main fatty acids at the sn-1 position of phospholipids (PLs) are saturated or monounsaturated fatty acids such as palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1) and are constantly replaced, like unsaturated fatty acids at the sn-2 position. However, little is known about the molecular mechanism underlying the replacement of fatty acids at the sn-1 position, i.e., the sn-1 remodeling. Previously, we established a method to evaluate the incorporation of fatty acids into the sn-1 position of lysophospholipids (lyso-PLs). - Research ArticleOpen Access
Adaptations of the 3T3-L1 adipocyte lipidome to defective ether lipid catabolism upon Agmo knockdown
Journal of Lipid ResearchVol. 63Issue 6100222Published online: May 7, 2022- Sabrina Sailer
- Katharina Lackner
- Mia L. Pras-Raves
- Eric J.M. Wever
- Jan B. van Klinken
- Adriaan D. Dane
- and others
Cited in Scopus: 0Little is known about the physiological role of alkylglycerol monooxygenase (AGMO), the only enzyme capable of cleaving the 1-O-alkyl ether bond of ether lipids. Expression and enzymatic activity of this enzyme can be detected in a variety of tissues including adipose tissue. This labile lipolytic membrane-bound protein uses tetrahydrobiopterin as a cofactor, and mice with reduced tetrahydrobiopterin levels have alterations in body fat distribution and blood lipid concentrations. In addition, manipulation of AGMO in macrophages led to significant changes in the cellular lipidome, and alkylglycerolipids, the preferred substrates of AGMO, were shown to accumulate in mature adipocytes. - Research ArticleOpen Access
Isomeric lipid signatures reveal compartmentalized fatty acid metabolism in cancer
Journal of Lipid ResearchVol. 63Issue 6100223Published online: May 7, 2022- Reuben S.E. Young
- Andrew P. Bowman
- Kaylyn D. Tousignant
- Berwyck L.J. Poad
- Jennifer H. Gunter
- Lisa K. Philp
- and others
Cited in Scopus: 5The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. - Research ArticleOpen Access
The SARS-CoV2 envelope differs from host cells, exposes procoagulant lipids, and is disrupted in vivo by oral rinses
Journal of Lipid ResearchVol. 63Issue 6100208Published online: April 14, 2022- Zack Saud
- Victoria J. Tyrrell
- Andreas Zaragkoulias
- Majd B. Protty
- Evelina Statkute
- Anzelika Rubina
- and others
Cited in Scopus: 9The lipid envelope of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an essential component of the virus; however, its molecular composition is undetermined. Addressing this knowledge gap could support the design of antiviral agents as well as further our understanding of viral-host protein interactions, infectivity, pathogenicity, and innate immune system clearance. Lipidomics revealed that the virus envelope comprised mainly phospholipids (PLs), with some cholesterol and sphingolipids, and with cholesterol/phospholipid ratio similar to lysosomes. - Research ArticleOpen Access
Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo
Journal of Lipid ResearchVol. 63Issue 5100207Published online: April 6, 2022- Yue Li
- Yuwei Du
- Zhengqing Xu
- Yuan He
- Ran Yao
- Huiran Jiang
- and others
Cited in Scopus: 1Macrophages play pivotal roles in the maintenance of tissue homeostasis. However, the reactivation of macrophages toward proinflammatory states correlates with a plethora of inflammatory diseases, including atherosclerosis, obesity, neurodegeneration, and bone marrow (BM) failure syndromes. The lack of methods to reveal macrophage phenotype and function in vivo impedes the translational research of these diseases. Here, we found that proinflammatory macrophages accumulate intracellular lipid droplets (LDs) relative to resting or noninflammatory macrophages both in vitro and in vivo, indicating that LD accumulation serves as a structural biomarker for macrophage phenotyping.